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Abstract
Over the past decade, protein-protein interactions have emerged as attractive but challeng-

ing targets for therapeutic intervention using small molecules. Due to the relatively flat sur-

faces that typify protein interaction sites, modern virtual screening tools developed for

optimal performance against “traditional” protein targets perform less well when applied

instead at protein interaction sites. Previously, we described a docking method specifically

catered to the shallow binding modes characteristic of small-molecule inhibitors of protein

interaction sites. This method, called DARC (Docking Approach using Ray Casting), oper-
ates by comparing the topography of the protein surface when “viewed” from a vantage

point inside the protein against the topography of a bound ligand when “viewed” from the

same vantage point. Here, we present five key enhancements to DARC. First, we use multi-

ple vantage points to more accurately determine protein-ligand surface complementarity.

Second, we describe a new scheme for rapidly determining optimal weights in the DARC

scoring function. Third, we incorporate sampling of ligand conformers “on-the-fly” during

docking. Fourth, we move beyond simple shape complementarity and introduce a term in

the scoring function to capture electrostatic complementarity. Finally, we adjust the control

flow in our GPU implementation of DARC to achieve greater speedup of these calculations.

At each step of this study, we evaluate the performance of DARC in a “pose recapitulation”

experiment: predicting the binding mode of 25 inhibitors each solved in complex with its dis-

tinct target protein (a protein interaction site). Whereas the previous version of DARC

docked only one of these inhibitors to within 2 Å RMSD of its position in the crystal structure,

the newer version achieves this level of accuracy for 12 of the 25 complexes, corresponding

to a statistically significant performance improvement (p < 0.001). Collectively then, we find

that the five enhancements described here – which together make up DARC 2.0 – lead to

dramatically improved speed and performance relative to the original DARCmethod.
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Introduction
Protein-protein interactions underlie most biological processes [1–3], and as such many of the
individual proteins and networks involved in these interactions are implicated in assorted
human diseases [4–7]. Modulating key protein interactions using small molecules can provide
exciting opportunities to develop novel therapeutics, leading to extreme interest in this target
class for drug discovery [8–12]. Whereas almost all drugs currently in the clinic inhibit one of
several “traditional” target classes (G protein-coupled receptors, enzymes, nuclear receptors,
transporters, and ion channels) [13, 14], protein-protein interactions now stand among a
broad new emerging class of “non-traditional” targets [15, 16].

Unlike enzymes and other traditional drug targets, protein surfaces evolved to bind other
proteins typically lack the deep pockets used as small-molecule binding sites [17–19]. Surveys
of small-molecule inhibitors of protein interactions have revealed that these compounds tend
be larger and more hydrophobic than traditional drug-like molecules, and reside in regions of
chemical space that are less represented in commercial libraries [20]. Analysis of crystal struc-
tures of small-molecule inhibitors bound at protein interaction sites also reveals that they tend
to use shallower binding modes, leading to worse ligand efficiency (binding energy per heavya-
tom) than their counterparts engaging “traditional” targets [21]. An ancillary pathology of
these shallow binding modes is that sterics provide fewer clues for correctly docking candidate
inhibitors in virtual screens, and accordingly modern virtual screening tools—tools that have
been optimized over many years for their performance against “traditional” targets—do not
fare as well when asked to identify compounds active against protein interaction sites [21].

To address this, we recently developed an alternative screening approach called DARC
(Docking Approach using Ray-Casting) [22], a docking method specifically for addressing
non-traditional targets such as protein interaction sites. The DARC approach is summarized
schematically in Fig 1. We begin by defining the binding pocket around a given “target” residue

Fig 1. Schematic illustration of the DARC approach.We begin by using a geometry-based method to define the target pocket on the protein surface [24].
Next, we define a series of rays that emanate from a vantage point inside the protein. Collectively, the distance at which these rays reach the protein surface
describes the topography of the protein surface in this region, as “seen” from this vantage point. If a bound ligand is complementary to the protein surface, its
surface topography will “look” similar to that of the protein surface when viewed from this vantage point; in other words, each ray will intersect the ligand at
similar distance as its intersection with the protein surface.

doi:10.1371/journal.pone.0131612.g001
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(or set of “target” residues) on the protein surface, using a pocket-finding algorithm adapted
from the LIGSITE program [23] that we have implemented in the Rosetta software suite [24].
To identify a ligand that complements this pocket, we begin by mapping the topography of the
pocket by selecting an “origin” point within the protein interior, and casting rays from this ori-
gin at each of the pocket points that are in contact with the protein surface. Operationally, this
step is equivalent to simply converting each of the pocket points into a spherical coordinate
system (ρ,θ,φ) relative to this origin point, where ρ is the distance from the origin point and θ/
φ are the polar/azimuthal angles. We additionally include in this step a layer of points outside
the pocket, to help define the pocket’s boundaries.

