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Risk of multiple interacting tipping points should
encourage rapid CO2 emission reduction
Yongyang Cai1,2†, Timothy M. Lenton3*† and Thomas S. Lontzek4*†

Evidence suggests that several elements of the climate system could be tipped into a di�erent state by global warming,
causing irreversible economic damages. To address their policy implications, we incorporated five interacting climate tipping
points into a stochastic-dynamic integrated assessment model, calibrating their likelihoods and interactions on results from
an existing expert elicitation. Here we show that combining realistic assumptions about policymakers’ preferences under
uncertainty, with the prospect of multiple future interacting climate tipping points, increases the present social cost of carbon
in the model nearly eightfold from US$15 per tCO2 to US$116 per tCO2. Furthermore, passing some tipping points increases
the likelihood of other tipping points occurring to such an extent that it abruptly increases the social cost of carbon. The
corresponding optimal policy involves an immediate, massive e�ort to control CO2 emissions, which are stopped by mid-
century, leading to climate stabilization at <1.5 ◦C above pre-industrial levels.

The social cost of carbon (SCC) represents the cost of all
future climate damages stemming from a marginal emission
of CO2, discounted to the year of emission. The 2010 US

Federal assessment1 used three simple integrated assessmentmodels
(IAMs) to arrive at a SCC of US$21 per tCO2 for a tonne emitted
in 2010, which was subsequently revised upwards2 to US$33 per
tCO2. Several other studies3–6 have argued for a higher SCC on
various grounds. A key potential contributor to increasing the
SCC is the possibility that ongoing climate change will cause
elements of the climate system to pass ‘tipping points’ leading to
irreversible damages7,8.

Existing scientific studies suggest there are multiple climate
tipping points that could be triggered this century or next if climate
change continues unabated7,8, and there are causal interactions
between tipping events such that tipping one element affects
the likelihoods of tipping others8 (Fig. 1). The likelihood of
specific tipping events varies, but is generally expected to increase
with global temperature7,8. However, internal variability within
the climate system, and relatively rapid anthropogenic forcing,
mean that even if deterministic tipping points could be precisely
identified, the actual systems could be tipped earlier or later9.
Thus, any assessment of their policy implications needs to represent
the stochastic uncertainty surrounding when tipping points could
occur10. Furthermore, the impacts of passing different tipping
points are expected to vary7,11, and to unfold at different rates
depending on the internal timescale of the part of the climate system
being tipped7,11.

Relative to this scientific understanding, most cost–benefit
analyses of climate change allow for only simple and scientifically
unrealistic representations of climate tipping points11. Most
previous IAM studies of climate catastrophes have treated them
in a deterministic fashion, sometimes giving them a probability
distribution5,12–15. Some recent IAM studies have considered one
stochastic climate tipping point impacting economic output10, non-
market welfare16, climate sensitivity17, or carbon cycle feedbacks17.
This can lead to up to 200% increases in the SCC in extreme
cases10, with the results clearly sensitive to the timescale over which

tipping point impacts unfold, as well as the final magnitude of
those impacts10. However, there has been little consideration of
multiple tipping points and interactions between them, or of how
an appropriate representation of risk aversion affects the optimal
response to the prospect of future tipping points.

A recent IAM study18 has examined three loosely defined tipping
points that instantaneously alter climate sensitivity, carbon cycle
feedbacks, or economic output, and interact through their effects
on atmospheric CO2, global temperature, or economic output. Here
we consider five carefully defined tipping points7,8 and the direct
causal interactions between them identified by scientific experts8
(Fig. 1). These interactions occur primarily through aspects of the
climate system that are not resolved in simple IAMs. The impacts
of our tipping points unfold at a rate appropriate for the system
being tipped, in contrast with instantaneous changes17,18 in climate
sensitivity and carbon cycle feedbacks, which are scientifically
questionable10. Our tipping points principally affect economic
output, although we also consider their feedback effects on the
carbon cycle. Instead of arbitrarily specifying the likelihood of
the tipping points18, we calibrate their likelihoods (and the causal
interactions between them) on the basis of the results of an existing
expert elicitation8. Furthermore, in contrast to recent work18, we
alter the specification of the social planner’s preferences regarding
risk aversion and intergenerational equity, in a manner appropriate
for the stochastic uncertainty surrounding future tipping points.

Modelling tipping points
We use the dynamic stochastic integration of climate and economy
(DSICE) framework19 to incorporate five stochastic tipping points
and causal interactions between them into the 2013 version of
the well-known DICE model20 (see Methods and Supplementary
Figs 1 and 2). This means solving a sixteen-dimensional stochastic
model—the first time in the field of economics of climate change
that an analysis on such a scale has been accomplished (our previous
work10 solved a seven-dimensional system, whereas other simplified
stochastic versions17 of DICE consider only four dimensions). In our
stochastic version of the DICEmodel, we use annual time steps, and
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Figure 1 | Map of the five climate tipping events considered here and the causal interactions between them previously identified in an expert elicitation8.

calibrate parameters in the carbon cycle and temperature modules
against the emulated median response of complex climate models
for the four RCP (representative concentration pathway) scenarios21
(see Supplementary Methods). In a deterministic setting within our
model (without considering climate tipping points) our calibration
gives a SCC in 2010 of US$15 per tCO2 (all results are in 2010 US
dollars). For reference, the DICE-2013R model20 that uses five-year
time steps and is calibrated against one RCP scenario also has a 2010
SCC of US$15 per tCO2.

