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Abstract
The data on the heavy metal content at different soil depths derived from a multi-purpose

regional geochemical survey in the Pearl River Delta (PRD) were analyzed using ArcGIS

10.0. By comparing their spatial distributions and areas, the sources of heavy metals (Cd,

Hg, As and Pb) were quantitatively identified and explored. Netted measuring points at

25 ×25 km were set over the entire PRD according to the geochemical maps. Based on the

calculation data obtained from different soil depths, the concentrations of As and Cd in a

large area of the PRD exceeded the National Second-class Standard. The spatial disparity

of the geometric centers in the surface soil and deep soil showed that As in the surface soil

mainly came from parent materials, while Cd had high consistency in different soil profiles

because of deposition in the soil forming process. The migration of Cd also resulted in a

considerable ecological risk to the Beijiang and Xijiang River watershed. The potential eco-

logical risk index followed the order Cd� Hg > Pb > As. According to the sources, the distri-

bution trends and the characteristics of heavy metals in the soil from the perspective of the

whole area, the Cd pollution should be repaired, especially in the upper reaches of the

Xijiang and Beijiang watershed to prevent risk explosion while the pollution of Hg and Pb

should be controlled in areas with intense human activity, and supervision during production

should be strengthened to maintain the ecological balance of As.

Introduction
The Pearl River Delta (PRD), located at the southern end of the Nanling metallogenic belt, is a
very complicated large-scale estuarine system in China. The delta was formed and maintained
by the deposition of sediments where the Pearl River flows into the sea. As a result of the sub-
stantial supply of heavy metals from the industrial, commercial and domestic activity of the
region [1,2], the soil in the PRD differed greatly from what would otherwise be its natural soil
type. The Pearl River consists of two main branches, the Xijiang and the Beijiang Rivers, both
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of which receive a high load of heavy metals annually. The well-developed river network and
tidal action indicate that the characteristics of the heavy metals presented in the soil, as well as
their associated chemical processes, are complex [3]. The PRD has experienced rapid economic
growth in the past three decades. The main industries in the PRD region include electronics,
textiles, paper making and cement production, which could be sources of heavy metals in soil.
The complicate natural condition combined with strong anthropogenic activities made the
PRD region a typical unit for the source research of heavy metal.

Previous studies have concluded that in general, the parent material is a critical factor in
determining the type and concentration of magnetic minerals [4,5]. Other natural factors, such
as the water regime and atmospheric transmission, could contribute to various heavy metal
characteristics in soils [6,7]. In addition, the range of anthropogenic heavy metal sources has
become more complex in recent decades, including the growth of metalliferous mining and
smelting, the chemical industry, fossil fuel combustion, waste incineration, and agricultural
activities [8–10]. Heavy metals also have distinct vertical distributions in the soil, especially
around mining or metallurgical sites. Godin [11] attempted to evaluate the downward migra-
tion of metals and noted that the Cd, Cu, Hg, Pb and Zn content decreased logarithmically
with depth. Sterckeman et al. [12] further quantified the vertical distribution of Cd, Pb and Zn
at depths of 1.5–2.0 m according to the characteristics of heavy metals and soils.

A number of studies on the heavy metal contamination of surface soil in the PRD have been
conducted. These studies reported that the rapid industrial development and urbanization over
the last few decades has considerably increased the enrichment of heavy metals in the soil of the
PRD. Bai and Liu [13] confirmed that the rapid development of electronics and electroplating
industries is highlighted as the main cause of the increase in the concentration of heavy metals in
the soil of the PRD in recent decades, and the degree of heavy metal pollution in soils had
decreased in the following order: Cd> Cu> Ni> Zn> As> Cr>Hg> Pb. Bian et al. [14]
found that the agricultural soil of the PRD was strongly influenced by cultivation methods, as
well as human activities such as industrial development and the associated emission of pollutants.

To date, there have been very few studies on different soil profiles of the PRD region.
Research that compares the level of contamination in the upper and lower layers of PRD soil,
which might be an effective method for diagnosing the sources of heavy metals [12], is scarce.
The accumulation and deposition of heavy metals in the PRD region might be affected by dif-
ferent mechanical and chemical processes. While challenging, it is essential to determine the
sources of heavy metals in the PRD, where totally unpolluted soils are almost impossible to
find. Since 1999, the National Multi-Purpose Regional Geochemical Survey (NMPRGS) has
been performed in the agriculturally and industrially developed regions of China by the China
Geological Survey [15], involving detailed investigation of heavy metals in the top and deep
layers of soil. The PRD has been a major area of focus for the NMPRGS. Accordingly, based on
the results of the NMPRGS, the aims of the present study were to:

i. Analyze the causes of heavy metals in the PRD region and judge the level of contamination.

ii. Develop a method for diagnosing the severity of heavy metal pollution via comparison of
top/deep layer soil with some crucial parameters.