If a ligand docked into this surface pocket is indeed shape-complementary, the surface of
this ligand when “viewed” from this vantage point (the origin) should have a very similar
topography to that of the pocket. To map the topography of the ligand, we cast a collection of
rays from the origin point, with each of the angles (θ,φ) used to map the pocket topography.
For each ray, we determine the distance of its first intersection with the ligand (if indeed the
ray intersects the ligand). We express the difference in the “observed” surface topographies of
the pocket and ligand as follows:

Shape score ¼
X
rays

c1 � ðrligand � rpocketÞ
c2 � ðrpocket � rligandÞ

c3

c4

if rpocket < rligand

if rligand < rpocket

if ray does not intersect ligand

if ray does not intersect pocket

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð1Þ

Conceptually, each of the four conditions above represents a distinct type of deviation
between the two surfaces. In the first case (c1), a ray hits the surface pocket before reaching the
ligand: this indicates underpacking in the protein-ligand interface. In the second case (c2), a
ray intersects the ligand before reaching the pocket: this indicates that the ligand’s volume
overlaps that of the protein, and thus points to a steric clash. In the third case (c3), a ray that
intersects the pocket does not intersect the ligand at all: this indicates that the ligand is too
small for the pocket. Finally, in the fourth case (c4), a ray that intersects the ligand does not
intersect the pocket: this indicates that the ligand extends outside the binding pocket.

Beyond simply evaluating the shape complementary of a protein-ligand complex, this
“shape score” can also be used as an objective function for optimization. By adjusting the ligand
position and orientation to minimize this score, one can use DARC to rapidly dock a ligand
into a surface pocket. In practice, we use a particle swarm optimization (PSO) scheme [25] to
minimize the DARC scoring function: much akin to a genetic algorithm, this approach main-
tains a set of candidate solutions. Each candidate solution corresponds to the translation and
rotation relative to a reference ligand position, and thus (indirectly) encodes the bound pose.
The position and orientations of the candidate solutions adapt in concert with one another
over multiple iterations, and ultimately the “swarm” of solutions ideally converges to an opti-
mal solution (in this case the lowest-scoring pose).

Extending the approach further, by sequentially docking a large number of compounds in
this manner one can use DARC to carry out a virtual screen to identify compounds that com-
plement the shape of some surface pocket on a protein of interest. Previously, we found that
DARC could be used in virtual screening benchmarks to pick out known small-molecule inhib-
itors of Bcl-xL and XIAP that were hidden amongst pools of “decoy” compounds. Despite its
relatively simple implementation, DARC outperformed other popular virtual screening tools at
this task—tools that have been developed in the context of “traditional” target classes, rather
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than for inhibitors of protein interactions. We then used DARC to carry out a computational
screen of 65,000 compounds to identify those that would best complement a pocket on the sur-
face of Mcl-1, an anti-apoptotic member of the Bcl-2 protein family. We tested the top 21
DARC hits in biochemical assays, and found that indeed 10 of these are inhibitors of Mcl-1,
with Ki values ranging from 1.2 to 21 μM for the best 4 compounds. Collectively these results
validated DARC for virtual screening at protein interaction sites, and demonstrated its useful-
ness for identifying new inhibitors acting at these sites [22].

We have drawn upon experiences and observations from our early applications of DARC to
enhance its performance through the five key ways we describe in this study: (1)We refined
the ray-casting approach, such that rays emanate from multiple origin points to better map the
shapes of the surface pocket and the ligand. (2)We developed a new strategy for parameteriz-
ing DARC in a faster and more robust way, thus enabling a broader and more representative
set of protein complexes to be included in training. (3)We introduced a new scheme to effi-
ciently sample small-molecule conformers “on-the-fly” in a single docking trajectory, rather
than sequentially consider each conformer in a separate trajectory. (4)We incorporated elec-
trostatics into the DARC scoring function, allowing simultaneous optimization of both shape-
and electrostatic-complementarity. (5)We identified the computational performance bottle-
neck in our previous implementation of GPU-DARC [26], and adjusted the control flow by
transferring additional calculations onto the GPU to resolve this bottleneck.

As described below, we examine the effect of each of these enhancements in a “pose recapit-
ulation” benchmark. Due to the unfortunate dearth of examples of small-molecule inhibitors
bound at a protein interaction sites, the size of our benchmark set is necessarily limited. This,
in turn, limits the observed statistical significance of performance improvements stemming
from individual enhancements. As will be demonstrated below, however, the collective effect of
these enhancements results in a notable increase in the number of testcases that are correctly
docked to within 2 Å RMSD, with an overall performance improvement that does rise to the
level of statistical significance (p< 0.001). Thus, we can conclude that together, these individual
enhancements lead to dramatic improvements in DARC’s robustness, accuracy, and speed.

Results
Previously, we assembled a set of unique proteins for which a crystal structure was available in
complex with a small-molecule inhibitor of a protein-protein interaction site [21]. At the time,
there were 21 such structures available; since then, 4 additional examples have become avail-
able. For the studies we describe here, we make use of this new set of 25 non-redundant com-
plexes in which a small-molecule inhibitor is bound at a protein interaction site (S1 Table).