In IAMs such as DICE, greater emission control at present
mitigates damages from climate change in the future but limits
consumption and/or capital investment today. A ‘social planner’ is
assumed to weigh these costs and benefits of emission control to
maximize the expected present value of global social welfare. When
faced with stochastic uncertainty about future tipping events, the
social planner’s response will depend on their preferences regarding
risk and smoothing consumption. DICE adopts a specification
of risk aversion that is inversely tied to the decision-maker’s
preferences to smooth consumption over time (that is, the inter-
temporal elasticity of substitution). Thus, a high inter-temporal
elasticity of substitution is taken to imply a low risk aversion. In the
baseline DICE model, risk aversion RA = 1.45, and inter-temporal
elasticity of substitution IES= 1/1.45. However, empirical economic
data do not support this inverse proportionality (implying time-
separable utility) and suggest instead decoupling these preferences22.
Hence, we incorporated ‘Epstein–Zin’ (EZ) preferences22 using
default parameter settings23 of RA= 3.066 and IES= 1.5, which are
consistent with empirical findings23 (implying non-time-separable
utility). Estimates of IES> 1 have been obtained from, for example,
stockholder data24, IES = 1.5 is used in a long-run risk model19,25,
and the upper bound is considered23 to be IES∼ 2. Using IES= 1.5,
equity returns data23 suggest RA = 3.066, which is in the range
RA= 3–4 from a separate study of equity premiums of rare
disasters26, with the upper bound considered25 to be RA∼ 10.

The five interacting, stochastic, potential climate tipping points7,8
(Fig. 1 and Table 1) represent reorganization of the Atlantic

meridional overturning circulation (AMOC), disintegration of the
Greenland ice sheet (GIS), collapse of the West Antarctic ice sheet
(WAIS), dieback of the Amazon rainforest (AMAZ), and shift to a
more persistent El Niño regime (ENSO). We used published expert
elicitation results8 to derive the likelihoods (see Methods) of each of
the five tipping events (Table 1), and the causal interactions between
them (Fig. 1 and Supplementary Table 1). By causal interaction, we
mean that the hazard rate of each tipping point depends on the state
of the others.

For each tipping event, we specified a transition timescale10
(Table 1, see Methods)—that is, how long it would take for the
full impacts to unfold, based on current scientific understanding
of the timescales of the systems being tipped7,11 (for example, ice
sheets melt more slowly than the ocean circulation can reorganize).
Recognizing the scientific uncertainty surrounding transition times,
we explore a factor of 5 uncertainty range in either direction. We
must also specify a final damage for each tipping event (Table 1,
see Methods), taken to be an irreversible percentage reduction in
world GDP (gross domestic product). This is the most problematic
and debatable part of the parameterization, because of a gross
shortage of scientific and economic estimates of tipping point
damages11. We can make some scientific inferences about relative
damages (for example, based on the eventual contributions of
different ice sheets to sea-level rise). Past studies with DICE have
loosely associated a 25–30% reduction in GDP comparable with
the Great Depression with a collapse of the AMOC27,28, but when
combined with other tipping points this could lead to excessively
high overall damages. Our assigned damages for individual tipping
points range from 5 to 15% reduction in GDP with a combined
reduction in GDP if all five tipping events occur and complete their
transitions of 38%. However, owing to relatively low probabilities
and long transition timescales, the expected tipping point damages
in our default scenario amount to only 0.53% of GDP in 2100
and 1.89% of GDP in 2200. In our sensitivity analysis, we
consider a factor of 2–3 total uncertainty range in final damages
for each tipping point. Finally, we include some conservative
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Table 1 |Hazard rate, transition time, final damages and carbon cycle e�ect for each tipping element, with uncertainty ranges (in
parentheses) considered in the sensitivity analysis.

Tipping element Hazard rate (% yr−1 K−1) Transition time (yr) Final damages (% of GDP) Carbon cycle e�ect

AMOC 0.063 50 (10–250) 15 (10–20) No e�ect
GIS 0.188 1,500 (300–7,500) 10 (5–15) 100 GtC over transition
WAIS 0.104 500 (100–2,500) 5 (2.5–7.5) 100 GtC over transition
AMAZ 0.163 50 (10–250) 5 (2.5–7.5) 50 GtC over transition
ENSO 0.053 50 (10–250) 10 (5–15) 0.2 GtC yr−1 permanent
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Figure 2 | E�ect of multiple interacting tipping points and altered preferences on optimal policy. a–d, Results for the SCC (a), emissions control policy (b),
atmospheric carbon (c) and surface temperature change (above pre-industrial levels) (d) in the baseline deterministic model, the deterministic model with
IES= 1.5 and the expected path of the stochastic model with multiple interacting tipping points and EZ preferences (IES= 1.5, RA= 3.066). The grey
shaded area shows the range of sample paths from 10,000 simulations of the stochastic model (see Supplementary Fig. 3 for the analogous case
without interaction).

effects of tipping particular systems on the carbon cycle (Table 1,
see Methods).