Materials and Methods

Study area and data sources
This study was performed in the PRD of Guangdong Province, China (Fig 1) from 21°430N to
23°560N, 112°000E to 115°240E. Published data were quoted from the National Multi-Purpose
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Regional Geochemical Survey (the part of the Pearl River Delta of Guangdong Province,
China), which was performed by the Ministry of Land and Resources of China. Additionally,
the field studies the Pearl River Delta of Guangdong Province, China did not involve endan-
gered or protected species. The PRD was characterized as a quintessential subtropical monsoon
climate. It is an extremely complex and large-scale estuarine system that consists of a tidal river
network. The Xijiang and Beijiang Rivers are the two major river systems of the Pearl River
Basin, which converge in Foshan City. The land is heavily industrialized and has been exten-
sively cultivated in the flat parts of the region.

The PRD soil profile is the typical Al-enriched weathering profile and the product of the lat-
est stage of weathering. It mainly developed from granite and shallow maine deposition, with
sandshale and limestone (Fig 2A). Because of the intensive eluviation and illuviation with the
hydrothermal conditions of the study area, the soil profiles were deficient in soluble salt, alkali
metal, and alkali-earth metal, but they were rich in Fe and Al oxides and H+ [17]. As the down-
throw of the region, low- elevation hills developed.

Fig 1. A major area of focus for the NMPRGS [16], the PRD region.

doi:10.1371/journal.pone.0132040.g001

Fig 2. Basic message of the PRD region (a), geological sketch indicating the distribution of parent rocks (b), soil type and (c) DEM.

doi:10.1371/journal.pone.0132040.g002
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All sampling data were obtained from the Multi-Purpose Regional Geochemical Atlas, the
Pearl River Delta economic zone in Guangdong Province, sampled from 2005 to 2009 [16]. To
produce these data, a geochemical measurement with two-layer grid sampling was employed.
Topsoil samples at depths of 0–20 cm were taken with a density of 1 sample per 4 km2. These
samples were collected with 3 to 5 points around the corresponding sampling spot to represent
the main soil type of each grid. The deeper soil samples (150–200 cm) were generally collected
at the center of each 16 km2 grid. Hill landforms distributed around the PRD mainly had a
lower elevation, as observed from the DEM. When the soil depth did not reach 150–200 cm, a
proper site was set near to the original sampling spot. A total of 10667 surface soil samples and
2751 deep soil samples were collected with the method of two-layer gridding sampling in the
study area by National Multi-Purpose Regional Geochemical Survey [16,17].

The external and internal quality controls were combined to control the analyzed quality
of soil and coastal sediment samples. External quality control was performed by analyzing 4
pieces of blind control samples for each group of 50 samples, and there were a total of 1327
pieces. Internal quality control was performed by analyzing 4 pieces of certified reference mate-
rials for each group of 50 samples along with the collected samples. The average qualification
rate of internal inspection was above 99.8% [16].

The reused figures were initially published under an open-access license.

Statistical analysis
For statistical analysis, the data from the superficial and deep layers were treated separately.
The top layer contained most of the anthropogenic input, while the deep layer represented the
lithogenic input, with only minor anthropogenic contamination.

(i) Graphic processing. Geochemical maps of the PRD were vectored in ArcGIS 10.0 and
re-sampled using a trial-and-error method to form the new raster with kriging interpolation.
The distributions of high-concentration metals in the surface and deep soil were compared.
Each original map was segmented into 4 to 6 pieces according to the density of coloring grades
and it was then re-valued with a different color. The grid spacing was the same as the original
spacing of data and the search radius was 2.5 times of the grid spacing. The index factor was 5
and the interpolation scheme was the inverse distance weighing. If the areas of the original and
the new spots were not significantly different (p< 0.05), the new spots were accepted.

(ⅱ) Spatial disparity. If heavy metals in the surface and deep soil were from the same
source, it was considered that the geometric center of high concentration areas should be coin-
cident or adjacent to each other. Adjacent geometric center points in the surface soil and deep
soil were paired and their spatial disparity was calculated by using the equation based on
Euclidean Distance, which was the basic geometric distance formula for point to point as fol-
lows:

d ¼ 1

n
�

Xn

i¼1;j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
; ð1Þ

where n was the paired number of geometric center points in the surface soil and deep soil (i.e.,
three); (xi, yi) and (xj, yj) represented the spatial coordinates of paired geometric center points
in surface and deep soil; d was the average distance of the geometric center between the surface
and deep soil. The larger the value of d, the smaller the correlation between the surface and
deep soil. Points without matching were ignored.

