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Cropping frequency and area response to climate
variability can exceed yield response
Avery S. Cohn1*, Leah K. VanWey2,3, Stephanie A. Spera2,4 and John F. Mustard2,4

The sensitivity of agricultural output to climate change has
often been estimated by modelling crop yields under climate
change scenarios or with statistical analysis of the impacts of
year-to-year climatic variability on crop yields1,2. However, the
areaof croplandandthenumberof cropsharvestedpergrowing
season (cropping frequency) both also a�ect agricultural
output and both also show sensitivity to climate variability
and change3–9. We model the change in agricultural output
associated with the response of crop yield, crop frequency
and crop area to year-to-year climate variability in Mato
Grosso (MT), Brazil, a key agricultural region. Roughly 70%
of the change in agricultural output caused by climate was
determined by changes in frequency and/or changes in area.
Hot andwet conditions were associatedwith the largest losses
andcoolanddryconditionswith the largestgains.All frequency
and area e�ects had the same sign as total e�ects, but this
was not always the case for yield e�ects. A focus on yields
alone may therefore bias assessments of the vulnerability of
agriculture to climate change. E�orts to reduceclimate impacts
to agriculture should seek to limit production losses not only
from crop yield, but also from changes in cropland area and
cropping frequency.

Yearly agricultural crop production in a given region is equal
to the sum over each of the region’s harvested crops of that crop’s
yield multiplied by its area10. Although in theory each component
of this production equation—crop yield, cropping area and crop
frequency—could be sensitive to climate change and/or climate
variability, this is the first empirical study, to our knowledge, to
estimate the response of agricultural output to climate shocks as a
function of each of these three components.

Research on impacts of climate on agriculture has focused
on the impacts of climate change, decadal climate variability,
and interannual climate variability on crop yields11,12. Hotter (and
sometimes drier) conditions can cause abrupt and/or persistent
declines in agricultural yields2; wet conditions can also reduce yields
when they interrupt sowing, harvesting, or both13. Interannual
climate variability is associated with a substantial share of yield
variation, but the most damaging temperature and precipitation
anomalies vary greatly across crops and regions14,15. Crop sensitivity
to interannual climate variability depends strongly on the portion
of the growing season during which the anomaly occurs. Anomalies
occurring at different stages of crop development have varied
impacts on agricultural output16.

Research on the response of cropland area to climate has
estimated the association of cross-sectional climatic variation

with cropping area17 or has identified the relationship between
cropping area under region-wide climate shocks, such as El Niño,
as compared with more typical production years7,8. The subset of
this research that investigates the impacts from spatio-temporally
variable climate shocks generally uses area data that are aggregate
measures. These do not allow for the disentangling of year-to-year
fluctuations in cropland utilization versus more persistent changes
in agricultural land use associated with agricultural expansion
or abandonment. One recent study proposed a useful metric
for assessing yield potential—the utilization fraction18. However,
this conflates two sources of utilization change that are likely to
have different drivers and should ideally be studied separately—
ephemeral changes versus persistent changes. Thanks to a spatially
explicit, sub-annual, satellite remote-sensing-derived agricultural
land-use data set, we can explicitly distinguish between frequency of
cropland utilization (cropping frequency) and changes in cropland
area that persist for two or more years (cropland area).

In production systems with more than one crop per growing
season, one recent study showed that the first and second
crops exhibit some common and some differential responses to
interannual climate anomalies4. Another study used cropmodelling
to show that second-crop sensitivity to climate can be substantial
relative to first-crop effects and can partially ‘offset’ modelled losses
from first crops under warming5. However, neither study allows for
analysis of the relative importance for agricultural output of changes
in cropping yield versus cropping frequency versus cropland area
associated with a given set of climate anomalies.