Optimal policy
The result of including multiple interacting tipping points under
the default EZ preferences (Fig. 2) is a nearly eightfold increase
in the initial SCC from US$15 per tCO2 in the baseline model
(grey line) to US$116 per tCO2 (black line). Across 10,000 sample
paths of the model, there are cases where one or more tipping
points still occur, leading to uncertainty ranges for the key variables
(grey-shaded areas). The emissions control rate jumps from∼18 to
∼56% in 2010 and rises to 100% by 2050, effectively shutting down
fossil fuel CO2 emissions—whereas in the baselinemodel, emissions
continue into the next the century. The average atmospheric carbon
peaks in the 2030s at 415 ppm and then declines (owing to ongoing
ocean carbon uptake)—whereas in the baseline model, atmospheric
CO2 continues to rise to ∼650 ppm by 2100. Temperature rise
slows down and is almost stable around 1.4 ◦C above pre-industrial

by 2100—whereas in the baseline model, warming continues and
approaches 3 ◦C by 2100. Following the expected path (black line)
there is only an 11% probability of one or more tipping events by
2100, reduced from 46% in the baseline model, or 87% under a
prescribed RCP8.5 emissions scenario (Table 2).

A factor of 2.4 increase from the baseline SCC to US$36 per
tCO2 is just due to the change to IES = 1.5 (dashed black line,
Fig. 2), with a further factor of 3.2 increase due to the potential
for multiple tipping points. With just IES = 1.5 (and no stochastic
tipping points), the initial emissions control rate increases from∼18
to∼29%with 100% emissions control in 2100. Atmospheric carbon
peaks around 550 ppm, with surface temperature stabilizing around
2.3 ◦C above pre-industrial.

Tipping point interactions
In the full model, there are both positive and negative causal
interactions between tipping points (Fig. 1 and Supplementary
Table 1), which are conservatively calibrated (see Methods). Hence,
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Table 2 | Expected tipping point probabilities (%) by years 2100 and 2200, based on 10,000 model runs of the DSICE model19 with
five stochastic tipping points, and those that would be obtained from the temperature paths in the deterministic baseline model
without tipping points, or under prescribed RCP 8.5 emissions.

Number of tipping events Stochastic tipping points
(interacting)

Stochastic tipping points
(no interaction)

Baseline model
temperature path∗∗

RCP8.5 temperature
path††

2100 2200 2100 2200 2100 2200 2100 2200
1 10.8 24.38 12.04 26.88 34.28 23.03 29.69 0
2 0.65 4.14 0.72 4.08 10.03 31.31 30.73 0
3 0.04 0.42 0.05 0.41 1.81 24.7 19.08 0.33
4 0 0.02 0 0.02 0.18 10.1 6.76 16.87
5 0 0.01 0 0 0 2.29 0.85 82.80
Cumulative probability 11.49 28.97 12.81 31.39 46.30 91.43 87.11 100
∗2.8 ◦C warming in 2100, 2.76 ◦C in 2200. †4.7 ◦C warming in 2100, 7.5 ◦C in 2200.

their inclusion has only a modest net effect on the expected SCC,
increasing it from US$109 per tCO2 to US$116 per tCO2 (see
also Supplementary Fig. 3). However, a specific sample path where
multiple tipping events occur before 2200 (Fig. 3, solid line) reveals
that some tipping point interactions can have a strong effect on the
time evolution of the SCC. Considering a no-interactions sample
path (Fig. 3, dashed line) shows that, in general, passing a tipping
point reduces the incentive tomitigate and therefore lowers the SCC,
because it can no longer be avoided. However, with interactions,
tipping of the GIS significantly increases the likelihood of AMOC
tipping (which is assumed to be the most damaging event); hence,
this causes a large increase in the SCC to try to avoidAMOC tipping.
(This is consistent with previous suggestions29,30 that tipping points
can create multiple optima—here for the SCC and corresponding
emissions30.) Subsequent tipping of AMOCgreatly reduces the SCC.
Tipping of ENSO causes a small increase in the SCC because it
increases the likelihood of tipping the Amazon. Subsequent tipping
of the Amazon halves the SCC because there is now an unavoidable
extra source of carbon to the atmosphere and only WAIS left to tip.
There are other sample paths where the first tipping event does not
increase the likelihood of others, so the SCC drops—for example,
when the Amazon rainforest tips first (Supplementary Fig. 4).

