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Abstract

Rangeland degradation has been identified as a serious concern in alpine regions of west-
ern China on the Qinghai-Tibetan plateau (QTP). Numerous government-sponsored pro-
grams have been initiated, including many that feature long-term grazing prohibitions and
some that call for eliminating pastoralism altogether. As well, government programs have
long favored eliminating plateau pikas (Ochotona curzoniae), assumed to contribute to
degraded conditions. However, vegetation on the QTP evolved in the presence of herbiv-
ory, suggesting that deleterious effects from grazing are, to some extent, compensated for
by reduced plant-plant competition. We examined the dynamics of common steppe ecosys-
tem species as well as physical indicators of rangeland stress by excluding livestock and
reducing pika abundance on experimental plots, and following responses for 4 years. We
established 12 fenced livestock exclosures within pastures grazed during winter by local
pastoralists, and removed pikas on half of these. We established paired, permanent vegeta-
tion plots within and outside exclosures and measured indices of erosion and biomass

of common plant species. We observed modest restoration of physical site conditions
(reduced bare soil, erosion, greater vegetation cover) with both livestock exclusion and pika
reduction. As expected in areas protected from grazing, we observed a reduction in annual
productivity of plant species avoided by livestock and assumed to compete poorly when
protected from grazing. Contrary to expectation, we observed similar reductions in annual
productivity among palatable, perennial graminoids under livestock exclusion. The domi-
nant grass, Stipa purpurea, displayed evidence of density-dependent growth, suggesting
that intra-specific competition exerted a regulatory effect on annual production in the
absence of grazing. Complete grazing bans on winter pastures in steppe habitats on the
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QTP may assist in the recovery of highly eroded pastures, but may not increase annual veg-
etative production.

Introduction

Livestock grazing has been the dominant land use on the rangelands of Central Asia for centu-
ries, providing sustenance for pastoralists and products for trade. On the Qinghai-Tibetan pla-
teau (QTP) in the People’s Republic of China, rangelands are variously reported as overgrazed or
degraded, yet controversy persists regarding the extent, causes, and proposed remedies [1-4].
Within postulated human causes leading to negative trends in rangeland condition, a fundamen-
tal distinction can be drawn between livestock over-stocking arising from population growth or
poor practices employed by indigenous Tibetan pastoralists on one hand, and over-stocking aris-
ing from misguided government policy on the other [5]. Within postulated biological drivers of
degradation, controversy remains regarding the role of the common colonial lagomorph, the pla-
teau (or black-lipped) pika (Ochotona curzoniae) [6-9]. These pikas achieve high densities
where plant cover is sparse and/or short [10-14], and thus are frequently considered grassland
pests [11-16]. Chinese government policy favors reducing or eliminating the species [7,8,17],
but numerous studies have shown that plateau pikas play key roles on the QTP ecosystem, acting
as a keystone species for biodiversity [18-23] as well as an ecosystem engineer, moderating
hydrology at the local scale by increasing the rate of infiltration [24]. Although there is no dis-
pute that global climate change has affected vegetation and hydrology on the Tibetan plateau,
there is little consensus regarding site- or season-specific changes in temperature or precipitation
patterns [25-28], nor on how vegetation has responded [29-37]. Unsurprisingly, recommenda-
tions for reversing negative trends in rangeland condition vary considerably [2,3,5,38-39].

Most investigations of rangeland trends have occurred at a broad scale, typically depending
on remote sensing data [40-43]. Although useful and necessary, these studies may overlook
important dynamics that occur on the scale of individual plant-animal interactions [3]. Wild,
and later domestic, animals have been present on, and influenced vegetation on the Tibetan
plateau for long enough to have affected evolutionary processes. Transhumant pastoralism
involving yaks has been documented going back over 8,000 years [44-46], and a wide array of
wild herbivores have always been present [12,13]. The long history of traditional pastoralism
suggests that deleterious effects from grazing may, to some extent, be compensated for by
reduced plant-plant competition. Both plant-plant and plant-animal dynamics are complex,
however, and may vary qualitatively along environmental and density gradients [47]. Detailed,
site-specific investigations can thus help policy makers gain insight into the causes, and ulti-
mately remedies, of deteriorating rangeland condition. In particular, the relative roles of her-
bivory and competition in controlling vegetation response to the presence of consumers
remain a central, yet poorly understood issue, on the QTP.

Because biological interactions in the field are so complex, one approach to isolating causa-
tive mechanisms is to intercede directly, typically by removing or altering one or another bio-
logical component. Although it does not represent well any naturally occurring process, the
exclusion of large-bodied herbivores (livestock, in this case) can help elucidate the ways in
which vegetation responds to their presence. Thus, exclosure experiments have become a
common investigative technique. Recent livestock exclosure experiments on the QTP have sug-
gested that vegetation biomass and soil nutrients have increased with protection from livestock,
although not necessarily in a linear fashion [48-59].
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We report here on a 5-year study in which we manipulated grazing levels of livestock and
pikas. We approached our study with the recognition that rangelands vary in their history and
existing management at local spatial scales, and thus that selection of numerous sites, each of
which can be characterized, can provide insights unavailable from selecting only one or a few
sites. We also isolated the effects of the seasonality of herbivory, in contrast to some studies on
the QTP in which grazing occurred both during growing and senescent periods [48, 54, 58-
59]. Most traditional grazing systems on the QTP employ seasonal grazing strategies, and graz-
ing during the growing season may affect vegetation differently than grazing during the dor-
mant season. This focus on seasonality also allowed us to distinguish effects of exclusion on
annual production from effects on standing biomass. The distinction is important because, if
livestock grazing is envisioned as continuing into the future on the site, some of the standing
plant biomass must necessarily be transformed into animal biomass. Questions bearing on
sustainability are more directly addressed by investigating the dynamics of plant regrowth fol-
lowing herbivory. Finally, we suspect that species, even those within functional groups (e.g.,
grasses, sedges, forbs) may respond differentially to grazing and its absence. Our field protocols
allowed quantification of biomass to the genus or species level.

Our objectives were to examine patterns of annual production of QTP steppe vegetation
exposed to dormant season grazing by livestock (yaks, goats, and primarily sheep, Ovis aries)
and year-round activities of the non-hibernating plateau pikas, by altering the presence of both
consumers via exclusion and removal. We monitored biomass of the most abundant plant spe-
cies, as well as physical indicators of rangeland condition over 5 years (one year prior to experi-
mental intervention, 4 years afterward) on paired plots. We employed fenced livestock
exclosures and pika removal not as direct management tools, but rather as experiments to iso-
late herbivory and trampling from other factors, and thus to clarify their effects on site charac-
teristics and common plant species.

Materials and Methods
Study area

Our study was carried out in Village Five of Gouli Township, Dulan County, Qinghai Province,
China, approximately 35.5° N, 98.7° E. (Fig 1). Village Five consisted of approximately 175 resi-
dents in 37 households, almost all of whom engaged primarily in semi-nomadic pastoralism.
Distance to the nearest concentration of houses to our study area was approximately 6 km; this
village was adjacent to a historic but rejuvenated Tibetan Buddhist monastery [60-61]. The
landscape, part of the eastern section of the Kunlun mountain chain, was characterized by roll-
ing hills at elevations < 4,100 m, rising to moderately-sloped peaks at ~ 4,900 m. Vegetation
was sparse above approximately 4,700 m. Vegetation formations were alpine steppe (domi-
nated by Stipa purpurea) at elevations < 4,300 m, alpine meadow (dominated by Kobresia
spp.) at higher elevations, and shrublands (dominated by Salix spp.) on northerly exposures.