We focused our analysis on an emerging tropical agricultural
production centre, the Brazilian State of Mato Grosso (MT). MT
is a 90-million-hectare state where agricultural output increased
threefold from 2000 to 201019. In 2013, agriculture comprised
roughly 40% of the state’s land cover and 72% of the state’s
GDP (gross domestic product). In 2013, MT produced 10% of
global soybeans on 10 million hectares of cropland. Ranging
from 7.23◦–17.87◦ S to 50.57◦–61.52◦ W and with mean annual
precipitation ranging from 1,000mm in the southeast to over
2,500mm in the northwest, in typical years, much of MT is
suitable for the production of two rainfed crops per growing season
(Supplementary Fig. 5). In 2010, roughly half of MT’s cropland
produced two commercial crops per growing season, usually a soy
harvest followed by a corn harvest20. In net, the area of cropland
and the frequency of cropping grew steadily from 2000–2010 but
thismasks substantial instability—over the period 3million hectares
of agricultural abandonment occurred and 3 million additional
hectares of double-cropping abandonment occurred20.
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We investigated whether interannual climate variability was
associated with changes in cropland area, cropping frequency,
and crop yields of soy and corn agriculture in MT (which in
2013 together constituted approximately 73% of agricultural area
in the state)19. The analysis used mean monthly precipitation
estimates from the Tropical Rainfall Measuring Mission21, mean
monthly temperature data from the University of Delaware22,
soy and corn yields from the Brazilian Institute of Geography
and Statistics19, and maps of agricultural frequency, agricultural
expansion, and agricultural abandonment described in a recent
paper20. We performed six separate regressions at the level of
the county-growing year, each regressing a distinct agricultural
production variable on the same set of climate variables. Agriculture
production variables were soy yield, corn yield, cropland expansion,
cropland abandonment, double-cropping expansion, and double-
cropping abandonment. Each model included the linear and
quadratic terms for mean temperature and mean precipitation by
month of each growing year, and controlled for county and year
fixed effects, over the period 2002/03–2009/10. We then predicted
changes in production stemming from each agricultural variable
under a range of precipitation anomaly scenarios crossed with a
range of temperature anomaly scenarios. Scenarios investigated
range from ±1 ◦C from local mean within sample temperature
and ±30% from local mean within sample precipitation. Soy
production was converted to corn-equivalent units using a ratio
of 2.2 tons of corn to 1 ton of soybeans, in line with the
long-run soy to corn price ratio. Further details of data employed,
methods used, and robustness checks undertaken can be found in
the Supplementary Information.

To enable comparison of the crop production impacts of
the sensitivity to climate of each agricultural outcome variable
investigated, all results are reported as a percentage of 2009/2010
total MT soy and corn production (in tons of corn equivalent).

Soybeans were cultivated on most of the cropland area (58%)
and account for 72% of the total annual crop value in the state. On
roughly half the area where soy was cultivated, a second crop was
cultivated during the same growing season19. Over 90% of the time,
this second crop was corn20. Our results (Fig. 1) show that despite
soy’s dominant contribution to MT’s crop production, interannual
climate variability had larger impacts on crop production through
corn yields than through soy yields (Fig. 1a). Our predictions
show that a temperature anomaly of +1 ◦C was associated with a
rise in soy yield equivalent to a 1.7% of total 2010 soy and corn
production in MT. This same +1 ◦C anomaly, however, reduced
corn yields an amount equivalent to a 2.6% loss in the state’s crop
production (Fig. 1b). Thus, in sum, the combined corn+soy yield
effect of an increase in temperature of +1 ◦C was a loss of 0.9%
of production. Under the −1 ◦C anomaly, the results were roughly
reversed—a loss of 2.5% from soy yield and a gain of 3.2% from corn
yield were predicted. Conditions 30% wetter than the local mean
slightly increased corn yields, but reduced soy yields substantially.
Conditions 30% drier than normal were found to be associated with
increased soy yields and reduced corn yields. One mechanism for
this effect may be farmer decisions about planting a single long-
cycle soybean or a short-cycle soybean together with a second
crop. Shorter-cycle soybeans facilitate second-crop production, but
reduce first-crop yields.