The SCC therefore depends on whether tipping events occur and
in which order. This can also be seen by looking at the sample
paths for the earliest and sole tipping before 2100 of each element
(Supplementary Fig. 5). If the GIS tips first, this leads to the highest
SCC path and the most stringent emission control, reaching 100%
before 2040, because of the increased risk of AMOC collapse. If
the AMOC tips first, this gives the lowest SCC path because it
has the greatest damages, which can no longer be avoided—yet
emission control remains above 60% and the SCC remains above
US$110 per tCO2. If the Amazon tips first, this also lowers SCC
and emission control, but it leads to the highest atmospheric carbon
and temperature trajectory because of an accompanying carbon
source. If ENSO tips first, this slightly increases emission control
because the likelihood of the AMAZ tipping is increased. If the
WAIS tips first, there is little effect on emission control because it
only slightly increases the likelihood of tipping the AMOC and GIS.
CO2 emissions trajectories (Supplementary Fig. 6) therefore depend
on the contemporaneous state of tipping elements.

Sensitivity analysis
The high SCC is robust to sensitivity analyses (see Methods).
Combined variations in assumed transition times and final
damages of the tipping points give a full range in initial SCC of
US$50–166 per tCO2 (Supplementary Table 2). With pessimistic
settings for the expert assessment of interactions between tipping
elements (Supplementary Table 3), the SCC increases from US$116
per tCO2 to US$121 per tCO2. Including an endogenous transition
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Figure 3 | E�ect of causal interactions between tipping events on the
social cost of carbon. Example sample paths of the SCC in US dollars per
tCO2 with multiple tipping points interacting and not interacting.

time for the GIS gives only a slight reduction in SCC to US$114
per tCO2 because its damages tend to be discounted away anyway.
Allowing all tipping elements to have an endogenous transition time
reduces SCC to US$94 per tCO2.

Retaining an inter-temporal elasticity of substitution IES= 1.5
but increasing risk aversion to RA = 10 increases the SCC from
US$116 per tCO2 toUS$146 per tCO2.With the original RA= 3.066
and an upper limit of IES = 2, the SCC increases to US$151
per tCO2. Using the default DICE settings of IES= 1/1.45 and
RA= 1.45 gives an SCC of US$28 per tCO2, a factor 1.9 increase
from the default US$15 per tCO2 due to the five interacting
tipping points. Thus, EZ preferences magnify the effect of including
potential future tipping points, causing a factor 3.2 (rather than
1.9) increase in the SCC. To disentangle the effect of IES and RA,
we also investigate a case with IES = 1.5 and RA = 1/1.5, which
gives an SCC of US$104 per tCO2. That is, when we incorporate the
climate tipping risks, using time-separable preferences as in DICE,
an increase from IES = 1/1.45 (and RA = 1.45) to IES = 1.5 (and
RA= 1/1.5 ) leads to a factor 3.7 increase in the SCC, and the
additional change to our default time non-separable EZ preferences
(IES= 1.5, RA= 3.066) leads to an extra SCC of US$12 per tCO2.

Discussion and conclusion
Putting our results in scientific context, there is already evidence
that major ice sheets are losing mass at an accelerating rate31,32.
GIS mass loss is estimated to be contributing ∼0.7mmyr−1 to
sea-level rise33, with a corresponding increase in freshwater flux
to the North Atlantic34 since 1990 of ∼0.01 Sv. Although modest
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at present, this and other contributors to increasing freshwater
input to the North Atlantic35 are thought8 to increase the likelihood
of AMOC tipping, and our results suggest that this should be
increasing the incentive to control CO2 emissions.WAISmass loss is
contributing∼0.35mmyr−1 to sea-level rise32, and there is evidence
that parts of the West Antarctic ice sheet are already in irreversible
retreat36–38. If the WAIS has already passed a tipping point, then
mitigation cannot avoid it, but our results suggest that this should
not significantly reduce the incentive tomitigate to try to avoid other
tipping events.

Our results and policy recommendations differ considerably
from another recent study considering multiple tipping points18,
which recommends at most a doubling of the SCC that allows
CO2 emissions to continue to grow past mid-century, with
temperature ultimately peaking at just under 3 ◦C. In contrast,
our results recommend a nearly eightfold increase in the SCC to
drive a cessation of CO2 emissions by mid-century, which limits
warming to <1.5 ◦C. This very different outcome is a result of our
different specification of tipping points together with our change in
decision-maker preferences to somethingmore appropriate for such
stochastic climate risks.

There are several caveats with the DICE modelling approach
used here (and the simplified version of DICE used elsewhere18).
In the climate component of the model, the ocean carbon sink
is too strong39, causing it to overestimate the effect of emissions
reductions on atmospheric CO2 and temperature, especially beyond
2100.We consider only one value for equilibrium climate sensitivity
(2.9 ◦C followingDICE-2013), whereas the Intergovernmental Panel
onClimate Change likely range40 spans 1.5–4.5 ◦C.Nevertheless, the
DICE prediction that a shutdown of CO2 emissions by mid-century
will lead to ∼1.5 ◦C warming is compatible with more detailed
probabilistic projections41,42 varying climate sensitivity (noting that
DICE shuts down emission faster but then does not allow for net
carbon dioxide removal in the second half of this century41,42).