The nearest government-operated weather station was located in the county seat, Dulan,
approximately 90 km (straight-line) distance and 1,000 m lower in elevation, so could not be
used directly to estimate temperature or precipitation. We thus sampled temperature and pre-
cipitation for the Gouli site from interpolated meteorological data using ANUSPLIN software
version 4.2 [62], which uses an algorithm based on the thin plate smoothing splines of multi-
variates [63-64]. Observations from 836 weather stations in China were interpolated to the
1-km spatial resolution and 8-day time step. Yearly precipitation at the study site during 2008-
2013 averaged 398.0 mm (SD = 53.4), with approximately 92% falling during April through
September. Mean annual temperature was approximately -1.4°C, with the warmest 8-day peri-
ods annually averaging 14.0°C and the coldest averaging -16.3°C.
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Fig 1. Map of Qinghai Province, China. Provincial boundary indicated by bold line, county boundaries by
fine lines, and the location of Gouli Township within Dulan County with an asterisk (¥*). Inset shows location of
Qinghai Province within the People’s Republic of China.

doi:10.1371/journal.pone.0132897.g001

The study area had been subject to international hunting focused on blue sheep (Pseudois
nayar) until 2006 [13,65], but this activity likely had little impact on pastoral practices or vege-
tation. As had been common on the QTP, government-sponsored workers conducted a poi-
soning campaign targeting pikas during January 2007. Subsequent work showed that within a
few years, pikas had repopulated most areas. The Tibetan fauna includes a number of wild
ungulate species that could have foraged on experimental plots [12,13], but only the Tibetan
gazelle (Procapra picticaudata) was ever observed in the vicinity of the experiments reported
on here. In addition to plateau pikas, small mammals present in the general area included
the fossorial rodent plateau zokor (Eospalax fontanierii [66]), the jerboa (Allactaga sibirica),
mountain voles (Neodon spp.), voles (Microtus spp. and Lasiopodomys spp.), and dwarf ham-
sters (Cricetulus spp.). Himalayan marmots (Marmota himalayana) and Tibetan woolly hares
(Lepus oiostolus) occurred nearby, but were never observed in the immediate vicinity of these
exclosure experiments.

The entire study area was grazed by livestock and used primarily as winter pastures.
Grazing generally occurred only after animals returned from summer (and sometimes autumn)
pastures, generally in mid-October, until leaving for spring/summer pastures in mid-June
the following year [61]. Throughout, we refer to winter grazing by the year beginning in Janu-
ary; thus, for example, we use the term ‘winter 2010’ to refer to grazing that occurred during ~
October 2009 through early June 2010. Village Five constituted relatively high elevation pas-
tures within Gouli, and had been used as summer and transitional (spring-fall) pastures before
the prior collective system was dismantled (which occurred in 1983 in this area). Pastoral fami-
lies owned long-term leases on set pasture lands, but not all grazed their own livestock on
their own pastures. Rather, many pastoralists in Gouli had begun sub-leasing their pastures to
other grazers, and/or paying rental fees to graze their livestock on lands contracted to others.

Because our intent was to examine the effects of grazing practices as actually implemented
by Tibetan pastoralists, responding as they wished to the physical, biological, cultural, eco-
nomic, and policy environments in which they found themselves, we made no attempt to con-
trol the type or intensity of grazing [60]. Grazing pressure varied during the years prior to our
study, as well as during each of the winters prior to our 5 years of summer-season
measurements.

Exclosure experiments were situated in pastures grazed by 4 different Tibetan pastoralists
(Table 1). Pastoralist K, who controlled land on which 3 of our experiments were placed, had
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Table 1. Characteristics of 4 pastures on which experimental exclosures and removals were conducted.

Pasture Pasture Size (km?)
Pastoralist K 6.8
Pastoralist B 0.5
Pastoralist S 10.1
Pastoralist L 6.2

Experiments Mean Sheep/ha 2009) Mean Elevation(m) Mean Slope (°)
1,3,4 0.05 4,223 22

25 4.064 6

6-11 0.15 4.155 22

12 0.36 4,280 16

Shown are pasture size, which experiments were located on each, mean density of wintering sheep, and mean elevations and slope of the entire
pastures. We were unable to estimate sheep density for Pastoralist B during the experiment.

doi:10.1371/journal.pone.0132897.t1001

recently experienced family illness, and had had to sell much of his livestock herds to pay medical
expenses. At the outset of our study in 2009, K owned only 60 yaks and 25 sheep. His pasture was
among the largest in Village Five (6.8 km?), but much of it was steep and rocky. Pastoralist S, who
controlled land on which 6 of our experiments were placed, was among the wealthiest pastoralists
in Village Five, but had begun engaging in a number of non-pastoral economic activities by 2009.
In winter 2010, S leased his pasture to a pastoralist from Village Six to graze his herd of approxi-
mately 320 yaks. Very little winter grazing occurred on S’s pasture during winter 2011, but he
leased it to other pastoralists for grazing of large (~ 300 animals) sheep herds during winters 2012
and 2013. Two of our experiments were located on the pasture controlled by pastoralist B. This
relatively small (0.46 km?) and entirely fenced pasture had, until 2009, belonged to S, who had
managed it as emergency winter reserve, and stocked it very lightly. B sub-contracted his small
pasture to other local pastoralists during the winter prior to our measurements, with herds usually
of about 50 sheep. The last of our experiments was located on the western boundary of the 6.2
km? pasture controlled by pastoralist L, who also generally rented his pasture to others, who in
turn placed large herds of both sheep and yaks on it. However, with the exception of S’s pasture
during winter 2010, both observations and limited telemetry monitoring showed that yaks used
high elevation pastures far from the experiments here; hereafter, we use the term “livestock” to
refer exclusively to sheep and goats. We asked for and received permission for access to each of
the pastures on which we worked and for the establishment of our experimental exclosures. We
also worked under a letter of authorization provided by the Dulan County Forestry Bureau.
Although Village Five contains various slopes and aspects, and mountain peaks extend
to > 4,900 m in elevation, all experiments reported on here were located on gentle, generally
southerly or south-easterly-facing slopes at elevations between 4,046 to 4,107 m. We generally
expected to find that species preferred as forage by livestock and pikas would respond to lower
herbivory pressure by increasing production relative to the grazed state. In contrast, we antici-
pated that plant species avoided by grazers would be more productive where grazing occurred
than where grazing was restricted.

Livestock exclosures and pika reduction

We selected 12 locations for livestock-exclusion/pika reduction experiments, based on specific
hypotheses we wished to test. At each we erected livestock exclusion fences measuring 10 x 10
m using standard fencing material in use by pastoralists in western China. All fenced livestock
exclosures were built in early September 2009. We re-checked exclosure fencing each summer
to reduce the probability of undesired or undocumented livestock incursions.