In MT, as in other low-latitude agricultural regions, agricultural
productivity depends not only on yield, but also on the number
of crops cultivated per growing season (frequency). We found that
interannual climate variability was associated with more change in
agricultural output through these cropping frequency changes than
due to cropping yield changes. A temperature anomaly of +1 ◦C
from local means was found to be associated with a decline in
cropping frequency equivalent to a 3.2% loss in 2010 production
in MT (Fig. 1c). Under −1 ◦C, the results were roughly reversed—
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Figure 1 | Changes in Mato Grosso agricultural output from response of
crop yield, crop frequency and crop area to interannual climate variability.
a–e, Coe�cients obtained from six separate regressions investigating
changes in agricultural dependent variables caused by climate anomalies
were used to model, ex post, four mechanisms (corn yield, soy yield,
cropping frequency and cropping area) through which interannual climate
variability has impacted the agricultural output of Mato Grosso. All table
values are percentages of total corn+soy production in Mato Grosso in the
2009/10 growing season. Table cell shading is proportional to the
magnitude of cell values. Each value in e is the sum of values in a–d for a
given climate scenario. Yield impacts, the most commonly studied channel
of crop sensitivity to interannual climate variability, were similar in
magnitude to crop frequency impacts or the impacts from crop area
change. However, the combined frequency and area response far exceeded
the yield response.

a 4.6% gain was modelled. Wetter conditions slightly reduced
cropping frequency, whereas drier conditions slightly increased
cropping frequency.

MT is a region undergoing large-scale changes in cropping
area. Agriculture is expanding onto lands that were not previously
cultivated and areas under cultivation are being left fallow or
abandoned for two or more years. Our results reveal that the
fraction of these changes caused by interannual climate variability
has had a substantial effect on the region’s crop production. An
anomaly of +1 ◦C from local mean temperatures was found to be
associated with a decline in cropping area equivalent to a 4.2% loss
in 2010 production in MT. Under the −1 ◦C anomaly, the results
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Table 1 | Sensitivity of output change to climate anomalies across the growing year.

Cropland
expansion (%)

Cropland
abandonment (%)

Double-crop
expansion (%)

Double-crop
abandonment (%)

Soy yield (%) Corn yield (%)

August–October 27.1 31.1 13.3 21.6 35.1 26.7
November–January 30.6 28.1 18.2 20.6 34.8 28.6
February–April 28.4 19.7 32.1 26.3 23.1 17.2
May–July 14.0 21.1 36.4 31.4 7.0 27.5
Total 100 100 100 100 100 100
Here we report the portion of the total variance in each agricultural output indicator variable explained by climate anomalies in each quarter of the growing season. Each column is a dependent variable
investigated in our analysis. Each row represents the combined e�ect size of mean temperature for each month of the quarter and total precipitation for each month of the quarter. The columns sum to
100% of the variance in each agricultural variable explained by variance in interannual climate variability.

were roughly reversed—a 5.7% gain was found (Fig. 1d). Wetter
conditions slightly reduced crop output, whereas drier conditions
slightly increased output.

The sensitivity of each agricultural variable to interannual
climate variability varied substantially across the quarters of the
growing year (Table 1). We investigated the influence of climate
from months August–October, November–January, February–
April, and May–July under the uniform +1 ◦C and +30%
precipitation scenario. We found that that variation in agricultural
output was explained by climate shocks occurring throughout the
year. The primary exception was that soy yield was only weakly
affected byMay to July climate variability. This is likely to be because
soy is often harvested earlier in the growing season. Conversely, it
is notable that frequency effects and corn yield effects are spread
across the entire growing year, despite the fact that frequency is a
measure of second-crop area and corn is primarily a second crop.
This may be because deleterious conditions for soy production in
the beginning of the growing year can spill over to affect the second
crop by delaying its plant date or limiting available soil moisture.

