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Evaluation of dynamic coastal response to
sea-level rise modifies inundation likelihood
Erika E. Lentz1*, E. Robert Thieler1, Nathaniel G. Plant2, Sawyer R. Stippa1, Radley M. Horton3,4

and Dean B. Gesch5

Sea-level rise (SLR) poses a range of threats to natural and
built environments1,2, making assessments of SLR-induced
hazards essential for informed decision making3. We develop
a probabilistic model that evaluates the likelihood that an area
will inundate (flood) or dynamically respond (adapt) to SLR.
The broad-area applicability of the approach is demonstrated
by producing 30 × 30m resolution predictions for more than
38,000 km2 of diverse coastal landscape in the northeastern
United States. Probabilistic SLR projections, coastal elevation
and vertical land movement are used to estimate likely future
inundation levels. Then, conditioned on future inundation
levels and the current land-cover type, we evaluate the
likelihood of dynamic response versus inundation. We find
that nearly 70% of this coastal landscape has some capacity
to respond dynamically to SLR, and we show that inundation
models over-predict land likely to submerge. This approach is
well suited to guiding coastal resource management decisions
that weigh future SLR impacts and uncertainty against
ecological targets and economic constraints.

Future impacts from climate change, and particularly SLR4,
are expected to be widespread in coastal areas2. The northeastern
US coastal landscape encompasses a variety of environments that
will respond differently to SLR according to their geomorphology,
geologic setting, ecology and level of development. Elevated water
levels due to SLR will exacerbate coastal erosion and flooding1,5,
particularly along developed coasts that have substantial, fixed, low-
elevation infrastructure and real estate2. Coastal habitats provide
breeding areas and migration corridors for many threatened or
endangered species6. Thus, a significant management challenge for
densely populated areas such as the northeastern US, is to ensure
the regional persistence of species, habitats and ecosystems that are
vulnerable to SLR. Knowing where available coastal habitats are
likely to be resilient, transition to a new state, or require a buffer zone
to accommodate landward translation is essential for developing
management and resource allocation strategies that preserve the
intrinsic values of the coastal system7.

The potential for both inundation and dynamic response exists
for many coastal landscapes; however, SLR assessments typically
focus on only one type of response. Inundation assessments
flood existing topography with a projected sea level3. Although
inundation seems straightforward to evaluate in terms of vertical
and horizontal extent, its rigorous application requires accounting
for technical and data uncertainties8 as well as SLR uncertainties9.
More importantly, this approach fails to include the dynamic
response—due to anthropogenic, ecologic10, or morphologic

processes such as erosion and deposition—that drives coastal
landscape evolution11. Dynamic response assessments11,12 tend to
represent cross-shore sediment transport processes explicitly with
highly parameterizedmodels, and can be used tomake probabilistic
assessments13 by means of Monte Carlo methods and sensitivity
analyses to communicate uncertainty14. Uncertainty affecting these
approaches includes unknowns regarding rates and magnitudes of
SLR, storminess, model parameter values, and the extrapolation
from cross-shore profiles to spatially extensive domains. This
uncertainty must be estimated by means of comparison with
detailed observations.

As an alternative, we developed a data-driven coastal response
(CR) model that considers both inundation and dynamic response
using a range of SLR scenarios and data sets describing elevation
and vertical land movement. We integrate these elements with
land-cover information to assess CR likelihoods in the form of a
dynamic probability, DP= 1-P(inundate), using a Bayesian network
(Fig. 1). The modelling approach considers over 400 different
combinations of input and output variables and incorporates
their corresponding uncertainties, allowing distinctions between
locations and environment types where current data and knowledge
yield high-confidence predictions and where new information
or better data are needed to resolve uncertain outcomes. The
assessment covers coastal Maine through Virginia, and includes a
region with a wide range of coastal development, infrastructure and
environments found globally; including uplands, barrier beaches,
spits, islands, mainland beaches, cliffs, rocky headlands, estuaries
and wetlands. The study area is defined by the −10 and +10m
elevation contours and mapped as a 30m grid.