(ⅲ) Potential ecological risk assessment. Netted measuring points at 25 × 25 km were set
over the entire PRD and assigned values according to the geochemical maps. The potential eco-
logical risk index (PER) was applied to assess the degree of heavy metal contamination as
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follows:

Cd : Ci
f ¼ Ci =Ci

n ¼ Ci =0:056; Ei
r ¼ Ti

r � Ci
f ¼ 20� Ci =0:056 ð2Þ

Hg : Ci
f ¼ Ci=Ci

n ¼ Ci =0:078; Ei
r ¼ Ti

r � Ci
f ¼ 28� Ci=0:078 ð3Þ

As : Ci
f ¼ Ci=Ci

n ¼ Ci=8:9; Ei
r ¼ Ti

r � Ci
f ¼ 10� Ci=8:9 ð4Þ

Pb : Ci
f ¼ Ci =Ci

n ¼ Ci=36; Ei
r ¼ Ti

r � Ci
f ¼ 5� Ci=36 ð5Þ

RI ¼
X

Ei
r ð6Þ

where Ci
f was the single element pollution factor, Ci was the concentration of the element in

samples, and Ci
n was the reference value of the element. In this study, the Ci

n values for Cd, Hg,
As and Pb were 0.056, 0.078, 8.9 and 36 mg kg-1 according to the background value of the
Guangdong Province [18]. The sum of Ci

f for all metals examined represented the integrated

degree of environmental pollution. Ei
rwas the potential ecological risk index of an individual

element. Ti
rwas the biological toxic factor of an individual element, defined as 20 (for Cd), 28

(for Hg), 10 (for As), and 5 (for Pb) [19]. RI was the comprehensive potential ecological index,
which was the sum of Eir, where RI< 150 indicated low ecological risk, 150< RI< 300 was
moderate ecological risk, 300< RI< 600 was considerable ecological risk, and RI> 600 was
high ecological risk.

Results and Discussion

Spatial distribution of heavy metals
The spatial distributions of heavy metals with high concentrations were compared between the
surface soil and deep soil (Fig 3). Concentrations of heavy metals above the national second-
class standard for soil of the People's Republic of China (GB15618-1995) were considered high
in this study (the threshold concentration of Pb was set as 80 mg kg-1 according to soil pollu-
tion assessment technical regulations, which were revised on the basis of GB15618-1995 by the
Ministry of Environmental Protection of the People's Republic of China).

Cd. A large area was contaminated by a high Cd concentration (> 0.3 mg kg−1) in both
the surface and deep soils (Fig 3A), accounting for 13.3% and 11.8% of the PRD, respectively
(Fig 4). These areas were almost coincident with the watersheds of the Beijiang and Xijiang Riv-
ers. Cd had the largest coefficient of variation among the four heavy metals, both in the surface
soil (410%) and in the deep soil (247%). This indicates that the concentration of Cd in the PRD
differed to a greater extent than the other three metals. The area of Cd with a concentration
of> 0.3 mg kg−1 was larger in the surface soil than that in deep soil, and it was spatially consis-
tent. As an typical alluvial plain, soil in the PRD region formed under the effect of river sedi-
mentation. The oscillation of flow caused by the regular tidal action in the Xijiang and Beijiang
Rivers was advantageous to the deposition of Cd in the PRD area [3], and it aggravated the
accumulation in the sediment. According to the large scale investigation of a series of alluvial
plains by Cheng et al. [20], suspended substance carrying high levels of Cd was transported
along with water and gradually deposited in the soil. Therefore, Cd in the soil vertical profile
was mostly stable. Only in recent decades has the Cd content increased from anthropogenic
input. The PRD region was a typical alluvial plain. Because of the intensive eluviation and
illuviation in the hydrothermal conditions of the study area, the soil profiles were rich in H+.

Heavy Metal in PRD
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Hence, Cd was more prone to transport at the function of water, which made Cd reach a larger
area in the PRD region in the soil forming process. Therefore, the Cd content in different soil
layers had a high consistency.