Enhancement #1: ray-casting using multiple origins
As described above, the topography of the protein surface is mapped from a vantage point
inside the protein, using an “origin” point from which rays emanate. The placement of this ori-
gin point is critical to ensuring that the resulting topography map gives an accurate and com-
plete view of the surface pocket—in an intuitive sense, it should be centered “behind” the
pocket. For an ideal scenario, in which the surface pocket is a purely concave “dimple” on the
surface of a near-spherical protein, the protein’s center of mass can serve as a natural choice for
the origin’s location. In practice, however, the pocket shapes are never purely concave, and any
ruggedness means that some parts of the protein surface cannot be “seen” from a given vantage
point. An incomplete description of the protein surface, in turn, limits the ability of DARC to
identify truly complementary ligands.
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In order to map the protein surface topography more accurately, we therefore modified the
ray casting approach such that rays emanate from multiple origins: we expected this strategy
would better “illuminate” all regions of the protein surface. To do so, we begin from a single
origin centered 30 Å behind the pocket (see Methods). Rotating about a point fixed at the
pocket center, we move the origin point by ±45° in each of two orthogonal directions, to gener-
ate four new origin points. In other words, if the z-axis connects the first origin to the pocket
center, we rotate in first the xz- and then the yz-plane, by ±45° each time, to place these four
additional origins.

As before, the topography of the protein surface is mapped by casting rays at each of the
“pocket” gridpoints that directly contact the protein. Rather than retain the distances at which
rays from all five origins hits a given protein surface point, we only store the distance from the
closest origin: each origin is thus “responsible” only for those regions of the protein surface
pocket that are closest to it, and for which that origin is therefore likely to have an optimal van-
tage point (Fig 2A).

Having mapped the protein surface pocket using rays cast from multiple origins, we then
evaluate ligand complementarity exactly as described earlier: we simply cast the rays that

Fig 2. Ray-casting frommultiple origins. (A) In DARC 2.0, rays emanate from five origin points instead of from a single origin point. This allows more of the
protein surface to be “visible” to the rays, and in turn leads to a more complete representation of the surface topography. (B) For each protein-ligand complex
in our set (S1 Table), we used DARC to dock the ligand back into its cognate receptor. Multiple ligand conformations were considered in the search, while the
receptor conformation was held fixed throughout docking. The RMSD of the docked ligand was evaluated relative to its position in the crystal structure of the
complex. Each point represents a separate complex; points above the diagonal are those for which the use of multiple origins led to better pose
recapitulation. (C) A representative example of a complex that was better-predicted using multiple origins (PDB ID 4luz). Part of the binding pocket points
directly into the protein (left side of picture), and thus directly at the origin (if a single origin is used). The use of multiple origins allows the “walls” of this region
of the binding pocket to be included in the surface topography considered for docking.

doi:10.1371/journal.pone.0131612.g002
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emanate from each origin towards the ligand, and compare the distances at which these inter-
sect with the ligand to the distances at which they intersected the protein surface (Eq 1). This
strategy for using multiple origins does not increase the total number of rays included in
DARC’s calculations, but simply distributes the same number of rays among the different ori-
gins; accordingly, this new approach does not change the time required for docking using
DARC.

To examine the effect of using multiple origins, we used DARC to dock each of the 25 pro-
tein-ligand pairs in our test set (S1 Table). In each case we used OMEGA [27–29] to pre-build
a set of allowed conformations (“conformers”) for each ligand, and included these in docking;
the conformation of the protein was held fixed throughout each simulation. For each of these
25 protein-ligand cognate pairs, we then evaluated the RMSD of the ligand position in the
docked complex relative to its position in the corresponding crystal structure.

We also carried out this “pose recapitulation” experiment using the previously described
version of DARC [22], which only employed a single origin, and compared the results to those
obtained using this new “multiple origins” approach (Fig 2B). We find that the RMSD relative
to the crystal structure is better in 16 of the 25 cases (points above the diagonal), suggesting
that the use of multiple origins may indeed enable more accurate matching of protein/ligand
shape complementarity. Because the 25 complexes in our set represent paired samples (and are
not expected to be normally distributed), we employed the (non-parametric and paired) Wil-
coxon signed-rank test (see Methods) to compare the results from single versus multiple ori-
gins. While this test does identify the difference in performance, it does not quite achieve
statistical significance (p< 0.054) due to the relatively small size of the test set (which, in turn,
stems from the fact that few examples of crystal structures of small-molecule inhibitors of pro-
tein-protein interactions solved in complex with their target proteins are available).

We note that before inclusion of this new feature in DARC, only one complex in our set was
docked to within 2 Å RMSD of the crystal structure; using multiple origins, there are now three
such cases. Examination of the crystallographic complexes for these improved cases reveals
that many share a binding mode in which the ligand (or part of the ligand) faces directly into
the protein (Fig 2C, Panel A of S1 Fig). In such cases, rays cast from a single origin would have
described only the very bottom of this well; in contrast, the use of multiple origins allow the
topography of the walls of this well to also be included, and thus allow the ligand to be more
accurately matched to the contours of the protein surface. Nonetheless, there are also 9 (of 25)
cases for which performance is slightly diminished. Careful examination of these examples
does not reveal any specific characteristics that make these worse; rather, these appear to be
comparably docked in terms of shape complementarity (Panel B of S1 Fig), and thus simply
arise due to slight shifts in the relative ranking of these mis-docked poses when the origin is
altered.