To predict CR likelihoods (Fig. 2), we first compute an adjusted
land elevation with respect to projected sea levels:

AE=E−SL+VLM+uncertainties (1)

where AE represents the adjusted elevation with respect to a future
sea level; E denotes the initial land elevation; SL is a projected sea
level in the 2020s, 2030s, 2050s, or 2080s; andVLMgives the current
rate of vertical land movement due to glacial isostatic adjustment,
tectonics and other non-climatic effects such as groundwater
withdrawal and sediment compaction15. Sources of uncertainty in
AE predictions include SLR projections, elevation data accuracy,
vertical datum adjustments, and the interpolation of VLM rates
from point data; these geospatially explicit input uncertainties
are propagated through the model to produce a probability mass
function P(AE) for every grid cell (Fig. 2c,d). Once generated, AEs
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Figure 1 | Conceptual model and dynamic probability assignments. a, Schematic diagram showing the Bayesian network coastal response model, where x
indicates dependence on the geospatial location and t indicates dependence on time. b, Coastal response assignments presented as dynamic probability
(DP) based on adjusted elevation range and land-cover type; inundation probability is 1−DP. For example, if adjusted elevation is in the range 0 to 1, the
probability that a marsh environment will respond dynamically is 0.65.

are related through evaluation of their dynamic response potential
with generalized land-cover information and used to produce a CR
likelihood (Figs 1 and 2).

Discretized AE predictions provide an estimated submergence
level comparable to many existing inundation models3,16 (Fig. 2).
However, our predictions include several notable improvements
over existing approaches: SLR projections are associated with time,
provided as a series of probabilistic decadal estimates aligning
with planning and management time frames; we include VLM,
ensuring relative SLR change is captured; and our probabilistic AE
predictions include robust uncertainty assessments. Despite these
differences, it is possible to compare these results with inundation
models3,16 as an initial test of consistency (Fig. 2a). Because we
are forecasting sea levels for which observations do not exist,
this initial test provides context for interpreting the subsequent
CR predictions.

CR predictions augment inundation predictions by showing
where dynamic response due to ecologic or morphologic processes
is likely under a range of SLR scenarios (Figs 1 and 2b). DP is
high in areas likely to preserve their current land-cover state or
transition to another non-submerged state by adapting to SLR.
Inundation occurs in areas unlikely to adapt in these ways. For
example, an upland environment may persist with SLR and remain
upland, or transition to a marsh; a marsh may vertically accrete to
maintain itself, migrate laterally, or fail to keep pace with SLR and
become inundated10,17.

CR thresholds for specific land-cover types—based on a synthesis
of published studies on SLR-induced change10,17–19—were used
where available to define persistence and determine a DP (Fig. 1b).
Where such information was unavailable, we assigned DPs to
the remaining categories, following existing approaches used to
fill information gaps with expert knowledge20,21. The potential for
lateral translation of some environment types (marshes, forests and
beaches) is not directly incorporated into our model; however,
the co-occurrence of increasing DP and increasing elevation
tends to capture this behaviour (Fig. 1b). Probability assignments
and how they relate to SLR thresholds are presented in the
Supplementary Information22.

The DP assignments in this study (Fig. 1b) show that knowledge
of particular outcomes is strongly related to elevation, and better
understood for some land-cover types (such as beaches) than
for others (for example, developed and forest). Elevation is an
important first-order determinant of the spatial distribution of land-
cover type (for example, salt marshes occur at low elevations; forests

occur at higher elevations), and land-cover types in endmember
elevation ranges are more likely to maintain their predicted
response type through time, indicated by high (>0.75) or low
(<0.4) DP values. For example, areas with AEs that exceed
projected SLR are expected to remain dry and maintain their
current land-cover type through dynamic response, whereas areas
already submerged are anticipated to become even more inundated,
regardless of land-cover type. At moderate AEs, a number of
physical-process components not addressed by the model (for
example, beach sediment supply; marsh accretion rate; human
landscape modification) and land-cover-specific AE thresholds
make CR predictions highly uncertain (for example, DP∼ 0.5,
Fig. 1). Thus, developed areas close to sea level, or beach areas that
have an AE of−1m have similar uncertainties in CR. Our approach
allows any of these probability estimates to be updated as knowledge
of coastal responses improves.

Comparison of AE and CR predictions for two time periods
demonstrates the impact of changing SL on uncertainties (Fig. 3).
Initially, nearly 70% of the region has potential for dynamic
response22 (Fig. 3), suggesting that for the majority of the
northeastern US an inundation approach does not adequately
describe the SLR response. Ahighly dynamic location, such as Prime
Hook National Wildlife Refuge (Fig. 3a), shows 70% of the area is
predicted to be submerged in 2020 (that is, AE< 0), although the
CR shows only 2% of the area is likely to inundate (DP< 0.5). The
difference comes from the predicted dynamic response of themarsh,
and demonstrates the importance of including this information to
depict more realistic SLR effects on the landscape. As expected,
there is a trend towards increased submergence (AE< 0) and greater
prediction uncertainty through time for both AE and CR. This
behaviour is largely attributable to the SLR projections and their
associated uncertainties; 2080s sea-level projections are the highest
and the most uncertain, which are in turn reflected in wider
probability distributions for predicted outcomes (Fig. 3b).