The economic component of DICE allows for an unrealistic
instantaneous adjustment of emissions (to, for example, a control
rate >0.5), whereas in reality emissions control rates are low
and there are lags in ramping them up, for example due to the
lifetime of coal-fired power stations. However, recent energy–
economic model studies41,42 show that it is technologically feasible
to increase the emissions control rate to 100%, and thus achieve
net zero CO2 emissions, by mid-century. The assumed costs of
mitigation options in DICE are also relatively low43, whereas
energy–economic models41 indicate that limiting warming to 1.5 ◦C
would be considerably more expensive than limiting it to 2 ◦C,
especially between now and 2030. Despite these uncertainties, in a
real options analysis framework44, paying up front now to minimize
the future risk of climate tipping points can still be the logical
and cost-effective option for societies. Furthermore, acknowledging
that society also faces other potential tipping points (for example,
disease pandemics) should increase the willingness to pay to avert
any one of them45, even though we should not necessarily avert
all of them45. The decision to try to avert climate tipping points
depends crucially on a relatively high risk aversion45, consistent with
our findings.

In summary, our results illustrate that the prospect of multiple
interacting climate tipping points with irreversible economic
damages ought to be provoking very strongmitigation action, on the
part of ‘social planners’—including governments signed up to the
United Nations Framework Convention on Climate Change. Under
realistic preferences under uncertainty, the optimal policy involves
a shutdown of carbon emissions by mid-century.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Summary.We use the DSICE model10,19 (Supplementary Fig. 1) to compute the
socially optimal reduction of global greenhouse gas emissions under the possibility
of five interacting climate tipping points. The baseline deterministic model without
tipping points is based on the 2013 version of DICE20, but uses parameters in the
carbon cycle and temperature system calibrated against all four RCP scenarios (see
Supplementary Methods), and solves on an annual time step. DICE comprises one
state variable for the capital stock, representing the world economy, a three-box
carbon cycle module, and a two-box climate. To this we add a ten-dimensional
system of interacting tipping elements.

For each of five tipping elements, we have a discrete binary state indicating
whether its corresponding tipping process has been already triggered or not, and a
continuous state variable indicating the contemporaneous length of the transition
process. The occurrence of each climate tipping point is modelled by a Markov
process and its timing is not known at the times of decisions. The endogenous
hazard rate (yr−1 K−1) for each tipping event is assumed zero up to 1 ◦C warming
above pre-industrial levels (reached in about 2015 in the model) and increases
linearly with global warming above 1 ◦C at a rate derived from published expert
elicitation results8. The conditional probabilities representing changes to the other
hazard rates should a particular system tip are conservatively specified given wide
ranges in the expert assessment8. The transition timescale10 of each tipping element
is based on current scientific understanding of the timescales at which specific
climate subsystems can transition into an alternative state, with a factor of 5
uncertainty range in either direction considered in the sensitivity analysis. Tipping
points are assumed to directly impact economic output and their relative final
damages are based on scientific understanding. The absolute final damages of
individual tipping events are highly uncertain and are varied in the sensitivity
analysis over a factor of 2–3 range, giving a range in total reduction in GDP if all
five tipping events occur of 23–50%. In addition to the impacts of tipping points on
economic output we also include conservative effects of tipping particular systems
on the carbon cycle, implemented as exogenous emissions to the atmosphere. The
stochastic model is solved using a supercomputer19,46, to generate 10,000 stochastic
sample paths, with the expected path calculated as the average of all paths.

In the following, we detail the specific modifications to the DICE-2013R model
and refer to Nordhaus43 for calibration and formulations of the remaining parts of
the model.

Calibration of tipping elements and interactions between them. As in previous
work10, we define three phases to the tipping process for each tipping element
(Supplementary Fig. 2). In the first, pre-trigger phase, the additional damage from
a tipping point is 0. In the second, transition phase, there is a positive, but not
stationary additional damage level. In the third and final, post-tipping phase the
tipping element is in a new, absorbing state, with a constant (irreversible)
damage level.