We selected 6 of the 12 experiments (defined as fenced-exclosures as well as the surround-
ing, unfenced 80 m?, Fig 2A), for pika reduction. Pikas were killed using commercially-avail-
able metal rodent traps placed adjacent to all active pika burrows, both within and outside
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Fig 2. Schematic diagrams showing the experimental designs to exclude livestock and reduce pikas.
A. Experimental design, showing the fence (solid black line), the area within which paired, non-exclosure
plots were located (wide green line), and the 30 m extending beyond the experiment on each side (orange-
hatching) within which pikas were reduced by snap-trapping during 2010-2013, Gouli Township, Qinghai
Province, China. B. Schematic of exclosure experiment, showing typical placement of 12 vegetation plots
established in September 2009, Village Five, Gouli Township, Qinghai Province, China. Bold solid line
represents the 100 m? livestock exclusion fence. Within the inner 64 m? of the exclosure (dashed line), 6
vegetation plots (0.5 m? each; colored squares) were randomly distributed (see text). Six paired vegetation
plots that were similar in vegetation composition and density to each of the random plots (colors represent
pairing) were selected within the area extending 10m in each direction from (but not within 2 m, dashed-line,
of) the exclusion fence.

doi:10.1371/journal.pone.0132897.g002

these fenced exclosures. To reduce incursion and repopulation of pikas outside the experiment,
we extended our trapping beyond the 10-m wide off-exclosure strips by an additional 30-m, so
that the total area subjected to pika reduction measured approximately 8,100m?, Fig 2A. The
protocol for our study was approved by the Institutional Animal Care and Use Committee at
Arizona State University (Protocol #12-1231R), as well as the Dulan County Forestry Bureau,
Dulan, Qinghai, PRC.

Experimental design

Because exclosure experiments were not randomly selected from within Village Five but rather
were chosen to represent a variety of initial conditions, we did not consider them as random
effects. Instead, we treated exclosure experiments independently, grouping them when appro-
priate to test specific hypotheses. Experiments 1 and 2 were adjacent to one another, separated
by a preexisting fence that demarcated the boundary between pastures managed by pastoralists
B and K. Experiment 1 (in pasture belonging to K) was located just above a seasonal water-
course, an area which we had noted served as a frequently-used livestock pathway. This area
was characterized by a relatively high percent of bare soil and low vegetation cover at the exper-
iment’s outset (Table 2). The pasture managed by pastoralist B, in which experiment 2 was
located, had for a number of years prior to our study served as an emergency-winter pasture
and was rarely used by livestock (reflected in the relatively high vegetation cover and little bare
soil, Table 2). We reduced the abundance of pikas in and around both experiments beginning
in summer 2010. We were particularly interested in examining the influence of past manage-
ment and the livestock trailing route on otherwise similar vegetation.

Experiments 3 and 4 were both located in K’s pasture, approximately 266 m apart, and were
designed to examine the effect of pika reduction. Pikas were trapped beginning summer 2010
in and around experiment 3 but not experiment 4. Experiment 4 was characterized by rocky
soil and a low proportion of palatable graminoids. Both experiments 3 and 4 also included
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Table 2. Initial conditions at each of the 12 experiments.

Pika

1 34.5
13.1

2 11.0
4.2

3 37.5
3.7

4 82.0
28.4

5 46.4
4.6

6 31.0
6.0

7 38.0
2.1

8 30.0
7.3

9 245
1.6

10 28.5
05

11 7.5
1.6

12 20.4
1.6

X 32.6

Veg%
52.1
114
85.4
6.2
81.0
7.0
70.5
21.3
71.0
10.7
69.2
6.8
60.0
64
56.7
6.9
67.1
5.8
66.3
154
59.2
6.7
55.5
16.3
66.2

Soil
47.0
11.2
12.6
6.0
15.2
6.0
25.9
20.2
22.5
9.0
25.0
7.2
37.5
5.8
38.3
6.0
28.2
6.0
30.9
15.3
36.1
6.9
41.8
16.0
30.1

Ersn

5.0
0.0
2.6
0.8
2.0
0.5
2.7
12
2.0
0.5
3.2
0.5
4.8
0.5
3.5
0.5
1.8
1.0
2.7
0.8
2.7
0.8
3.6
0.5
3.0

Lt% Cata Carx Heal Kobr Lese Oxyt Poa Pobi Stpu Thia Bio

0.9 12.3 0.0 12.8 0.6 0.1 0.2 0.0 0.2 91.2 0.0 124.0
0.5 17.0 13.2 0.8 0.5 0.6 0.6 33.0

1.9 3.3 0.0 7.4 6.6 1.6 0.1 1.4 0.0 302.7 0.0 328.5
1.9 3.7 13.5 3.0 2.7 0.3 1.6 95.0

3.8 11.5 0.0 4.3 8.4 1.6 12.0 11.3 12.3 114.7 56.6 232.9
1.8 26.8 5.5 4.5 2.6 8.1 6.0 5.7 19.6 50.9

3.6 7.1 0.0 0.5 8.3 11.4 1.6 1.2 20.1 51.8 56.2 160.0
2.6 12.6 0.8 9.6 74 2.0 1.3 14.9 13.7 346

6.3 0.0 3.0 0.0 3.8 5.3 0.4 6.9 1.1 93.4 17.3 131.7
4.3 3.6 2.9 6.0 0.5 3.4 1.5 20.3 16.0

5.9 0.0 0.0 0.0 5.4 5.4 0.0 6.7 1.2 101.8 0.0 120.6
3.5 12 2.5 3.3 1.9 20.7

2.5 7.1 0.0 56.7 0.3 0.2 0.0 0.0 1.3 92.3 56.4 232.2
14 7.0 16.2 0.5 0.3 1.8 18.0 48.0

4.6 0.9 0.0 0.0 5.8 1.2 0.1 1.6 0.0 97.2 58.9 166.8
1.6 1.2 1.7 1.8 0.1 14 20.6 39.8

4.8 1.6 0.0 37.4 7.3 0.0 0.0 0.7 0.0 67.8 0.0 114.9
1.5 1.5 17.0 2.8 1.1 14.6

2.7 15.5 0.0 60.7 3.6 0.4 0.0 0.8 0.0 67.3 0.0 149.1
1.6 20.8 32.8 2.0 0.9 1.3 254

4.8 0.6 0.0 48.0 3.4 0.0 0.2 5.1 11.3 72.8 0.0 143.5
2.2 12 28.8 12 0.3 2.3 7.7 18.3

2.7 1.8 0.0 18.3 1.9 0.0 0.0 1.8 0.9 155.8 0.0 185.5
1.1 54 21.7 1.7 2.0 0.7 81.7

3.7 5.1 0.3 20.5 4.6 2.3 1.2 3.1 4.0 109.1 20.5 1741

Shown in Table are the experiment number (Ex), ika index (Pika), total vegetation percent cover (Veg%), percent bare soil cover (Soil), Erosion index
(Ersn). percent litter cover (Ltr%), and fresh biomass (g/m?) of plant species meeting minimum sample size thresholds, for 12 experiments (Cardimine

tangutorum = Cata, Carex spp. = Carx, Heteroppapus altaica = Heal, Kobresia spp. = Kobr, Leymus secalinus = Lesa, Oxytropis spp. = Oxyt, Poa spp.,
Potentilla bifurca = Pobi, Stipa purpurea, = Stpu, Thermopsis lanceolata = Thla, total fresh biomass = Bio), Gouli township, Qinghai Province, China, in
September 2009 (i.e., before treatments). For each experiment, top row gives mean, bottom row (italics) gives SD (in all cases, n = 12).

doi:10.1371/journal.pone.0132897.t002

substantial amounts of Thermopsis lanceolata, which both our observations and existing litera-
ture had suggested was adapted to soil disturbance. We wished to examine whether protection
from grazing would allow other species to gain at its expense.

Experiments 5 and 6 were adjacent to one another, separated by a pre-existing fence demar-
cating the boundary between pastures managed by pastoralists B and S. Here, we were inter-
ested in examining if the recent few years of very light grazing in B’s pasture had influence
beyond those years when both were protected from grazing.