This paper extends the study of the impacts of interannual
climate variability on agriculture by comparing the impacts
of interannual climate variability on cropping frequency versus
cropland area versus crop yields. The magnitude and direction of
our findings on corn yield are in linewith numerous previous studies
on the links between interannual climate variability and corn yield
at many scales11. Our soy yield findings diverge from the literature,
but this is likely due to the high prevalence of the cultivation of
two crops per growing season in MT. There, higher soy yields
may be associatedwith an adaptivemeasure—longer-cycle soybeans
cultivated instead of the combination of shorter-cycle soybeans and
an additional commercial crop. Overall, observations with higher
than normal soybean yields had lower than normal overall yields,
cropping frequency and cropping area. Further research should
examine whether this pattern holds under exposure to heat waves,
droughts, and dry spells in the wet season2,15,23.

A ten-member ensemble of climate models predicts a 2.5 ◦C
increase in mean temperature over MT by mid-century under the
A2 scenario24. This is cause for concern given that the warming
anomalies investigated caused crop production losses through yield,
area and frequency. Crop yield sensitivity to interannual climate
variability has been shown to be a reasonable proxy for crop
yield sensitivity to longer, slower, expected climate variability or
climate change—despite the fact that farmers and technologists
were in theory able to adapt (M. Burke & K. Emerick, manuscript
in preparation).

South American agricultural vulnerability to climate change has
not been widely researched. Research has linked changes in corn
yields12,25 and soy yields25 with climate variability, and reduced soy
yields with heat waves26, but no research has investigated year-to-
year climate impacts on agriculture using a model of the type we
employed for MT. The authors of one study that did investigate
county-level climate impacts on soy and corn in Brazil restricted
their sample to counties with constant borders over their study

period—1980–2006. Mato Grosso was thus largely excluded from
their analysis because many county borders in Mato Grosso have
shifted recently25.

Climate change may pose qualitatively different risks for MT
and regions like it versus established agricultural regions. High
populationmobility, substantial land availability, a lack of insurance,
murky land title, and weak governance characterize MT and a
number of regions across the tropics that have recently become
or are projected to become important new centres of agricultural
production. It is possible that area and frequency effects are more
responsive to climate shocks in MT and comparable regions than
in more established agricultural regions, regions that can readily
support two crops per growing season, or regions that support just
one crop per growing season.

We have used evidence from Mato Grosso (MT) to show
that changes in agricultural output stemming from the sensitivity
of cropland area and cropping frequency to interannual climate
variability are of similar magnitude to agricultural output changes
associated with the sensitivity of crop yield to interannual climate
variability. Area and frequency effects may either exacerbate or
offset production losses through yield effects. Therefore, it may
be inaccurate to use yield sensitivity to climate variability as a
proxy for crop production sensitivity to climate variability. Area
responses may contribute to agricultural production and socio-
economic development27, but by requiring land conversion they
may also result in a host of negative environmental impacts. The
trading of scarce or threatened environmental resources for crop
output can be socially costly and could even compromise future
crop production in MT28. Our findings suggest a research agenda
to better understand the coupled biophysical and socio-economic
dynamics of agriculture under climate variability. Such research
should inform policies designed not only to enhance adaptation,
but also to increase the social benefits of agricultural adaptation to
climate change.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
The variables mechanized-agriculture expansion, mechanized agricultural
abandonment, double-cropping expansion and double-cropping abandonment
were developed using∼250-m-resolution satellite remote-sensing agricultural
land-use maps available for Mato Grosso over the period 2000/01–2011/12. New
single or double cropping is all pixels that were single- or double-cropped in a given
year and non-agriculture (for single cropping) or either non-agriculture or single
cropping (for double cropping) in the two previous years. Abandoned single or
double cropping in year t is all pixels that were single or double cropping in the
year t−1, but were not that land use in both t and t+1 (that is, abandonment was
classified if the land was taken out of a given use for two or more years). The
underlying thematic classification of satellite remote-sensing data identified
agriculture by detecting sharp peaks in greenness of maturing crops followed by
troughs associated with chemical desiccation and mechanized harvest of crops. It
distinguishes between non-agricultural areas, single cropping, and double cropping
with 93% accuracy. Details of the approach are provided in ref. 20.