For each tipping element, i, after a tipping point is passed, the additional
damage factor Ji,t will increase continuously from a minimal level (that is, Ji,t=0) to
some maximum and persistent climate impact level (J i>0), implying that
Ji,t+1=min{Ji,t+1i,t , J i}Ii,t , where1i,t is the incremental impact level from stage t
to t+1 of tipping element i . In our default case,1i,t denotes linear increments, but
these increments become nonlinear in the sensitivity case with endogenous
transition time. We use Ii,t as the indicator function to denote for each tipping
element i the pre-trigger state of the world as Ii,t=0 and the post-trigger state of the
world as Ii,t=1, where Ii,t is a jump process with a Markovian hazard rate. The
latter is endogenous with respect to the contemporaneous level of global average
atmospheric temperature, Tt

AT. Furthermore, to model causal relationships
between the tipping elements, the Markovian hazard rate for tipping element i also
depends on whether a tipping process of climate tipping element j has been
triggered. We do not explicitly consider other indicators for tipping, for example,
the gradient of temperature47. The transition function for Ii,t from stage t to stage
t+1 is Ii,t+1=g I

i (It,Tt
AT,ωI

i,t ), where It is the vector of the indicator functions for
the five climate tipping elements (I1,t , . . . , I5,t ) and ωI

i,t is a random process. With
Ji,t+1=min

{
Ji,t+1i,t , J i

}
Ii,t the impact factor on the economy becomes

Ωt
(
Tt

AT, Jt,It
)
=

∏
i (1− Ii,t Ji,t )

1+π2
(
TAT

t

)2 (1)

where Tt
AT is the average global atmospheric temperature and π2 is a coefficient in

the damage function. (The impact of global warming on the economy is reflected
by a convex damage function of atmospheric temperature, which is a standard
feature of the DICE model—a deterministic model specification would simply be to
fix all Ii,t at 0.) We specify the probability transition matrix of the tipping process i
at time t as [

1−pi,t pi,t
0 1

]
(2)

where its (n,m) element is the transition probability from state n tom for Ii,t , and
pi,t=1−exp

(
−Bi(I)max

{
0,Tt

AT
−1
})

, where Bi(I) is the hazard rate function

for tipping element i, depending on whether other tipping elements have tipped. A
general formula for the hazard rate function is given by

Bi (I)=bi

1+
∑

j

(I j fij)

 (3)

We calibrated the values for bi using the expert opinions reported in Kriegler et al.8
and our previously described methodology10. Specifically, we calibrated bi to match
the average expert’s cumulative trigger probabilities for each tipping element by the
year 2200 for the medium temperature corridor in Kriegler et al.8, which implies
2.5 ◦C warming in 2100 and 3 ◦C warming in 2200. These probabilities are 22% for
AMOC, 52% for GIS, 34% for WAIS, 48% for AMAZ and 19% for ENSO. The
corresponding values for bi are bAMOC=0.00063064, bGIS=0.00188445,
bWAIS=0.00103854, bAMAZ=0.00163443 and bENSO=0.000526678 (Table 1).

To model the interaction component of tipping point likelihood, we introduce
fij as an additional probability factor, which describes by how much the hazard
factor for tipping element j is affected if tipping element i has tipped (when it is
negative, it implies a decrease in probability). The parameter matrix fij is calibrated
for i, j∈{AMOC, GIS, WAIS, AMAZ, ENSO}. Again we use the results in Kriegler
et al.8 as the source for our calibration of the interaction effects between tipping
elements. In particular, we consider the core experts’ assessment of the interaction
effects for the ‘medium’ temperature corridor. Our aim is to implement the
interactions as direct, conditional alterations to the hazard rate of individual
tipping events. Supplementary Table 1 summarizes our calibrated factors, fij. For
some of the interaction effects, experts assessed ambiguous effects. For example, in
the case of WAIS affecting AMOC the interaction factor ranges between<0 and
>0 among the experts and among the average optimistic and pessimistic opinions
of the core experts. In such an ambiguous case, although it might be worthwhile
incorporating this uncertainty in the direction of interaction, we leave that as a
possible avenue for further research and focus here, as in the non-ambiguous cases,
solely on the average core experts’ assessment.

The order of the tipping sequence is important for the overall impact of any
individual tipping element, owing to asymmetric causal relationships between
some of the tipping events (Fig. 1 and Supplementary Table 1). For example, when
GIS tipping is triggered first, the likelihood of AMOC is increased, but if instead a
tipping point in the AMOC is triggered first, the likelihood of GIS tipping
is reduced.

Specification of transition times, final damages and carbon cycle effects. In
addition to calibrating the hazard rate (described above), we have to specify the
transition time, final damage levels and the effect on the carbon cycle for each
tipping element (Table 1). We base this on reviews of the literature, updated from
previous work7,11. Recognizing the scientific and economic uncertainties in these
choices, the transition times are given a common factor of 5 range of uncertainty in
either direction from default values, and the final damages are given a factor of 2–3
total uncertainty range. The values chosen are briefly justified as follows.

AMOC. Past abrupt climate changes linked to reorganizations of the AMOC have
occurred in a decade or less, but future AMOC collapse in model simulations can
take a couple of centuries. Hence, we opt for a 50-year default transition time and
10–250 year range. The AMOC collapse is often viewed as the archetype of a
climate catastrophe; hence, we assign it the highest final damage (accepting that
others will question this). Past studies with DICE have suggested that a collapse of
the AMOCmight result in a 25–30% reduction in GDP comparable with the Great
Depression27,28. However, when combined with other tipping events this could lead
to excessively high damages, so we opt for a 15% GDP reduction with a range of
10–20%. We considered the potential for the AMOC collapse to reduce both ocean
heat48 and carbon49,50 uptake. However, quantitative estimates of these effects based
on existing studies48–50 suggest that they are small; hence, they are ignored here.