Fig 3. Distribution of high-concentration heavymetals in the soil of the PRD. (a) Cd; (b) Hg; (c) As; and
(d) Pb.

doi:10.1371/journal.pone.0132040.g003

Fig 4. Areas of high-concentration metals above GB15618-1995 in soil.

doi:10.1371/journal.pone.0132040.g004
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Hg. The area of the PRD contaminated by Hg at concentrations above 0.5 mg kg−1was
small (Fig 3B). Moreover, the contaminated area in deep soil was less than a third of that in the
surface soil (Fig 4). Hg in the surface soil was distributed in areas where anthropogenic activity
was intense, e.g., in Foshan and Guangzhou. The anomalies in the Hg distribution were likely
related to human activity, such as industrial and agricultural production (e.g., [21]). Further-
more, the Hg released into atmosphere from anthropogenic point sources could have an
impact on the terrestrial environments at the local, regional, and global scales [22,23]. For
example, as a result of global-scale Hg deposition, it was estimated that the Hg concentrations
in soil had increased by 15% [24]. According to Chen et al. [25], Guangdong, Foshan and
Jiangmen are the most seriously Hg-polluted areas in the PRD due to their rapid economic and
industrial development. According to Zhang et al. [26], anthropogenic activities have been the
dominant source of the total emissions of Hg in the PRD. Among them, the municipal solid
waste and coal combustion sources account for 28% and 21%, respectively. The production of
cement and batteries also contributed substantially.

As. As, at concentrations above 20 mg kg−1, was widely distributed in the PRD; the areas
of the surface soil and deep soil were 8507 km2 (accounting for 20.4% of the PRD) and 10040
km2 (accounting for 24.1% of PRD), respectively (Fig 4). The mean values of As in the surface
(14.7 mg kg−1) and deep soil (16.5 mg kg−1) were larger than the national soil background
(11.2 mg kg−1) [27]. Compared with studies in the coastal systems of British Columbia, the
Meghna River Delta, and Hanoi area of Vietnam, the concentration of As in the sediment of
the PRD was much higher because of its typical Quaternary sediments [28]. As in the sediment
mostly came from terrestrial sources of bedrock outcrops in the PRD. There was abundant
authigenic pyrite in the PRD, which incorporated a significant amount of As [29]. The main
source of As in soil was its parent material as result of a series of processes among sedimentary,
geochemical and biological factors. Meanwhile, Accumulation in metropolitan areas was most
often attributed to fossil fuel combustion, particularly in coal, metal-processing industries, and
mining activities (e.g., [30]). In the PRD, there is point-source pollution of As, resulting from
anthropogenic activities, such as refining and mining [31,32].

Pb. The distribution of Pb (> 80 mg kg−1) in soil was randomly dispersed in the PRD, and
there was no obvious regularity between the surface soil and deep soil (Fig 4). The mean value
of Pb in the surface soil (42.3 mg kg−1), mainly distributed in Guangzhou and Foshan, was a lit-
tle higher than in the soil background of the Guangdong Province (36 mg kg−1). These results
indicated that instead of coming from parent material, Pb in the surface soil came from exoge-
nous inputs. Guangdong and Foshan are developed areas with a well-established railway and
highway transportation system, intense human activity, and a highly concentrated electronic
industry. Previous studies have shown that the expansion of the road traffic infrastructure,
especially in densely industrial and mining areas, has resulted in vehicle emissions contaminat-
ing the surrounding soil leading to changes in the original distribution of Pb [7,33,34].

Soils in downstream of the Xijiang and Beijiang River watershed were mainly Rhodic Paleu-
dults, and those in the upstream and other areas around rivers were Typic Endoaquepts. Rho-
dic Paleudults and Plinthudults distributed in other areas of the PRD region. There was no
obvious relationship between the soil type and heavy metals in the PRD region. There was a
high level of Cd in the alluvial plain due to the long period of plain formation.

Relationship between heavy metals in the surface soil and deep soil
The spatial distribution in the surface and deep soil varied greatly for each heavy metal in the
PRD. To assess the relationship of heavy metals presented in the top and deep soil, the geomet-
ric centers of the high-concentration areas (Figs 5 and 6) were analyzed.