Enhancement #2: fast and robust weight fitting
There are four parameters (c1/c2/c3/c4) used by DARC when evaluating shape complementar-
ity (Eq 1). Since scaling all four of these by a constant would simply scale the total score, we fix
c1 = 1.00 and determine values of the other three parameters accordingly.

In our original parameterization of DARC [22], we used a small training set of seven pro-
tein-ligand complexes to optimize these weights. We sought to identify the combination of
weights that would optimally allow each of these seven ligands to be docked back into its cog-
nate receptor such that they would match the crystal structures of these complexes. For a given
set of weights, then, we assessed performance by using DARC to dock these seven pairs, and
used the sum of the resulting seven ligand RMSDs as our objective function. We used simplex
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optimization to drive our search of parameter space, but each evaluation of this objective func-
tion required seven separate calls to Rosetta to carry out the required docking. As a result, car-
rying out this weight fitting procedure typically required about a week of computation on a
modern CPU. Since we originally carried out this parameterization, additional crystal struc-
tures of small-molecule inhibitors of protein interactions in complex with their targets have
become available; however, our parameterization scheme was already too slow to feasibly add
these new examples.

To speed up weight fitting, we adapted our approach such that explicit docking at every step
would no longer be required. We also took this opportunity to parameterize DARC not for its
ability to simply recapitulate the bound pose of a known ligand, but rather for its ability to opti-
mally distinguish a known ligand from among a pool of “decoy” compounds. The latter repre-
sents a virtual screening scenario, such that the resulting weights may exhibit improved
performance for this task.

We started by first reformulating DARC’s shape complementarity score as follows:

Shape score ¼ c1 �
X

rays where

rpocket < rligand

rligand � rpocket

0
BBBBBB@

1
CCCCCCA

þ c2 �
X

rays where

rligand < rpocket

rpocket � rligand

0
BBBBBB@

1
CCCCCCA

þ c3 �
# rays

that do not

intersect ligand

0
B@

1
CA þ c4 �

# rays

that do not

intersect pocket

0
B@

1
CA ð2Þ

Relative to our previous formulation (Eq 1), we have simply gathered together the groups of
rays that meet each one of the four conditions. This is a natural reformulation of this equation,
since the four weights each apply to one of these four conditions.

We again turned to our non-redundant set of 25 complexes in which a small-molecule
inhibitor is bound at a protein interaction site (S1 Table); to setup our optimization as a virtual
screening problem, we built a “compound library” of 650 diverse decoy ligands, and generated
1000 randomly docked poses for each compound with each protein in this set.

The key to the reformulation of DARC’s shape complementarity score above (Eq 2) is that
the result of ray-casting can be separated from the weights: for a given pose we can pre-
compute (and store) each of the summations over the rays that meet each of the four condi-
tions. Given some new set of weights, we can then apply these four weights to the four stored
numbers and trivially update the score of the pose with these new weights.

Collectively, we generated more than 16 million “decoy poses” (25 proteins x 650 ligands x
1000 randomly docked poses for each protein-ligand combination). Rather than store these
decoy poses explicitly, we instead simply stored the four “component energies” (the
unweighted terms in Eq 2) for each decoy pose. Similarly, we pre-computed and stored the
four “component energies” for each of the 25 native poses.

Using this data as input, we then carried out weight fitting as shown in Fig 3A. We used sim-
plex optimization (as implemented in the GSL multidimensional minimization library [30]) to
search parameter space. At every step, we updated the DARC score for each (decoy and native)
complex using the new weights; for each protein target, we then determined the rank of the
native pose relative to each of the 650,000 decoy poses involving this protein. As the objective
function for this minimization, we used the sum of the ranks of the 25 native poses.
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This approach to fitting weights required far fewer computational resources than our previ-
ous approach; this optimization (using pre-computed component scores) was typically com-
pleted in minutes (it took under a minute to run 100 iterations). To objectively examine the
performance that could be expected from the weights obtained by this method, we used leave-
one-out cross-validation. For each of the 25 proteins in our test set, we developed a unique set of
weights trained only on the other 24 proteins; we then used this custom weight set to dock the
native ligand of interest back into its cognate receptor, and evaluated the ligand RMSD relative
to the crystal structure of this protein-ligand complex. The mean of the custom weight sets used
in this experiment are reported in Table 1. The principle change in the updated weight set was a
decrease in each term relative to the (fixed) value of c1; collectively, this increases the penalty
associated with underpacking at the protein-ligand interface (the contribution scaled by c1).