Experiments 7 and 8 were both located in S’s pasture, approximately 300 m apart; pikas
were reduced in experiment 7, but not 8. As in the paired experiments 3 and 4, T. lanceolata
appeared to be competing with S. purpurea. We hypothesized that livestock exclusion would
favor species less reliant on disturbance than T. lanceolata.

Experiments 9 and 10, both in pastures managed by S, were adjacent to one another, sepa-
rated by a preexisting fence demarcating S’s winter reserve (i.e., lightly grazed) area. We
trapped pikas beginning in 2010 in both experiments 9 and 10. Experiments 11 and 12 were
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adjacent to one another, separated by a preexisting fence demarcating L’s pasture (experiment
12) from S’s pasture.

Livestock present in each pasture during winter were estimated by direct counts made by
our year-round technicians, as well as interviews with wintering pastoralists. Diets of yaks,
sheep, goats, pikas, and Tibetan gazelles were estimated from fecal samples collected during
winter 2010. At bedding sites, we collected 4 yak samples (from the herd using S’s pasture in
winter 2010), as well as 4 samples of sheep and 3 of goats at different bedding sites. Because
sheep and goats were grazed together, and most herds in Gouli consisted of approximately 15%
goats, we summarized diets by weighting the mean of sheep and goat diets by the ratio 85:15.
During the same winter, we collected fecal pellets of plateau pikas and Tibetan gazelles oppor-
tunistically in the field. Diets were estimated as percent density using micro-histological
fragment analysis at the Wildlife and Habitat Nutrition Laboratory at Washington State Uni-
versity, Pullman, WA, USA. The timing of our vegetation sampling, in mid-summer, precluded
us from estimating consumption rates of either livestock or pikas.

Plot selection and vegetation sampling

Within each of the 12 exclosures, we randomly selected 6 square plots measuring 0.5 m” for
repeated vegetation sampling. These permanent plots were selected by first demarcating each
10 x 10 m exclosure into 100 1 m? sections. We excluded the outermost 2 m-wide strips of each
exclosure from the sampling universe to reduce any possible edge effect caused by proximity
to the fence. We numbered the remaining 64 m* sequentially, and used the pseudo-random
number generator in MS-Excel to generate a list of integers, 1-64. The first 6 integers on the
random list for each exclosure were chosen, and the 1-m” grid associated with that integer

was selected for sampling (Fig 2B). We placed a square PVC plot frame measuring 0.5 m* on
the northeast corner of each selected 1-m* section, and marked the corners with ~ 5 mm diam-
eter steel cable anchors that were sunk approximately 30 cm into the ground, leaving a small
(~3 cm diameter) loop protruding to which we attached a metal, numbered tag. In subsequent
years, field crews carried the PVC frames to each plot and, upon locating the cables, fixed the
frame corners to the 2 loops. In this way, we were able to re-locate each permanent plot while
leaving very little physical sign or interference.

After the pre-exclosure vegetation sampling of each plot was completed (in early September
2009), we located a corresponding 0.5 m? area, outside of, but no nearer than 2 m or further
than 10 m from the exclosure fence to act as its pair. We required that the paired plot be located
at approximately the same slope, elevation and aspect as the in-exclosure plot, and that it con-
tain the same species mix and in similar abundances. These outside-exclosure plots were con-
sidered that particular within-exclosure plot’s pair (Fig 2B), and subsequent analysis focused
on the differences in vegetative measurements between the two. Thus, our total sample size
consisted of 6 0.5 m” plots both inside and outside each of the 12 exclosures (1 = 144 plots/
year), during both the pre-exclosure year (2009) and the subsequent 4 summers (2010-2013),
i.e., total n = 720 plot readings. Plots were sampled in early September 2009, mid-September
2010, mid-September 2011, mid-July 2012, and late July 2013. Because livestock grazing on dis-
tantly-located summer pastures began in June, there was little opportunity for vegetation pro-
duced in the current year to be lost to ungulate herbivory, and thus our sampling represented
annual production.

Vegetation data were collected by crews of trilingual (Tibetan, Chinese, English) seasonal
technicians. Prior to each field season, crews were trained in species identification and field
protocols. Field crews quantified plant species presence, height, cover, and current-year fresh
biomass for each species in each plot, as well as ground cover estimates of total vegetation, bare
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soil and litter (previous years’ dry vegetation). Above-ground biomass was estimated for each
species in a step-wise process. First, crew members standardized their estimations of species-
specific fresh-weight by collecting reference samples of known fresh-weight (usually 1 g) from
an adjacent, off-site location. Species-specific fresh biomass estimates were estimated by mov-
ing the known-weight reference sample within the plot, counting the number of similarly-sized
plant clusters of each species. Second, to provide on-going quality control of fresh-weight esti-
mation, a system of random check-plots was set up, in which crews did not know until after
collecting all vegetation data at a given plot whether that plot had been selected for calibration.
If selected, a nearby 0.5m” location with similar vegetation to the plot was identified, subjected
to the full measurement protocol, and then clipped and sorted to species. Species-specific
fresh-weights of the check-plot were recorded, and compared with the actual (non-clipped)
plot. At each plot, an index of pika burrow density (“pika index”, hereafter) was also obtained
by counting all active burrows in a 7-m radius (154 m?) around the plot center.

We quantified species-specific annual production as fresh biomass (g) for each plant species
with a mean of >1% cover averaged over all plots within the experiment in the pre-treatment
year 2009 (Table 2). In addition to species-specific fresh weight, we examined the 4 metrics
“Litter cover (%),” “Bare soil (%),” “Erosion index” and “Total live vegetation cover (%).” For
erosion index, we used an ordinal scale 0 = none, 1 = low, 2 = low-moderate, 3 = moderate,

4 = moderate-high, 5 = high, 6 = severe, based on characteristics such as rills, gullies, and
pedestalling [67]. We assessed the effectiveness of pika reduction by visually counting individ-
ual pikas seen within the livestock exclosure, as well as one randomly-selected 100 m? patch
adjacent to each exclosure (both those with pikas reduced and uncontrolled) during 1-hour
observation bouts during summers 2010 through 2013.

Hypotheses tested and statistical analyses

Following our experimental design, our approach to analysis was to look first at our planned
2-way experiment-wise comparisons (described above under “Experimental Design”). Where
significance tests indicated that experiments differed and/or interaction terms were significant,
we examined individual exclosures, as described below. We conducted further tests on experi-
ments grouped within the pasture that contained each. Because our attempts to reduce pika
abundance in some cases resulted in only a modest difference in resultant abundance among
experiments designed as treatment vs. control, we also examined selected a posteriori contrasts
among experiments with the most divergent pika abundances post-reduction.

To address hypotheses that livestock exclusion affected vegetation, we used mixed-effects
linear models, with raw paired-plot differences (defined as the value of the within-exclosure
plot minus the value of the outside-exclosure plot) as response variables, within-exclosure plots
as random explanatory effects, and “treatment” (coding year 2009 as pre-treatment and years
2010-2013 as post-treatment) and experiment (where more than one entered the model, see
below) as a fixed, explanatory factors. Positive values indicated greater abundance within the
exclosure than in the paired plot outside the exclosure. Recognizing that a binary characteriza-
tion of pre- or post-treatment could fail to capture vegetation trends post-treatment, we also
used mixed-effect linear models to assess the trend of differences from the pre-exclosure condi-
tion (scaled such that all paired-plot differences in 2009 were set to zero) on time during years
2010-2013. In these models, we again considered paired-plot differences as response variables,
exclosure plots as random explanatory effects, and experiment (where appropriate) and year-
since-treatment as fixed, explanatory effects. Here, we interpreted the slope of the response var-
iable with time as the primary metric of interest, and the intercept of that same relationship as
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the initial response in year 2010 (i.e., the null hypothesis was that the intercept in year 1 was
Z€ro).