GIS. Irreversible meltdown of the Greenland ice sheet typically takes millennia in
model simulations51,52, but models are unable to explain the speed of recent ice
loss7. To cover the uncertainty, we opt for a default timescale of 1,500 years, with a
minimum timescale7 of 300 years and an upper limit of 7,500 years. The final
damages from the GIS melt will largely be due to sea-level rise7 of around 7m,
which is roughly twice what can come fromWAIS disintegration53. Hence, we give
the GIS twice the default final damages of the WAIS, noting that the spatial pattern
of sea-level rise will be greatest farthest away from each ice sheet (owing to
gravitational effects). As well as flooding low-lying cities and agricultural land,
flooding of large areas of low-lying permafrost (especially in Siberia) could
ultimately release large amounts of carbon11. We conservatively assume an
exogenous emission of 100GtC over the duration of the transition, which is only
∼6% of the total permafrost carbon reservoir54.

WAIS. The West Antarctic ice sheet is grounded largely below sea level and has the
potential for more rapid disintegration than the Greenland ice sheet7, ultimately
leading to up to 3.3m sea-level rise53. Past sea-level rise in the penultimate Eemian
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inter-glacial period is estimated to have occurred55 at rates>1m per century and
must have come from Antarctica and/or Greenland. We assign a minimum
timescale of 100 years for WAIS disintegration, with a default setting of 500 years,
and an upper limit of 2,500 years. Noting that the effect of GIS meltdown on Arctic
sea level is greatly suppressed by gravitational adjustment56, whereas that of WAIS
disintegration is not53, we assign WAIS the same potential to release 100GtC from
low-lying permafrost over the duration of the transition.

AMAZ. Dieback of the Amazon rainforest in future model simulations57 takes
around 50 years, which we use as our default. However, if drought and
corresponding fires respond very nonlinearly to climate change58 dieback could
conceivably occur on a minimum timescale of 10 years, whereas if the forest is
more resilient it could take centuries, consistent with a maximum timescale of 250
years. The Amazon rainforest is estimated to store 150–200GtC in living biomass
and soils59 and we conservatively assume that dieback will release 50GtC over the
duration of the transition.

ENSO. In the past the frequency and amplitude of ENSO variability has changed on
decadal to centennial timescales7, and in the future the amplitude of ENSO
variability is expected to increase with more frequent extreme El Niño and extreme
La Niña events60. Past El Niño and La Niña events have had large impacts,
especially on the agricultural sector, and their more global footprint than Amazon
dieback leads us to assign higher damages to ENSO. The observational record
shows that individual strong El Niño events can cause anomalous emissions of
carbon by fire61 of∼2GtC. Hence, we assume that an increase in El Niño amplitude
could readily cause an average increase in land carbon emissions (exogenous) by
0.2GtC yr−1 that is essentially permanent on the timescale of our integrations.

The combined effect on final damages if all tipping points occur is 38%, with a
23–50% range in our sensitivity analysis. However, the timescale for all damages to
be felt in our default case is over 1,000 years, and our tipping probabilities are
relatively low. Only two tipping elements (GIS, AMAZ) have an expected tipping
time around 2200 (when it is as likely as not that their tipping process will be
triggered), with the remaining three elements being less likely to tip. Furthermore,
slow transition times mean that damages tend to be discounted away. As we have
shown previously10, a tipping point with 2.5% damage to GDP and a 5-year
transition time will have much larger impact on the SCC today than a tipping point
with 25% damage to GDP and a 500-year transition time. Other integrated
assessment model studies that treat tipping points have tended to assume
instantaneous transitions and double-digit percentage damages. Thus, we argue
that overall our model is conservatively calibrated with relatively low expected
damages, which amount to 0.53% of GDP in 2100 and 1.89% of GDP in 2200 in our
default model parameterization.

The couplings to the carbon cycle lead to the following new specification of the
exogenous land carbon source (in GtC) in DSICE:

ELand,t = 0.9e−0.04t+ IGISI_
{
JGIS< JGIS

} 100
1500

+ IWAISI_
{
JWAIS< JWAIS

} 100
500

+ IAMAZI_{JAMAZ< JAMAZ
50
50

+0.2
(
JENSO/J ENSO

)
(4)

where the first term on the right-hand side is from the DICE model and all
remaining terms are our modifications. Here, I_{} serves as an indicator function.