SLR projections and associated uncertainties have the greatest
effects on land at moderate initial elevations (−1 to 0m and 0 to
1m). For each land-cover type, we can identify when our knowledge
of the CR is most uncertain (that is, DP = 0.5) and when we are
likely to observe a transition from dynamic response to inundation,
indicating a SLR threshold has been exceeded (Fig. 4). Here we
relate our numerical CR predictions to verbal equivalents following
the Intergovernmental Panel on Climate Change Fifth Assessment
Report23. At elevations of −1 to 0m, developed areas are likely
(66–100% probability) to inundate before the 2020s (relative to
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Figure 2 | Comparison of predicted outcomes for Plum Island, Massachusetts. a, Surging Seas inundation map under 1.5 m of SLR. b, Predicted coastal
response likelihoods for 2080s sea-level scenario (comparable projected SL to a). c, Most probable 2080s adjusted elevation (AE, or inundation levels).
d, Probabilities of the AE values in c. Maps reproduced with permission from B. Strauss at Climate Central’s Surging Seas project
(http://ss2.climatecentral.org/#13/42.7573/-70.8059?show=satellite&level=4&pois=show).
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Figure 3 | Spatiotemporal changes in probability distributions at Prime Hook National Wildlife Refuge, Delaware. a, Regional map showing the spatial
extent of predictions (grey shading) and examples of adjusted elevation and coastal response predictions for the 2020s and 2080s. b, Modelled
probability distributions for projected sea level, adjusted elevation and coastal response for each time step at a single cell location (black arrow in the lower
right panel of a indicates the location).

the base period of 2010), and marshes and forests after the
2030s. In the 0–1m range, inundation is likely for developed
areas by the 2050s, and marshes and forests by the 2080s.
At any time step, rocky areas are likely to inundate, whereas
beaches are likely to very likely (90–100% probability) to respond
dynamically. Subaqueous environments are likely to be dynamic
at any elevation range and time, as they are expected to maintain
their initial land-cover state; however, those found below mean
high water (MHW) have a greater DP than inland water bodies
above MHW (Fig. 4), presumably because they are responding to
changes in sediment transport and resuspension, waves, tides and
other factors.

Model predictions provide a broad view of the coastal response
to SLR and other processes at resolutions commensurate
with landscape-scale decision-support needs. The different
scenarios depict potential landscape changes that can be used
to quantify uncertainties, define a planning horizon, or improve
an understanding of risk tolerance14. This information can guide
decisions regarding land use and management, and provides

context needed for understanding tradeoffs that may be necessary
to achieve management goals, such as future land acquisitions
or identification of land area buffers for ecosystem migration.
Furthermore, the approach presented here is sufficiently generic to
apply at other coastal locations globally where environments are
similar but data may be more limited in availability or resolution.
Probabilistic outcomes can help prioritize where future research
efforts are directed to improve forecast capability, and as knowledge
improves—for example, owing to better understanding of ice sheet
behaviour24, storminess25, adaptation actions1, or more detailed
morphologic and ecologic process information2—the model and
predictions can be updated.

Understanding which response—inundation or dynamic—best
describes the future system state over broad coastal landscapes
can inform appropriate selection of more detailed modelling
approaches. In some locations, submergence may be the most
pressing problem, and properly applied inundation models can
adequately depict future conditions. Where complex coastal
processes affect the landscape, detailed morphological models11–13
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Figure 4 | Plots showing shifting coastal response likelihoods for each
land-cover type through time conditioned on moderate initial (present
day) elevations. Central column shows the total percentage of the
prediction area comprised by each land-cover type by each elevation (E)
range. Red shows the probability of a dynamic response and blue shows the
probability of inundation.