To address hypotheses that pika reduction affected vegetation, we were unable to use the
same design as above because we had no way to select paired plots within each experiment.
The scale on which we needed to trap pikas (8,100 m?) to produce effective reduction on each
experiment left us no choice but to make comparisons among (rather than within) experi-
ments. Thus, we used raw values of all plot measurements (rather than differences among plots
paired a priori) within experiments that differed primarily in whether or not pikas were
reduced. We tested hypotheses that pika reduction explained observed differences by examin-
ing the interaction of treatment on experiment (where treatment was coded as years before and
after pika reduction began), with the fixed effect being the treatment, and considering plot
number as random effects. That is, pika reduction was interpreted has having had an effect
when significant year-on-year differences corresponding with the initiation of pika removal
were themselves dependent on whether the differences among the experiments (pikas reduced
vs. not) were also significant. Our analyses pooled data from within exclosures (i.e., livestock
excluded and pikas reduced), and outside exclosures (grazed by livestock and pikas reduced);
thus, we also examined these 2™ order interactions.

Temperature, precipitation and other weather factors varied annually, and measurements
were not taken on exactly the same date (and thus phenological stage) each year. As well, fresh-
weight biomass likely varied by species, year, and date of sampling (we lacked sufficient data
on all species to use dry-weights). However, because our design focused on differences among
paired-plots that varied only by the intensity of livestock and pika herbivory, because paired
plots were located a maximum of 20 m from one another on similar slopes and aspects, and
because vegetation on paired-plots was always measured on the same day by the same field
crew using the same sampling methods, we effectively controlled for all such variation.

To account for the multiple comparisons inherent in our approach, we used P = 0.025 as a
marker for significance, accepting a 1 of 40 probability that comparisons we accepted as true
differences arose merely by chance. For brevity, we present results only from tests reaching this
threshold. All statistical tests were conducted using JMP 11.1.1 (SAS Institute, Cary, N.C.,
USA).

Results

Initial conditions and the effectiveness of livestock exclosure and pika
reduction

Mean live vegetation cover prior to livestock exclusion over all experiments was 66.2%, and
varied from 52.1% to 81.0%. Mean litter cover over all experiments was 3.7%, varying from

0.9 to 6.3%. We documented a total of 26 plant species within experimental plots, but focus
hereafter on the 10 that were found in greater than trace amounts (Table 2). Cardamine tangu-
torum, Kobresia spp., and Stipa purpurea occurred on all 12 experiments. Vegetation at the
onset of the experiment was dominated by S. purpurea, overall constituting almost 63% of all
live biomass. The 2™ most abundant species was Heteropappus altaicus, occurring on 9 experi-
ments. Thermopsis lanceolata occurred on only 5 experiments, but was abundant when present,
and was the 3" most abundant species by fresh biomass. Fresh biomass over all experiments
averaged 174 g/m” at the onset of the experiment, varying from 115 to 328 g/m”.

We encountered only a single instance in which livestock had evidently damaged the exclo-
sure fence and gained access (exclosure 1 in summer 2010). However based on the small
amount of physical evidence (few feces and little evidence of grazing), we elected to repair the
fence and retain the exclosure within the experiment. We assumed that fences similarly
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Fig 3. Experiment 3, shown in July 2010. Visible are the larger amounts of litter, primarily of Stipa purpurea,
within the livestock exclosure than outside. Also evident is the larger amount of live S. purpurea inside than
outside. In this experiment, S. purpurea fresh biomass increased the first year following exclosure, but
subsequently declined to levels similar to or below those outside the exclosure.

doi:10.1371/journal.pone.0132897.g003

prevented access by Tibetan gazelles, but their total biomass on the landscape was sufficiently
low that we ignored any possible effects of their exclusion. Visual evidence of livestock exclu-
sion via fences constructed in September 2009 was striking as early as July 2010 (Fig 3). Live-
stock density varied during the 4 winters during which livestock affected vegetation following
initiation of our experiments. Our estimated mean sheep density during winters 2009-2011
was pastoralist K (experiments 1,3,4) ~ 0.05 sheep/ha, pastoralist S (experiments 6-11) ~ 0.15
sheep/ha plus another ~ 0.15 yak/ha (only in winter 2009-10), and pastoralist L (experiment
12)~ 0.36 sheep/ha. We were unable to quantify sheep density for Pastoralist B (experiments 2,
5) but it appeared intermediate between that of Pastoralists K and S.

Our pika index prior to both livestock exclusion and pika reduction varied from 7.5 to 82.0.
In the 6 experiments designed to quantify effects of pika reduction, we lethally removed at least
196 pikas (35 in 2010, 128 in 2011, 33 in 2012; Table 3). Pika removal did not result in their
elimination from reduction plots, but roughly halved their density (x = 9.04 pikas seen/experi-
ment/year in unreduced experiments, X = 4.58 pikas seen/experiment/year in reduced experi-
ments; generalized linear models assuming Poisson distribution F = 9.07; df = 1,43;
P =0.0043).

Herbivore diets

Approximately two-thirds of sheep diets consisted of grasses. Sheep evidently sought out Poa;
although making up less than 2% (by fresh biomass) among commonly encountered species in
our experiments, Poa constituted almost 24% (by frequency of occurrence) of sheep diets
(Table 4). S. purpurea was the 2™ most abundant species in sheep diets (15.7%), followed by
Elymus spp. and Leymus secalinus. Sedges of the genera Carex spp. and Kobresia spp. made up
just under 11% of sheep diets. Forbs made up the remainder of sheep diets, but we found no
evidence that sheep in winter consumed any Heteropappus or T. lanceolata they found. Pikas
in winter ate a higher proportion of sedges (47.6%) than grasses (38.3%). Tibetan gazelles ate
primarily dicots even during winter (Table 4), including species often considered unpalatable
to livestock such as from the genera Artemisia, Oxytropis, and Ephedra.
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Table 3. Pikas removed and observed at each experiment.

Year
Experiment Pastoralist
1 K
2 B
3 K
4 K
5 B
6 S
7 S
8 S
9 S
10 S
11 S
12 L

Pikas removed Pikas observed

2010 2011 2012 Total 2010 2011 2012 2013 Total
10 18 8 36 2 3 2 2 9
2 19 4 25 4 3 3 2 12
20 39 9 68 5 9 5 7 26
0 0 0 0 15 32 9 12 68
0 0 0 0 1 12 9 10 32
0 0 0 0 8 13 2 2 20
1 31 3 35 0 12 3 6 21
0 0 0 0 6 15 3 6 30
0 8 5 13 12 1 0 0 13
2 13 4 19 10 7 8 4 29
0 0 0 0 2 17 2 6 27
0 0 0 0 3 22 3 12 40

Experiments in italic font were subject to pika reduction during 2010-2012.

doi:10.1371/journal.pone.0132897.t003

Effects of excluding livestock

Biophysical variables. Livestock exclusion increased the percentage of ground covered by
litter in almost all experiments (Fig 4), and in experiment 3, litter cover significantly increased
with time since exclosure. In most cases however, litter cover did not continue to increase with
time relative to grazed plots. Percent cover of plots consisting of bare soil declined after live-
stock exclosure in experiments 1, 2, 5, and 6 and continued to decline with time since exclosure
in experiments 1, 3, and 6 (Fig 5); it was not significantly affected in the other experiments.
Our erosion index was reduced by exclusion of livestock in half of all experiments (Fig 4); it did
not differ significantly in the other half. Additionally, erosion indices continued to decline with
time in experiments 3, 5, and 6 (Fig 5). However, we found no consistent pattern in the per-
centage of ground cover made up by live vegetation. Livestock exclusion led to increased live
vegetation cover in experiments 1 and 2, but the reverse pattern was observed in experiments
11 and 12. Live vegetation within exclosures continued to increase in cover with time relative
to paired grazed plots in experiments 1 and 3 (Fig 5). No significant differences were observed
in other experiments.