We compared the RMSD of these 25 DARC-docked examples, using our previous DARC
weights [22] or using the leave-one-out cross-validated weights from our new approach. We
note that results from the earlier weight-fitting approach were not subjected to cross-valida-
tion, due to the large computational requirements that would be associated with building
numerous “custom” weight sets. We further note that the newer weights are not explicitly
trained for docking native complexes, but rather for discrimination in virtual screening tasks.
Nonetheless, we find that the newer weight set proves far superior to the original weights (Fig
3B): the ligand RMSD is lower for 17 of the 25 complexes when using the newer weights (points
above the diagonal). Further, the newer weights perform exceptionally well in a number of test-
cases: there are now 8 examples for which the RMSD was less than 2 Å using the new weights,
whereas this level of accuracy was only achieved in 3 cases using the older weights. Applying
the Wilcoxon signed-rank test to compare the differences in RMSD associated with changing

Fig 3. Updated weight-fitting strategy. (A) Schematic illustrating the strategy used in DARC 2.0 for determining values of the weights that should be
applied to the terms in the DARC scoring function (Eq 1). For each complex used in training (S1 Table), we generate a large set of docked complexes
involving either the cognate “native” ligand (orange/magenta) or one of many “decoy” ligands (green). Using the component energies in these complexes, we
identify the set of weights that optimally ranks the native ligands ahead of the “decoys”. (B) For each protein-ligand complex in our set, we used DARC to
dock the ligand back into its cognate receptor using either the original DARC weights or the newer weights derived though the approach described here. In
the latter case, leave-one-out cross-validation was used to ensure the weights were not overfit to the training set. Each point represents a separate complex;
points above the diagonal are those for which the new weights led to better pose recapitulation.

doi:10.1371/journal.pone.0131612.g003
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the weights (see Methods) also detects this difference in performance, albeit not quite at a level
achieving statistical significance (p< 0.051).

Examination of the crystallographic complexes for these improved cases reveal that indeed
the previous weight set may have insufficiently penalized poses that are slightly underpacked
(Panel A of S2 Fig). Among the cases for which performance is slightly diminished, on the
other hand, there do not appear to be any specific characteristics that make these worse; often,
they are simply cases in which the ligand is indeed docked in a shape complementary—but
incorrect—pose (Panel B of S2 Fig).

Overall, we attribute the observed improvement to the robustness of the newer weight set,
which derives from training on a larger and more broadly representative set of examples; the
previous weight set may have been over-fitted to the seven examples in the training set upon
which it was based. This is a particularly encouraging outlook in light of the intended use for
these weights: they may be far-better suited for virtual screening than the previous weights,
since robust tools for this task will require the ability to rapidly and accurately evaluate many
diverse ligands (and ideally should prove applicable for diverse protein targets as well).

Enhancement #3: sampling ligand conformers “on-the-fly”
Efficiently sampling the potential positions, orientations, and conformations of each com-
pound is critical to virtual screening. As the size of “purchasable” chemical space continues to
increase [31], and these compounds continue to be a useful for populating in silico libraries, the
speed of virtual screening is likely to be of paramount importance for the foreseeable future. It
is important to note that the speed of modern docking approaches generally scale not only
with the size of the screening library, but also with the number of conformations considered
for an average ligand in the library.

Modern docking / virtual screening tools address the problem of ligand conformational
sampling in different ways. Some programs, such as FRED, pre-generate a collection of low-
energy ligand conformations (“conformers”), then sample each of these individually in separate
docking trajectories [32]. Other programs, such as AutoDock, generate ligand conformers and
evaluate their energy in situ during docking [33]. In the DOCK6 program, ligand conforma-
tions can either be generated in situ during docking with “anchor-and-grow” incremental con-
struction, or alternatively a set of rigid conformers can be pre-generated and screened
sequentially [34, 35]. In the original implementation of DARC, no allowance was made for
ligand flexibility; alternate ligand conformations were considered by sequentially docking pre-

Table 1. DARCweights obtained via different approaches. The first four parameters (c1/c2/c3/c4) refer to those used by DARC to evaluate shape com-
plementarity (Eq 1); the last parameter (c5) is used to scale the electrostatic term, when this term is used (Eq 4). The original DARC weights were obtained by
minimizing the collective RMSD for docking a series of seven ligands to their cognate receptors [22]. We also report the weights that arise from our new
weight fitting approach (Enhancement #2), trained on all 25 proteins in our latest test set. Because this new approach is much faster, we were able to apply
leave-one-out cross-validation to this set; here we also report the standard deviation observed among the weights trained on the 24-protein subsets. The
magnitudes of the weights are not indicative of the relative importance of each term in the scoring function, since the magnitudes of the unscaled contributions
vary broadly (e.g. the unscaled electrostatic term is typically much larger than the other terms, so a very small weight is needed to balance its contributions to
the total score).

Weight Original DARC weights New fitting scheme (no electrostatics) New fitting scheme (with electrostatics)

c1 (fixed) 1.00 1.00 1.00

c2 3.12 1.7 ± 0.2 1.6 ± 0.2

c3 13.32 4.2 ± 0.7 2.0 ± 0.3

c4 8.13 4.4 ± 1.1 0.8 ± 0.3

c5 N/A N/A 0.025 ± 0.004

doi:10.1371/journal.pone.0131612.t001
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generated conformers, and the best-scoring member of the resulting set was taken to be the
final predicted pose [22].