Soy and corn yields were obtained from administrative data collected by the
Instituto Brasileiro de Geografia e Estatística through their Produção Agricola
Municipal (PAM) data series19. These data were collected from annual polling of
local officials and experts and were reported at the município (county) level. The
PAM distinguishes between first-harvest corn yield and corn yield from the second
harvest of the growing season. We use only the latter.

We represented climate with monthly mean temperature and monthly total
precipitation in each month of the agricultural year (August–July). The growing
season is generally considered to be September–July, but we start observations of
climate variables in August to capture the impacts of climate on soil moisture in the
lead up to the beginning of planting. We follow the convention of Brazilian
statistics and refer to growing season beginning in, for example, September 2000
and ending in August 2001 as 2000/2001. Precipitation data were derived from
satellite observations collected through the Tropical Rainfall Measuring Mission
and were provided at the 0.25◦ level21. Monthly mean precipitation data from the
Climate Research Unit are provided for comparison, and were used in sensitivity
tests presented in the Supplementary Information29. Temperature data are a
spatio-temporal interpolation of weather station data and were provided by the
University of Delaware at the 0.5◦ grid level22. Temperature data from the National
Centers for Environmental Prediction and Climate Research Unit were also used
for sensitivity tests29,30.

Each observation in our data set corresponds to the minimum comparable area
unit (MCA)-year. MCAs are necessary because of changes over time in the
boundaries of municípios. Over the study period, some municípios were
subdivided, creating new municípios. Other new munícipios were created through
the merging of multiple municípios. We developed an algorithm in ArcGIS to
identify a set of 95 MCAs over the analysis period (eight years). We developed
another algorithm to calculate values for these MCAs for the soy and corn yields
from weighted (by area) averages of the values reported for municípios that existed
in each year. We directly aggregated the land-use and climate measures to the
MCAs by summing the area in each land use across all pixels in an MCA and
averaging the climate values in pixels in each MCA.

Supplementary Tables 1 and 2 show the distribution of mean monthly
temperature and precipitation in the region. A wetter, hotter rainy season with less
temperature deviation than the dry season is evident.

We performed six separate regressions, each regressing a distinct agricultural
production variable on the same set of climate variables. The dependent variables
investigated were soy yield, second-crop corn yield, abandonment of mechanized
agriculture, expansion of mechanized agriculture, abandonment of two-crop per
growing season agriculture, and expansion of two-crop per growing season
agriculture. The primary specifications reported in the paper differ by dependent
variable. In all cases, we performed ordinary least-squares regression with fixed
effects for each growing season and each MCA. These regressions controlled for all
fixed characteristics of each MCA and also all time-variant factors affecting the
entire state uniformly. We also controlled for several additional land-use variables
that vary across both space and time. The climate variable categories included are
the MCA mean temperature and the MCA mean precipitation for each of the 12
months in each growing year (August–July). We are therefore estimating the
correlation between year-to-year deviation from local mean climate and
year-to-year variation or change for each of the six agricultural
production variables.

The regression specification for the agricultural land-use variables is:

(landit)=β0+β1(wxit)+β2(wx2it)+β3(protectit)+β4(resit)+ci+dt+εit (1)

where landit is a measure of agricultural expansion, agricultural abandonment,
second-crop expansion, or second-crop abandonment investigated in MCA, i, for
each growing year, t , over the period 2002/03–2009/10. On the right-hand side of
each land-use regression, wxit is the mean monthly total precipitation and the mean
monthly temperature for each month in each growing year, wx2it is the quadratic

term for each monthly climate variable, protectit is two variables, the indigenous
reserve area in each MCA-year and other protected area extent in each MCA-year,
and resit is the land reserve in each MCA-year. Land reserve is the area of each
MCA at the start of each growing year that is comprised of single cropping or
double cropping (in the case of land abandonment) or not comprised of the
dependent variable in the case of land expansion. Land reserve is the area at risk of
experiencing the land-use change indicated by the dependent variable. Land
reserve is therefore different for each land use. The analysis also contains fixed
effects to control for time-invariant characteristics of each MCA, ci, and to control
for space-invariant characteristics of each year, dt . The MCA fixed effects control
for variables such as mean local climate, elevation, access to major highways, and
history of agriculture. The year fixed effects control for uniform, statewide effects
such as fluctuations in the price of commodities and droughts.