Plant species. We found more significant declines than increases in species-specific fresh
biomass following livestock exclosure. S. purpurea increased following exclosure in experi-
ments 5 and 6 (Fig 6), but displayed significantly negative trends with time since exclosure in
experiments 2 and 12 (Fig 7). Kobresia spp., H. altaicus, and Cardamine tangutorum produced
less fresh biomass in exclosures 2 and 5, 7 and 11, and 10, respectively, following exclosure
than before (Fig 6). H. altaicus continued to decline with time since exclosure in experiments 9
and 10; P. bifurca declined with time since exclosure in experiments 4 and 11, and T. lanceolata
declined with time since exclosure in experiments 3, 4, 7, and 8 (Fig 7). Oxytropis spp., surpris-
ingly, was the only species to show a positive response to livestock exclusion while also failing
to display a negative response (Fig 7)

Because S. purpurea is the dominant perennial in the region and its response to livestock
exclosure was complex, it is worth viewing in more detail. A typical, albeit not universal, pat-
tern is shown for experiment 2 (Fig 8). In a number of experiments, production of S. purpurea
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Table 4. Mean winter diets of livestock and wildlife.

Sheep/Goat Plateau pika Tibetan Gazelle
n 8 12 2
Grasses
Elymus 8.7 1.0
Festuca 1.3
Leymus 7.6 11.0
Poa 23.8 4.3 4.0
Roegneria 2.7
Stipa 15.7 20.0
Deschampsia 5.6
Other Grass 1.3 3.0 2.0
Sedges
Carex 7.6 47.6 4.0
Kobresia 3.3
Dicots
Artemisia 2.8 34.6
Astragalus 1.4 0.5
Chenopodium 1.0
Ephedra 0.3 10.5
Galium 0.2 0.4
Krascheninnikovia 8.0
Oxytropis 3.0 5.9 29.0
Pedicularis 0.9
Polygonum 0.2 3.5
Potentilla 0.7 2.5 4.5
Saussurea 0.3
Other Forb 1.2 4.9 2.9

Data were collected at village Five, Gouli Township, Dulan County, China, January-March 2010; values estimated from fecal micro-histological analysis to
genus level. Entries are the mean percent frequency, where each sample was generated from presence of the species on a 10 x 10 grid superimposed on
the microscope slide.

doi:10.1371/journal.pone.0132897.t004

often increased in the year following exclosure, but declined thereafter. Even in experiment 6,
where mean abundance was greater post-exclosure than earlier, we noted an almost-significant
decline after the first post-exclosure year (8 = -7.44g/m?/yr, t = -2.015, P = 0.0564).

Effects of reducing pika abundance

Biophysical variables. Reducing pika abundance resulted in increased accumulation of lit-
ter when comparing experiments 3 with 4, as well as 1 and 3 with 4 (Fig 9A, S1 Table, Statistical
results corresponding with Fig 9), but not in other comparisons. However, this effect was evi-
dently only when livestock were absent (2™%-order interaction with livestock exclosure; S1 Fig).
Percent cover consisting of live vegetation declined more markedly in experiment 3 following
pika reduction than in experiment 4 (Fig 9). Reducing pikas muted the increase of bare soil in
experiments 1 and 3 relative to the pika-abundant experiment 4 (Fig 9C). Erosion indices
increased less rapidly in experiment 7 after pika reduction than within the exclosure of the
paired experiment 8 (Fig 9D, solid lines); in contrast, erosion increased in experiment 4, but
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Difference from initial percent cover

Fig 4. Histograms showing effects of livestock exclosure on biophysical variables in experiments
where significant (P < 0.025). Shown are mean and 95% confidence intervals (error bars) for exclosure-
caused differences in percent plot covered by litter (orange), live vegetation (dark green), erosion index
(gray), and bare soil (brown). Values prior to livestock exclosure indicated by solid shading, values after
livestock exclosure indicated by vertical hatching (experiments 1 and 2), horizontal hatching (experiments 3
and 4), sparse points (experiments 5 and 6), diagonal upper left to lower right hatching (experiments 7 and 8),
diagonal upper right to lower left hatching (experiments 2 and 5), reverse color sparse points (experiments 6
through 11), bricks (experiment 9), and diamonds (experiment 12).

doi:10.1371/journal.pone.0132897.g004

declined within the exclosures of experiments 1 and 3 managed by the same pastoralist follow-
ing pika reduction (Fig 9D, dashed lines).

Plant species. Reducing pikas produced significant changes in annual production of S.
purpurea in all but 2 experiments (numbers 2 and 12), but the patterns were inconsistent (S2
Table, Statistical results corresponding with Fig 10). S. purpurea declined generally between the
pre- and post-reduction periods, and this decline (greater with livestock excluded, S1 Fig) was
exacerbated by reducing pikas in experiments 2 and 3 relative to their controls (Fig 10A), as
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Fig 5. Trends on time, showing effects of livestock exclosure on biophysical variables where
significant (P < 0.025). Shown are mean differences between within and outside livestock exclosure fences
of litter (orange), live vegetation (dark green), bare soil (brown), and erosion index (gray), with all values
calibrated to zero difference in 2009, the year exclosures were established. Individual experiments are
indicated by solid (experiments 1 and 3), dashed (experiments 5 and 6), and dash-dot (experiment 3) lines.

doi:10.1371/journal.pone.0132897.g005
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Fig 6. Histograms showing effects of livestock exclosure on vegetation in experiments where
significant (P < 0.025). Shown are mean and 95% confidence intervals (error bars) for exclosure-caused
differences in fresh biomass (g/m?) of Stipa purpurea (light green), Kobresia (dark green), Heteropappus
altaicus (red), and Cardamine tangutorum (orange). Values prior to livestock exclosure indicated by solid
shading, values after livestock exclosure indicated by open bars (experiments indicated adjacent to bar
pairs).

doi:10.1371/journal.pone.0132897.g006

well as experiment 3 relative to 4. However, reducing pikas evidently tempered the decline in
S. purpurea in most other experiments (Fig 10B; S1 Fig). L. secalinus decreased in experiment
4 while it increased in its pair (experiment 3; Fig 10C) following pika reduction; a similar pat-
tern was observed in experiments on pastures controlled by S (Fig 10C). Similarly, Carex

spp. increased more in experiment 2 following pika reduction than its paired experiment 5
(Fig 10D). Annual production of Kobresia spp. did not change after pika reduction in experi-
ment 7, but it declined markedly in its control pair, experiment 8 (Fig 10E).
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Fig 7. Trends on time, showing effects of livestock exclosure on plant species where significant. Stipa
purpurea (light green), Heteropappus altaicus (lavender), Cardamine tangutorum (orange), Thermopsis
(yellow), Potentilla bifurca (lime), and Oxytropis spp. (blue). Shown are mean differences between within and
outside livestock exclosure fences, with all values calibrated to zero difference in 2009, the year exclosures
were established. Individual experiments are indicated by slender solid (2), compound dash (3 and 4), short
dash (4 only), long dash (7 and 8), compound short dash (9), dash-dot (10), and thick solid (12) lines.