Heavy Metal in PRD
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The largest d value was observed for Pb (35.9 km), which was followed by Hg (23.0 km), Cd
(13.8 km) and As (5.1 km). The correlation between the surface and deep soil for Cd and As
was larger than that for Pb and Hg. The spatial disparity of Cd ranged from 2.0 to 14.4 km,
with an outlier of 33.2 km. As was similar to Cd, but showed less diversity. Although the spatial

Fig 5. Geometric centers of PRD areas with high concentrations of heavymetals in the soil. (a) Cd; (b)
Hg; (c) As; and (d) Pb.

doi:10.1371/journal.pone.0132040.g005

Fig 6. Spatial disparity of geometric centers in the surface and deep soil for heavymetals.

doi:10.1371/journal.pone.0132040.g006
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disparities of Cd and As were similar (Fig 6), they were essentially different based on the results
presented in section 3.1. For the former, there was because of the migration of Cd along surface
water, in the long soil forming process of suspended solids deposition in the watershed of the
Xijiang and Beijiang Rivers. The latter had a high background value. In the case of Hg and Pb,
there was notable diversity as well as little association between the surface and deep soil. This
further indicates that exogenous inputs were the dominant sources of Hg and Pb in the PRD
region.

Potential ecological risk assessment
The Håkanson index provides a quantitative method for directly isolating the extent of poten-
tial hazards. The potential ecological risk index and single heavy metal contamination index
yielded different assessment results (Fig 7).

In terms of single-factor pollution, Cd, Hg, As and Pb were all at the low ecological risk
level. The high-risk areas for Cd were mainly located in the Beijiang and Xijiang River (Fig
7A), and there were areas along rivers of higher Hg risk (Fig 7B) and low toxicity risks for As
and Pb. The Cd pollution in the PRD had a long history because of the equally long presence of
its relevant outputs as well as because the geographical conditions were conducive to its

Fig 7. Potential risk index (RI) of heavymetals in the soil of the PRD. (a) Cd; (b) Hg; (c) As; (d) Pb; and
(e) the four heavy metals.

doi:10.1371/journal.pone.0132040.g007
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transportation. There have been several pollution emergencies related to Cd in the tributaries
of the Pearl River reported since 2000, all of which have had serious impacts on environmental
health [3]. Despite the relatively high ecological risk of Hg in the PRD, its concentration was
not high in the surface soil or deep soil (Fig 3B).

The spatial distribution of the potential ecological risk index in the surface soil of the PRD
indicates that areas that were previously identified by different indices as potentially polluted
areas represented the greatest ecological risk. The distribution patterns of the individual Cd
potential ecological risk indices were almost the same as those of the general potential ecologi-
cal risk indices for all heavy metals. This indicated the important contribution of Cd to the gen-
eral indices. Moreover, area iii (Fig 7E) also had higher ecological risk, which might be due to
its location of the potential prospecting areas with polymetallic ore [16]. Anomalous values of
tungsten coincide with many associated ores, which might increase the ecological risk in the
processes of mineral exploitation and smelting. In general, the single potential ecological risk
indices indicated that the severity of pollution with respect to the four heavy metals decreased
in the following order: Cd�Hg> Pb> As.

Therefore, the variability of Cd in the study area should be controlled on a regional scale
[35], especially for the upper reaches of the Beijiang and Xijiang Rivers. In areas with intense
human activity, such as Foshan and Guangzhou City, proper measures should be taken to con-
trol the industrial emissions. For high background-value areas, anthropogenic disturbance
such as mining and refining might increase the risk to ecology and human health. However,
this balance could be maintained. For example, although the concentration of As was high in
the PRD, it might be possible to maintain an ecological balance if some measures are taken
with respect to mineral exploration, such as using cleaning production techniques to reduce/
eliminate the risk from the environmental risk source and controlling mechanism.

Conclusions
The present study revealed a diverse range of distribution areas and trends for heavy metals
because of various sources in the PRD region. As and Cd were more associated with natural
processes than Hg and Pb. Cd mainly diffused around the Xijiang and Beijiang River watershed
while As was rich in the parent material. The ecological risk was mainly attributed to the
migration of Cd. Single potential ecological risk indices indicated that the severity of pollution
decreased in the following order: Cd�Hg> Pb> As. The pollution of Hg and Pb due to
anthropogenic activities should be controlled in the local area because of point source pollu-
tion. For As, the control of cleaning production could reduce/eliminate the environmental
impact.

Supporting Information
S1 Fig. Geochemical map of Cadmium in surface soil.
(TIF)

S2 Fig. Geochemical map of Cadmium in deep soil.
(TIF)

S3 Fig. Geochemical map of Mecury in surface soil.
(TIF)

S4 Fig. Geochemical map of Mecury in deep soil.
(TIF)
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S5 Fig. Geochemical map of Arsenic in surface soil.
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S6 Fig. Geochemical map of Arsenic in deep soil.
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S7 Fig. Geochemical map of Lead in surface soil.
(TIF)

S8 Fig. Geochemical map of Lead in deep soil.
(TIF)
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