may be best suited to explore future scenarios. Our modelling
framework demonstrates comprehensive consideration of both
response types is possible through an approach that can be applied
to a variety of coastal settings, over a given time frame, or amount
of SLR.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Our model uses a Bayesian network (BN), which we exploit here for its ability to
propagate uncertainty, perform inference and calculate conditional probabilities,
and structure the integration of stochastic, deterministic and expert relationships.
BNs have been applied to a variety of coastal problems6,26,27 and output results in a
probabilistic form well suited to address decision-support needs. The relationships
between parameters in a BN are established through directed links (causal
relationships, Fig. 1) which represent conditional probabilities trained on
observations, probabilistic or deterministic equations, or expert opinion. An
advantage in using BNs is their robust consideration of uncertainty. Uncertainties
in the relationships derived from the observational training and uncertainties in
the input parameters are propagated through the BN to provide a predicted
probability for each discrete outcome. The training captured the co-occurrence of
land-cover and elevation inputs, used explicit relationships and input uncertainties
among parameters as defined by equation (1), and assigned dynamic response
probabilities (DP) to a conditional probability table (CPT) based on knowledge
specific to each scenario of land cover (LC) and adjusted elevation22 (AE) to
generate a coastal response (CR) prediction.

Our BN stores conditional probabilities to make predictions using
combinations of statistical inference and joint probability calculations. For AE
we use

P(AEi)=
∑

E,SL,VLM,LC

P(AEi|E,SL,VLM) P(E|LC) P(SLj) P(VLMj) P(LCj) (2)

where we evaluate the ith AE outcome from five discrete possibilities; the
summation accounts for uncertainties in the input variables; the first term on the
right is the probabilistic relationship for equation (1) conditioned on inputs from
the jth spatial location at a particular time; and the second term accounts for the
relationship between LC and elevation, which is updated using Bayes theorem22

P(Ei|LCj)=P(LCj|Ei)×P(Ei)/P(LCj) (3)

The remaining (independent) terms in equation (2) are updated with input from
data or model sources, and are, in general, uncertain. The only exception is LC,
which is entered as if known with certainty for each grid cell, as uncertainty for this
term is unquantified22. As noted in this paper, there is an inherent correlation
between current elevation and LC; capturing this relationship through inference
training (Bayes’ rule) allows us to use LC information to update the prior elevation
information (based on the values of the digital elevation model [DEM] over the
entire domain) and constrain elevation uncertainties attributed to errors in the
DEM. For CR, we have

P(CRi)=
∑
AE,LC

P(CRi|LC, AE) P(AE|LC) P(LCj) (4)

where P(AE) is computed from (2) (and depends on SL, VLM, E, as well as LC) and
P(CRi|LC, AE) are determined from published work or expert knowledge10,17–19. In
our implementation, LC is exact as noted above and so the summation is
performed only over the AE values—but using the BN allows for uncertainty in LC
and we would apply this capability if the land-cover maps included uncertainty.

Regional SLR projections were generated using multiple sources including
scenarios—Representative Concentration Pathways (RCPs)—in the 2014

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report
(AR5; ref. 28). A three-component approach29 for the SLR projections included an
ocean term (including thermal expansion and local ocean height), ice melt and land
water storage. The ocean term is taken from 24 Coupled Model Intercomparison
Project 5 (CMIP5) models30 (http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html);
whereas the first part is global, the second is computed on a 1◦×1◦ grid and
extracted at the nearest ocean grid cell to each grid point in our domain. Ice melt
was estimated for the Greenland Ice Sheet and the two Antarctic Ice sheets20, and
the glaciers and ice caps31,32. Land water storage was based on IPCC AR5WG1
(ref. 4). Set percentiles (10th, 25th–75th, and 90th) were estimated for each of the
three components of sea-level change. These projection ranges are representative of
key uncertainties in the components of sea-level rise.

SLR projections at each time interval (2020s, 2030s, 2050s, or 2080s) were
initialized with uniformly distributed prior probabilities and updated with the
regional projection probabilities (Fig. 3b). Vertical land movement rates were
estimated from GPS data33 and tide station records34. The highest-resolution
elevation data available (either∼3m or∼10m horizontal resolution;±43 cm or
1.25m vertical) through the National Elevation Dataset (NED; ref. 35) were
vertically adjusted to the MHW datum; bathymetry data at coarser resolution
(∼30m) from the Coastal Relief Model were used in areas of open water. To
represent coastal landscape types, we generalized regional land-cover data into six
categories based on established differences in physical and biological processes that
drive responses to SLR (ref. 22).

Results span the coastal zone from initial elevations of 10m inland to−12m
offshore. A comprehensive discussion of methods and input data sets can be found
in the Supplementary Information22.
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