doi:10.1371/journal.pone.0132897.g007
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Fig 8. Mixed-effect linear model showing the pattern of paired-plot differences in Stipa purpurea fresh
biomass in experiment 2. Raw data are scaled so that paired-plot differences in the baseline year 2009
were all set to zero, and vegetation plots (n = 6, solid circles) were treated as random effects. Y-axis scale is
paired-plot differences in g/0.5 m?. Values in 2010 (year 0) were significantly greater than zero (P = 0.0045;
greater annual production of S. purpurea above-ground biomass within than outside the exclosure), but the
dynamic reversed beginning in 2011 (8 = -114.56 g/m?/yr, P = 0.0005).

doi:10.1371/journal.pone.0132897.9008

Effects of pika reduction on the remaining common species were inconsistent. H. altaicus
remained rare but unchanged in control experiments 8 and 5, while annual production
declined with pika reduction in experiment 7 (dashed line, Fig 10F) but increased in experi-
ment 2 (solid line, Fig 101F, S1 Fig). Pika reduction accompanied an increase in annual
production of P. bifurca in experiment 7 compared with 8, as well as in K’s pastures (Fig 10G),
but pika reduction tempered increases in P. bifurca production in the 3 other comparisons
(Fig 10H). Reducing pikas was associated with a reduction in T. lanceolata within experiments
controlled by S, while it increased in experiments without pika reduction (Fig 101).

Discussion
Effects of excluding livestock

As expected because of varied site history as well as differential intensity of herbivory during
the study period, responses to livestock exclusion varied by experiment. Few responses to live-
stock exclosure were consistently evident among all 12 experiments (Table 5). The short dura-
tion of our study (4 years following exclosure) may also have precluded us from observing
phenomena that require longer to develop. That said, the 43 significant (P < 0.025) responses
(from a total possible 156 comparisons) suggest patterns that appear to us robust and interpret-
able. Note also that many species-level comparisons failed to exhibit livestock effects due to the
species’ rarity both within and outside our exclosures (Table 2).

Percent litter cover, unsurprisingly, was invariably higher within than outside exclosures.
Litter measured during the summer following winter-time grazing simply represented vegeta-
tion remaining on the ground rather than consumed by livestock herbivores. Our field protocol
did not allow quantifying the biomass represented by this litter, and thus we lacked a method
to estimate consumption rate of fresh biomass by livestock. To conclude that livestock nega-
tively affected litter abundance is simply to reiterate the obvious: vegetation not consumed
dies during winter and some remains as litter the subsequent summer. However, both our qual-
itative index of erosion and percent bare soil showed consistent responses to short-term
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doi:10.1371/journal.pone.0132897.9009

protection from herbivory and attendant trampling. We found no cases in which bare soil or
erosion indices increased with protection from livestock, and found significant improvements
in 11 of 24 comparisons.

In line with part of our expectation, herbivory and trampling appeared beneficial to the
competitive ability of species rarely consumed by sheep. Annual production of herbaceous
forbs such as Cardamine, Heteropappus, Potentilla, and Thermopsis all declined within exclo-
sures relative to their abundances under grazing (Figs 6 and 7). Thus, grazing and trampling
appeared to promote the ability of these species to compete with graminoids.

However, contrary to our other expectation, we found little evidence that livestock, at the
densities and intensities in our study, reduced annual productivity of species preferred as for-
age. We found no patterns with livestock exclosure on annual production of either the fre-
quently consumed sedge Carex, or of the preferred grasses L. secalinus or Poa (although the
rarity of all 3 compromised our power to detect any dynamics; Table 2). In most cases, herbiv-
ory had no demonstrated effect on annual production of the mat-like Kobresia, and in 2 experi-
ments excluding livestock reduced their productivity. Thus our results supported those of
Miehe [44-46], who had previously suggested that Kobresia spp. in many alpine associations in
central Tibet were resistant to and adapted to herbivory.

In only 1 experiment did we find that protection from livestock increased the annual pro-
duction of the dominant (and preferred) grass, S. purpurea. More commonly, we found a
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experiments 3 and 4 (dashed lines); B) S. purpurea in experiments in pastures of Pastoralist S (solid lines), and experiments 7 and 8 (dashed lines); C)
Leymus secalinus, experiments in pastures of Pastoralist K (solid lines), and Pastoralist S (dashed lines); D) Carex spp., experiments 2 and 5; E) Kobresia
spp., experiments 7 and 8; F) Heteropappus altaicus, experiments in pastures of Pastoralist B (solid lines), and 7 and 8 (dashed line); G) Potentilla bifurca,
experiments 7 and 8 (solid lines) and in pastures of Pastoralist K (dashed lines); H) P. bifurca, experiments in pastures of Pastoralist B (solid lines), and
Pastoralist S (dashed lines); I) Thermopsis lanceolata, experiments in pastures of Pastoralist S.

doi:10.1371/journal.pone.0132897.9010
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Table 5. Summary of the effect of livestock presence on quantifiable response variables, by livestock exclosure experiments.

Response/Experiment 1 2 3 4 5 6 7 8 9 10 1 12

Litter - - - - = = = - - -
Bare soil + +

Erosion + + + + + +

Live cover - - + +

Cardamine I+ + +

Carex

Heteropappus + -+ + +

Kobresia + +

Leymus

Oxytropis . -

Poa

Potentilla + +

Stipa -/+ = -+ I+
Thermopsis + + J+

Cell entries marked with by ‘+' symbols represent significant increases (P < 0.025) with presence of livestock on the variable (percent cover for litter, bare
soil, and live cover; index value for erosion; proportional change in annual production for plant species); negative (-) symbols represent significant declines
with livestock presence, either as a categorical response or trend with time. The notation (-/+) indicates an initial negative response, followed later by a
positive response. In this table, responses are to the presence of livestock, and thus directionality reverses those in statistical tests which examine effects
of livestock exclusion. Table cells are blank where no significant effect was found.

doi:10.1371/journal.pone.0132897.t005

pattern in which S. purpurea increased in the initial year following exclosure, but declined sub-
sequently with protection, most often to below its initial productivity (Figs 7 and 9). Our obser-
vations (Fig 3) suggest that shading or competition for below-ground resources by the
dominant species, S. purpurea exerted a negative feedback effect on its ability to generate new
production. This result is further supported by the finding that, across all experiments,
although S. purpurea within livestock exclosures declined with time (3 = -8.669, SE = 1.035, t =
-8.38, P < 0.0001), the rate of decline was itself strongly negatively associated with its own
abundance within the exclosure at the experiment’s initiation (year x initial biomass interac-
tion f=-0.192, SE = 0.016, t = -11.83, P < 0.0001, n = 359), and this negative density-depen-
dence was much stronger in excluded than grazed experiments (Fig 11). Interestingly, we
found no similar dynamic operating in T. lanceolata, consistent with our observations that,
under appropriate conditions, it tends to form dense monocultures.

Curiously, one unpalatable group of species that we expected to decline with protection
from grazing relative to grazed plots, Oxytropis, displayed the opposite trend. We note, how-
ever, that it was present in more than trace amounts in only 1 of the 12 experiments, and may
have begun declining toward the end of the study (Fig 7). Thus although intriguing, we hesitate
to speculate further on why the response of Oxytropis confounded our expectation.