The specification for the two yield regressions is:

yieldit=β0+β1(wxit)+β2(wx2it)+β3(protectit)+ci+dt+εit (2)

where yieldit is soy yield or second-crop corn yield. The right-hand side of
equation (2) is identical to equation (1) except for the absence of the control for
land reserve, resit. Descriptions of the regressions performed are shown in
Supplementary Table 3. The standardized effects of the climate variables, the
four land-use variables, and two yield variables are shown in Supplementary
Figs 1 and 2.

The regression results were used to generate predicted changes in each of the
six agricultural production variables under a set of climate scenarios uniform in
their deviation from local (MCA) monthly mean temperatures and local monthly
mean precipitation totals over the eight years included in the analysis
(2002/03–2009/10). For each prediction scenario, we began with the intercept and
regression coefficients estimated from each regression, replaced the values of each
climate variable in the data set with a uniform deviation from the local means (and
2009/10 values for non-climate variables) and then inserted these alternative values
of the climate variables into the regression equations to obtain the predictions
under the climate deviations. After calculating the predictions, we compared the
total agricultural production under mean climate conditions and under each
scenario and calculated the percentage of deviation from production under mean
climate to investigate the impacts to agricultural production associated with the
impacts of climate deviations on each agricultural variable. The aim of this
approach was to be able to quantify the impact to agricultural production of a given
deviation from mean temperature, precipitation, or both. This enables us to test
our overarching hypothesis that losses to agricultural production from
climate-caused changes in agricultural land use are of comparable scale to changes
from yields. Note that these results should not be interpreted as prediction of the
future climate and its impacts to agriculture. Our results could be combined with
modelling of the future climate to predict the aggregate impacts to agricultural
production from the predicted changes in the climate.

For each of the land-use-dependent variables, we created a new data set where,
for every year, the climate variables for each MCA, wxit and wx2it, were replaced
with wxi and wx2i , the local means of the climate variable over the range of the data
set, 2002/03–2009/10. We next combine this new data set with the coefficients and
intercepts obtained from the regressions in equation (1) to predict each land use at
local mean climate:

̂landitc= β̂0+ β̂1×(wxi)+ β̂2×(wxi2)+ β̂3×(protectit)+ β̂4×(resit)+ ĉi+ d̂t (3)

Next we develop a set of climate scenarios, wxic , consisting of seven
precipitation levels crossed with three temperature levels for a total of 21
climate scenarios. Precipitation levels are−30%,−20%,−10%, 0%,+10%,+20%
and+30% different from wxi, the local mean precipitation from 2002/03 to
2009/10. Temperature levels are−1 ◦C, 0 ◦C,+1 ◦C different from wxi, the local
mean temperature for years 2002/03 to 2009/10. We then repeat the calculation
shown in equation (3) for each of the 21 climate combinations to obtain ̂landitc, 21
separate predicted quantities of each of the four dependent variable land uses in
MCA, i, year t , under that MCA’s temperature scenario, and precipitation
scenario, c.

Next we calculate the predicted change in each of the four land
uses—double-cropping expansion (DCM), double-cropping abandonment (DCA),
mechanized-agricultural-area expansion (AGM) and mechanized-agriculture
abandonment (AGA)—caused by each climate scenario. The equation is:

̂4landitc= ̂landitc− ̂landitc (4)

As year fixed effects, protected areas, and land reserve vary from year to year,
the change in land use predicted also varies slightly from year to year. However,
these changes are small and for this reason, we report only ̂4landi2010c , the
predicted change in land use under conditions comparable to the last year of the
data set, 2009/10.
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Next we calculate the statewide change in agricultural production in 2009/10
from the change in each land use from each climate change scenario:

̂4Productioni2010c= ̂4landi2010c×yieldi2010 (5)

Agricultural production effects are obtained by multiplying the predicted
climate-caused change in land use by the government-reported mean within MCA
yield of the affected land in the year 2009/10. All agricultural production effects are
reported in tons of corn equivalent. Every ton of soy is considered to be equivalent
to 2.2 tons of corn, in line with the long-run average price ratio between soybeans
and corn. For first-crop expansion and abandonment, we use the soybean yield
(expressed in tons of corn equivalent). For second-crop expansion and
abandonment, we use the second-crop corn yield.