The dynamic programming problem. In the following we present the dynamic
programming problem of the social planner:

Vt (S) = max
Ct ,µt

u(Ct ,Lt )+β
[
E
{
(V t+1(S+))

1−γ
1−1/ψ
}] 1−1/ψ

1−γ
(5)

s.t K+=(1−δ)K +Yt
(
K ,TAT,I, J

)
−Ct−Ψt (6)

M+=8MM+(εt (K ,µ) , 0,0)> (7)

T+=8TT+
(
ξ1Ft (MAT), 0

)> (8)

I+i =gi(I,T
AT,ωi) (9)

J+i =min
{
Ji+1i, J i

}
Ii (10)

where Vt (S) denotes the time t value function, which is endogenous in the
sixteen-dimensional state vector denoted by S. Furthermore, Ct ,µt are the
control variables for consumption and mitigation. Each period’s utility u
depends on consumption and exogenous labour supply Lt . With β we denote the
utility discount rate. The expectation operator is over the next period’s value
function with γ and ψ denoting the risk aversion parameter and the elasticity of
inter-temporal substitution, respectively. The utility also depends on the
elasticity of inter-temporal substitution, but not on the risk aversion parameter, so
that the risk aversion parameter will play a role only for stochastic cases as the
second term of the objective function of the maximization problem (5) will be
simplified to be the discounted next-period value function for deterministic
cases. In our default parameter case, we follow the calibration by Pindyck and
Wang23 and specify: γ =3.066 and ψ=1.5. Furthermore, K ,M and T denote the
capital stock, the three carbon stocks and the two temperatures (MAT and TAT

represent carbon concentration and temperature in the atmosphere), respectively
and a ‘+’ superscript denotes a variable’s next period value. Yt denotes world
gross product net of damages and εt denotes non-mitigated emissions into the
atmosphere. Finally, Ψt is the expenditure on mitigation, and Ft is a term
related to radiative forcing. The model is solved for the next 300 years with
a terminal value function approximating the welfare of future years from
301 to an infinite horizon (see Supplementary Methods). Our SCC is
computed using

SCCt=−1,000
(

∂Vt

∂MAT
t

)/(
∂Vt

∂Kt

)
as in DSICE19, denoting the marginal rate of substitution between atmospheric
carbon concentration and capital.

After solving the dynamic programming problem using parallel backward value
function iteration46 (see Supplementary Methods), we use these approximated
value functions Vt to simulate 10,000 paths in the following way: at the initial time,
its state vector S0 is known as the observed market values; then we can get the
optimal consumption and emission control rate at time 0 by solving the dynamic
programming problem with the previously computed V1. Using sample realization
of shocks, we can obtain the next state vector S1; using the same method to iterate
forward, we get one simulated path of states and optimal policies that depend on
realization of shocks. Repeating this process, we get 10,000 sample paths for
our analysis.

Numerical implementation of the model.We have found that for the relatively
short time horizon, when recalibrating the carbon cycle and temperature modules
to match all four RCP scenarios closely we can omit the deep ocean stock
of carbon without any loss of accuracy in the carbon-to-temperature relationship.
Thus, the numerical implementation of the model is fifteen-dimensional. The
computational task required to solve this fifteen-dimensional problem goes far
beyond what has previously been achieved in truly stochastic climate–economy
models, where three- to four-dimensional problems are considered the current
frontier. We solve the model with parallel dynamic programming methods46 on
312,500,000 approximation nodes for the ten-dimensional continuous state space
and degree-4 complete Chebyshev polynomials for each of the five discrete state
vectors. It takes about 3 h to solve the model for a single set of parameter values
on 10,560 cores at the Blue Waters supercomputer. The estimated error bound of
the optimal solution is 0.1–1% for policy functions and 0.01–0.1% for the
value functions.

Sensitivity analyses.We conducted several sensitivity analyses. First, we varied the
transition times and/or damages of all five tipping elements across their assigned
uncertainty ranges. Second, we took a more pessimistic assessment of the
interaction between the tipping elements (Supplementary Table 3), which uses the
upper bounds of the core experts’ assessment.

Third, some more complex sensitivity studies were also conducted exploring
the effect of endogenous transition times for tipping elements. In our model, the
transition time for tipping element i is inversely tied to1i,t , the annual damage
increase during the transition phase. Thus, the transition time for element i is
proportional to (1/1i,t ) and also its final damage level J i. In the case of an
endogenous transition time, we let the annual damage increase be
1i,t= J iexp(aiTt

AT
−bi), where ai and bi are parameters calibrated such that J i/1i,t

results in the upper-bound value of the range of transition times considered for
TAT

t =0, and in the lower-bound value of that range for TAT
t =6. Thus, the

endogenous transition time is equal to
∫
∞

0 exp(aiTt
AT
−bi)Ii,t I_

(
Ji,t< J̄i

)
dt .

As a general rule, transition timescales should be governed by the internal
dynamical timescale(s) of the system in question, so it may not be appropriate
to include a temperature dependence of the transition timescale for all
tipping elements. However, endogenous transition times have some backing
for the major ice sheets, where models51,52 show that the rate of ice sheet
meltdown depends on the amount by which a temperature threshold
is exceeded.
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