It is worth noting that we lacked power to examine trends in Poa spp. because it was so
rarely encountered in our plots. Future studies might profitably focus on this genus, because its
prevalence in sheep diets (combined with its rarity on the landscape) suggests it is highly
selected by sheep. Thus, whether Poa species decline with herbivory, or conversely display a
tolerance similar to those documented here, could be an important determinant of the overall
sustainability of these grazing systems.

These responses to exclusion suggest that common forage species in this area were well
adapted to winter-time grazing. In most cases, the additional competition for resources that
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Fig 11. Relationship of differences between excluded and grazed plots in annual rate of change of S. purpurea biomass production (2009-2013)

with its initial abundance in 2009. Shown are

doi:10.1371/journal.pone.0132897.g011

paired, mean differences of slopes on time.

followed grazing exclusion evidently constrained the ability of plants to produce above-ground
biomass that more than compensated any limitation produced by removal of the previous
years’ growth. The contrasting patterns of livestock simultaneously generating more bare
patches and erosion, while facilitating regrowth among most species, led to inconsistent and
conflicting trends in overall percent of ground covered by live vegetation. We found that pro-
tection from livestock increased percent cover of live vegetation in 3 experiments, decreased it
in 3 experiments, and had no discernible effect in 6 experiments.

Effects of reducing pikas

As in the case of the more straightforward analysis of livestock exclosure, experiments varied
in evidence of response to pika reduction. Independent of the effects of excluding livestock,
higher abundance of pikas reduced litter, and increased bare soil and indices of erosion relative
to lower abundances in some, but not all, comparisons (Table 6). Unlike livestock which
migrated to summer pastures, pikas were resident (and consuming vegetation) on experiments
year-round.

PLOS ONE | DOI:10.1371/journal.pone.0132897  July 24,2015
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Table 6. Summary of the effect of pikas on quantifiable response variables.

Response/Experiment 3v4 7v8 K B S

Litter - -

Bare soil

Erosion +

Live cover +

Cardamine

Carex -

Heteropappus + -

Kobresia -

Leymus - -
Oxytropis

Poa

Potentilla - - + +
Stipa + - + -
Thermopsis +

Compared are livestock exclosure experiments with and without pika reduction, 2009-2013, Village Five,
Gouli Township, Dulan County, Qinghai Province, China. Positive responses (indicated by +) symbols
represent significantly positive (P < 0.025) effects of pika presence on the variable; negative (-) symbols
represent significantly negative effects of pika presence on the variable. Thus as illustrated in this table,
responses are the reverse of those presented in the text, which describe mixed-effect models testing
effects of pika reduction. Table cells are blank where no significant effect was found. Pikas were reduced in
experiments denoted by italic font; pikas were uncontrolled in experiments 3v 4 and 7 v 8.

doi:10.1371/journal.pone.0132897.t006

Reducing pika densities had mixed, and at times contradictory effects on annual production
of vegetation. In some cases, pikas at their uncontrolled densities appeared to promote the pro-
duction of forbs, such as Potentilla, while limiting production of their preferred forage, sedges.
In some cases, pikas at uncontrolled densities appeared to restrict production of Stipa, in others
to promote it. In all cases, the relative magnitude of changes were modest.

Most investigators who have examined pika-grassland dynamics have concluded, contrary
to earlier assertions [8], that high pika densities are more likely a response to low vegetation
density than its cause [4,10]). A more nuanced view would suggest the following: Although in
most cases pika abundance has little effect, under some combinations of circumstances their
foraging, clipping and burrowing activities can perpetuate conditions that reduce rangeland
value to pastoralists (such as high proportion of bare soil, low vegetation cover, and persistence
of otherwise poorly-competing plant species) whose ultimate causes lie elsewhere. Our pika
reduction experiments lend support to this view. In 3 of 10 comparisons, short-term reductions
in pika abundance produced modest reductions in percent bare soil and indices of erosion rela-
tive to control plots. In 2 of 10 comparisons, increase in sedges may have resulted from reduced
herbivory in pika-reduced areas. Effects of short-term pika reduction on the dominant, palat-
able graminoid, S. purpurea were inconsistent (in 2 cases positive, in 2 cases negative). We lack
data on forage quality (e.g., protein content, digestibility), particularly as influenced by pikas
that could be used to further explore the degree to which pikas compete with, or alternatively
facilitate growth of livestock [68-69].

PLOS ONE | DOI:10.1371/journal.pone.0132897 July 24,2015 21/26



@’PLOS ‘ ONE

Livestock and Pika Effects on Tibetan Steppe Vegetation

Conclusions

Although we were only able to follow experiments for 4 years following treatments and efforts
to reduce pika densities were less effective than initially intended (Table 3), our livestock exclu-
sion did have an appreciable effect, as was clearly evident on simple inspection. However, that
our livestock exclusion had an appreciable effect, at least superficially, was clearly evident on
simple inspection. After only one-and-a-half grazing winters, 11 of the 12 fenced-exclosures
were clearly visible in an image appearing on Google earth taken on 6 December 2010. Our
high threshold for statistical significance may have prevented us from recognizing subtle, yet
real effects. Physical effects of grazing by both livestock and, in some cases, pikas were readily
detectable within the few years’ of establishment of our exclosures. Litter, percent bare soil, and
indices of erosion responded in uniform and predictable (if not always statistically significant)
ways to both relief from livestock grazing and reduction in pika abundance.

We initially hypothesized that we would detect differences in the response of plant species
that reflected their degree of adaptation to and tolerance of herbivory [70]. We found little evi-
dence that species present in sufficient abundance to examine differed from one another in
their response to livestock presence (Table 5) or pika abundance (Table 6), at least at the graz-
ing intensities [71] encountered and levels of pika reduction achieved. We suspect that most
plant species capable of persisting at appreciable densities while exposed to continuous herbiv-
ory have co-evolved to tolerate, and perhaps benefit from grazing. Species that decline in the
presence of substantial herbivory were probably long ago either relegated to small refugia
where our sampling failed to detect them, present in such low abundance that we lacked power
to identify responses, or completely absent from the area. Our data limit our ability to speculate
on the relative importance that compensatory growth, shading, associational defense, below-
ground competition for nutrients or water, soil legacies, nutrient deposition from dung and
urine, physical alterations, or other interactions have had in prompting regrowth of most
Tibetan steppe species exposed to winter-season grazing at these or similar intensities [47, 72—
77]. We also caution that the dynamics we observed might differ in systems exposed to more
intense grazing pressure [78], and/or grazing during the growing season. The estimated grazing
pressure in our study area (0.05ha™ to 0.36 ha™ sheep equivalents) was lower than the 0.16 ha"
't02.05hat reported from other recent exclosure studies on the QTP [48,54,56,58].

Recent Chinese policy has emphasized restoration via long-term grazing exclusion [48-59].
Our work suggests that physical manifestations of unsustainable use, such as bare soil, rills, gul-
leys, and pedestalling, may respond positively to short-term relief from grazing. However,
claims that vegetation in QTP steppe systems requires complete rest (or pika removal) to
achieve greater productivity should be reconsidered in light of these results. Although grazing,
trampling, and herbivory from wildlife no doubt exert negative effects when sufficiently
intense, these QTP steppe plants appear well adapted to moderate levels of offtake and
disturbance.

Supporting Information

S1 Fig. Where pika and livestock effects exhibited significant interaction, pika effects both
within (left-hand panel of each pair) and outside (right-hand panel of each pair) of fenced
livestock exclosures are shown. As in text, red lines display mean values from experiments in
which pikas were reduced, whereas blue lines diplay pattners of abundance during the same
time period from experiments in which pikas remained uncontrolled. In all cases, relationships
within, outside of, and considering both together, were similar.
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