Next we sum equation (5) over all MCAs to obtain a state-level estimate of
cropland-area-change-driven changes in agricultural for each climate
change scenario:

̂4ProductionFromAreaVar2010c=
∑

i

̂4foodi2010c (6)

Next we perform a similar sequence of post-estimation calculations for the two
yield variables. We predict yields in essentially the same manner as we predict the
land uses. To calculate the agricultural production impacts of the yields, we
multiply the predicted yields by the appropriate areas of agricultural land use
observed in our data set:

̂4ProductionFromYieldVari2010c= ̂4yieldi2010c× landi2010 (7)

Soy yield impact on agricultural production is obtained by multiplying
predicted soy yield change by the government statistics on the area of soy in the
region. Corn production impacts are obtained by multiplying predicted
second-crop corn yield change by the government statistics on the area of all
second-crop corn in the region.

Total agricultural production effects from each climate change scenario
are thus: ̂4Food2010c=

∑
i

̂4ProductionFromAllYieldi2010c

+

∑
i

̂4ProductionFromAllArea2010c (8)

In the paper, we also report a number of other metrics that are ex post sums of
salient combinations of the predictions. Frequency is the sum of second-crop
expansion (DCM) less second-crop abandonment (DCA) and is thus:

̂4Frequency2010c=
∑

i

̂4DCMi2010c−
∑

i

̂4DCA2010c (9)

Cropland area change is the sum of mechanized-agriculture expansion (AGM)
and mechanized-agriculture abandonment (AGA) and is thus:

̂4Area2010c=∑
i

̂4AGMi2010c−
∑

i

̂4AGA2010c (10)

We express all agricultural production as the percentage of difference in
production predicted under a climate change scenario relative to
agricultural production predicted under the data set mean climate. This
estimate is obtained by dividing the outcomes of equations (6)–(11) by the
sum of total government-reported soybean and second-crop corn production in
Mato Grosso in 2009/10. Our estimates for area effects are slightly conservative
because they ignore lost second crops from abandonment of the first crop of
agriculture that was double cropping, and they count just one year of lost
production from abandonment when, in reality, all land classified as
abandoned had no agriculture for two more years subsequent to the climate
shock. Our yield effects may be slightly distorted because they assume that all
first-crop area lost was soybean and that all second-cropped area lost had corn. In
reality just∼60% of crop area in the state is soy and just∼90% of the second crop
is corn.

The effect size of climate variability occurring within each quarter of the
growing season is obtained through four steps: estimating a regression for each
dependent variable as detailed in equations (1) and (2); recording the model sum of
squares for this base model (MSS0) and the residual sum of squares for the base
model (RSS0); conducting additional regressions identical to the regressions in
equations (1) and (2), except that in each additional regression, all climate variables
from quarter q are omitted and the MSS and RSS from the additional regression
with a climate quarter were omitted from equation (3); and then, we calculate the
effect size of the omitted variables using the equation:

Effectq=
MSS0−MSSq
(MSS0+RSS0)

(11)

Following that, we perform the regressions as specified in equations (1) and (2)
except that in each additional regression, all climate variables from all quarters are
omitted. We then calculate the total climate effect:

Effectclim=
∑

q(Effectq) (12)

The percentages reported in Table 1 are obtained by the equation:

Portionq=
Effectq
Effectclim

(13)

Data and code for replication are available for download at:
http://dx.doi.org/10.7910/DVN/H3UUSN31.
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