DARC makes use of particle swarm optimization (PSO) [25] to minimize its objective func-
tion by varying the ligand’s position and orientation. PSO is a population-based optimization
method that mimics swarm intelligence and applies a heuristic approach to find an optimal
solution [36]. Others have also used variants of PSO as a fast and efficient optimization method
for protein-ligand docking [37–39]. In the case of DARC, we set up the optimization problem
such that the displacement and rotation relative to some “reference” position of the ligand are
the six degrees of freedom included in the search.

To increase the efficiency of our sampling, we adapted our approach such that the set of
(pre-generated) conformers would instead be considered on-the-fly during docking (Fig 4A).
We reasoned that not every conformer deserved an equal amount of sampling; by focusing
more of our sampling on the top-scoring conformers, the overall time needed for docking a
given compound could be reduced. To achieve this, we introduced a seventh degree of freedom
in our search: the “conformer index.”

At the start of the simulation, we assigned each of the pre-generated conformers a unique
index. During the PSO, seven parameters would be included in the optimization: one to indi-
cate which ligand conformation should be used, and six to transform the atoms of this ligand
to the appropriate position and orientation with respect to the protein. This approach is partic-
ularly suited to PSO optimization, which simultaneously maintains multiple solutions (“parti-
cles”) during a docking trajectory; separate populations that make use of different “promising”
conformers can each explore their own local clusters of solution space, whereas conformers
that are not used in any productive poses are sampled less frequently. This, in turn, could
reduce the overall time required to run the optimization.

Given that the search space for a given trajectory is now much larger (there is an extra
degree of freedom), we anticipated that using “on-the-fly” conformer sampling would lead to
slower convergence than a trajectory in which only a single conformer was considered. To test
this, we first used “sequential” conformer docking with very intensive sampling (1000 particles
and 1000 steps) to identify the optimal score that could be obtained when docking the native
ligand back into its cognate receptor, for each of the 25 complexes in our set (S1 Table). Next,
to assess convergence, we asked how closely the scores for each complex would approach these
“gold standard” scores as the amount of sampling was reduced by simultaneously lowering the
number of particles and steps in the search.

As expected, we indeed find that convergence to near-optimal solutions occurs more slowly
with “on-the-fly” sampling instead of sequential sampling (Fig 4B). Whereas the optimal solu-
tions are obtained using only 300 particles / 300 steps of sequential sampling, 600 particles /
600 steps were required for convergence when using sampling “on-the-fly”. Despite the need
for more sampling per trajectory, however, the advantage of on-the-fly sampling lies in the fact
that only a single trajectory is needed. Since we use an average of 163 conformers for the ligands
in our test set (S1 Table), and sequential sampling requires that a separate trajectory be carried
out for each conformer, the average runtime for sequential sampling is much longer (Fig 4C).
Comparing the runtime required for equivalent sampling (300 particles / 300 steps of sequen-
tial sampling versus 600 particles / 600 steps of on-the-fly sampling), we find that on average
an 18-fold speedup is achieved when on-the-fly conformer sampling is used.

Enhancement #4: inclusion of electrostatic complementarity
Complementarity between a ligand and its binding pocket on the protein surface is the guiding
principle in protein-ligand docking, and the success of DARC to date is based on this
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fundamental principle. In its original inception, DARC was purely based on optimizing and
identifying shape complementarity between the surface of the ligand and the surface of the pro-
tein [22]. In addition to shape complementarity, however, the chemical complementarity of
the interacting surfaces is clearly essential for protein-ligand recognition. In addition to the
well-established electrostatic complementarity between evolved protein-protein binding

Fig 4. Screening ligand conformers “on-the-fly” during docking. (A) Previously, ligand conformations were docked sequentially through separate
docking trajectories, and the ligand conformation was ultimately drawn from the best-scoring complex. In DARC 2.0, we instead sample ligand conformers
during the docking trajectory. (B) Due to the extra degree of freedom associated with a single docking trajectory, docking converges more slowly when
conformers are sampled “on-the-fly”. Here, convergence is evaluated by the score difference relative to a “gold standard” (best achievable score) for each
complex; the results shown are averaged over the 25 complexes in our test set (S1 Table). For each point in this plot, the number of particles in PSO
optimization and the number of steps in the docking trajectory were set equal to one another. (C) Despite the fact that individual trajectories converge more
slowly when conformers are sampled “on-the-fly”, docking is comprised of only a single trajectory. Across our set of 25 complexes, this ultimately makes “on-
the-fly” sampling an average of 18-fold faster than sampling conformers sequentially through multiple docking trajectories.

doi:10.1371/journal.pone.0131612.g004
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partners [40, 41], it has more recently been recognized that small-molecule inhibitors of
protein-protein interactions sometimes (inadvertently) mimic the electrostatic patterning of
the natural binding partner, in order to optimally complement the charge distribution pre-
sented by the surface of the target protein [42].

Of course, other docking methods recognize the importance of electrostatic complementar-
ity, and include its contribution through various approaches. Since most virtual screening tools
do not incorporate receptor flexibility during docking, typical modern approaches pre-generate
an “electrostatic grid map”, and use this to calculate the electrostatic interaction energy given
the position of the ligand. Broadly speaking, this is strategy utilized in both AutoDock4
(through AutoGrid) [33, 43] and the DOCK suite [34, 44].

While DARC was originally predicated on matching the surface shapes of the ligand and
the protein surface, we quickly noted (by inspection of mis-docked structures) that a number
of ligands exhibited pseudo-symmetry when examined purely on the basis of their shapes. In
other words, docking without consideration of chemical complementarity very quickly
highlighted the limitations of docking on the basis of shape complementarity alone.

To address this, we built into DARC the ability to capture electrostatic complementarity
using the most common approach employed by other modern docking tools. Given the (fixed)
receptor conformation, we solve the Poisson-Boltzmann equation to calculate the electrostatic
potential at a series of gridpoints that span the surface pocket of interest (Fig 5A). For conve-
nience and speed, here we used the finite difference Poisson-Boltzmann solver included in
OpenEye’s ZAP toolkit [45] for this task (see Methods).

Given the electrostatic potential, we evaluate the electrostatic complementarity by summing
over atomic partial charges in the traditional manner as follows:

Electrostatics score ¼
X

ligand

atoms

qi�i

0
BBBBBB@

1
CCCCCCA

ð3Þ

Fig 5. Incorporation of electrostatic complementarity into DARC 2.0. (A) The electrostatic potential is evaluated at a series of grid points over the whole
protein using the finite difference Poisson-Boltzmann solver included in OpenEye’s ZAP toolkit [45]. We use trilinear interpolation of the closest gridpoints to
determine the electrostatic potential at points corresponding to locations of ligand atoms, and then use the ligand partial charges to compute the electrostatic
interaction energy (Eq 3). (B) For each protein-ligand complex in our set (S1 Table), we used DARC to dock the ligand back into its cognate receptor either
with or without including the electrostatic complementarity term. In both cases, leave-one-out cross-validation was used to ensure the weights were not
overfit to the training set. Each point represents a separate complex; points above the diagonal are those for which inclusion of electrostatics led to better
pose recapitulation.

doi:10.1371/journal.pone.0131612.g005
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To determine the electrostatic potential (ϕi) at the location of a given ligand atom (i), we use
trilinear interpolation of the closest gridpoints that encapsulate the center of the atom. Atomic
partial charges (qi) for the ligand were determined using the “molcharge” program fromOpen-
Eye (see Methods). To ensure the ligand remained within the bounds of the protein surface
pocket, we set the electrostatic potential to zero in the protein interior, and applied an unfavor-
able value of the electrostatic potential outside the defined binding site (+100 DARC units • C-1).

We then used the strategy described above (Enhancement #2) to develop a new set of
weights for DARC, this time including electrostatic complementarity as follows:

DARC score ¼ c1 �
X

rays where

rpocket < rligand

rligand � rpocket

0
BBBBBB@

1
CCCCCCA

þ c2 �
X
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1
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that do not

intersect ligand

0
B@

1
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0
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1
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ð4Þ

Critically, we note that the same reformulation that enabled the weight-fitting strategy
described earlier (decoupling the energetic contributions from their weights) applies equally
well here; this allowed us to use the same approach to derive a new set of weights that includes
this electrostatic term. For the results presented below, we again used the same leave-one-out
cross-validation described earlier.

As we had done after each of the previous enhancements, we returned to the 25 complexes
in our test set (S1 Table), and used this latest iteration of DARC to dock multiple conforma-
tions of each ligand against its cognate protein partner (Fig 5B). Previously, on the basis of
shape alone, we found that the RMSD of the docked ligand relative to the crystal structure was
less than 2 Å in 8 cases. Upon inclusion of electrostatics, 7 of these remain “correctly docked”
while the RMSD in one case increases above 2 Å. Of the cases that were not previously docked
to within 2 Å RMSD, however, five new complexes were now “correctly docked” upon inclu-
sion of this electrostatics term (for a total of 12 such cases). Examination of such cases showed
that these were typically ligands bound to flat regions of the protein surface; while shape alone
was insufficient to correctly dock the ligand, inclusion of electrostatics enabled the native pose
to be identified (Panel A of S3 Fig). Of the cases for which performance was slightly dimin-
ished, we find relatively non-polar protein surfaces with nearly symmetric binding pockets; in
this case, formation of an incorrect hydrogen bond led to selection of the wrong pose (Panel B
of S3 Fig).

Applying the Wilcoxon signed-rank test to compare the differences in RMSD associated
with inclusion of electrostatics (see Methods), the improvement is detected but again does not
reach statistical significance (p< 0.156) due to the modest size of our test set.

Enhancement #5: improved implementation for GPU computing
The fact that graphics processing units (GPUs) were originally designed to process multi-
threaded 3D graphics through ray-tracing makes them extremely well-suited for the ray-cast-
ing that underlies DARC. Previously, we adapted DARC such that the ray-casting step would
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be carried out on the GPU; meanwhile, the central processing unit (CPU) would be responsible
for updating the ligand coordinates and repeatedly passing these to the GPU. This GPU imple-
mentation proved extremely useful, because it led to a speedup of about 27-fold in typical-use
cases, as compared to the time required to carry out the analogous calculations using the CPU
alone [26].

Upon more recent examination of the speedup observed when carrying out various calcula-
tions in DARC, we found that the size of the ligand and the number of particles both contrib-
uted to the bottleneck in the speedup that could be achieved. As noted earlier, DARC uses
particle swarm minimization to optimize the ligand’s displacement and rotation (and now the
“conformer index” as well, for on-the-fly sampling) relative to a saved “reference” position.
While the ray-casting step was taking place on the GPU, applying the transformation to trans-
late and rotate the ligand to its new coordinates was carried out on the CPU, and was required
for every particle (at every step of the docking trajectory). Our observations of the scaling with
respect to ligand size and number of particles led us to hypothesize that the performance bot-
tleneck in the GPU-enabled calculation was either due to the time required for the CPU to
apply the appropriate transformation to every ligand atom of every particle, or because of the
amount of data transferred from the CPU to the GPU.

To address this bottleneck, we devised a new scheme for splitting control flow between the
CPU and the GPU (Fig 6A). During setup, our new approach stores the “reference” position of
each ligand conformer on the GPU. At each step of a docking trajectory, we previously passed
from the CPU to the GPU a message obtained by “unpacking” the information in each particle
(the coordinates of each ligand atom for that particle); now, we instead pass only the seven
numbers stored in each particle: the conformer index (1 number), the displacement that must
be applied to the ligand’s reference conformation (3 numbers), and the rotation that must be
applied to the ligand’s reference conformation (3 numbers). In addition to reducing the
amount of information transferred, this also allows the transformations of the ligand coordi-
nates to be carried out on the GPU in a highly parallel fashion (instead of carrying out this step
sequentially on the CPU).

To evaluate the speedup achieved by this new strategy we determined the time needed for
docking each of the 25 complexes in our test set (S1 Table), either using a CPU alone or using
GPU-enabled DARC (Fig 6B). Unsurprisingly, we find that the ratio of the runtimes (the
“speedup factor”) differs for the complexes in our set: the size and shapes of the pockets differ
(causing the number of rays to differ), and the ligand sizes differ. Nonetheless, on average we
observe a 90-fold speedup when running on the GPU—about three times faster than our origi-
nal GPU implementation. This result confirms our identification of the previous performance
bottleneck, which has been successfully overcome through this new CPU/GPU control scheme.

Our scheme also proved naturally amenable for using the GPU to calculate the electrostatic
part of the DARC score as well (Fig 6A): at setup, we simply store the electrostatic potential
grid on the GPU, and use the atomic positions of the ligand to compute the electrostatic score
as described earlier (Eq 3). This part of the calculation also benefits tremendously from GPU
parallelization: when electrostatic complementarity is included in the calculation, the average
speedup of GPU-enabled DARC (relative to the analogous calculation on CPU alone) reaches
190-fold (Fig 6C).

Discussion
Here, we present a number of enhancements to the robustness, speed and accuracy of DARC;
each enhancement builds upon the previous one. These include introduction of multiple ori-
gins from which rays can emanate, a new scheme for rapidly determining optimal weights in
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the scoring function, the ability to rapidly screen conformers “on-the-fly” during docking,
inclusion of electrostatic complementarity in the scoring function, and improved control flow
for GPU computing. As a result of the linear narrative by which we have describe these
enhancements, however, the overall improvement from this collection of improvements is less
apparent. In Fig 7, we therefore re-plot the results of our docking experiment such that we
compare the results from this latest, fully-enhanced version of DARC—which we call “DARC
2.0”–against the iteration of DARC described in our previous work [22] (“DARC 1.0”) that
marked the starting point for the current study. Whereas our starting version of DARC docked
only one of the ligands in our test set to within 2 Å RMSD of its position in the crystal structure,
“DARC 2.0” achieves this level of accuracy for 12 of the 25 complexes. The dramatic improve-
ment in the RMSD of these docked complexes is reflected through the Wilcoxon signed-rank
test, which confirms a statistically significant performance improvement from these collective
enhancements (p< 0.001).

Even with these enhancements, the performance of DARC on this benchmark is worse than
that reported for benchmarks comprised of “traditional” drug targets such as enzymes and hor-
mone receptors: pose prediction experiments find that several methods can successfully repro-
duce the bound pose for these targets to within 2 Å RMSD upwards of 70% of the time [46],
though the results do vary based on the nature of the targets themselves [47]. The difficulty
associated with our benchmark set (small molecules that inhibit protein-protein interactions)

Fig 6. Updated GPU control flow. (A) Schematic illustration of CPU-GPU control flow in DARC 2.0. Previously, the ligand conformation was generated on
the CPU and passed to the GPU; now, the conformer index / displacement / rotation (relative to a “reference” position) is instead passed, and the GPU is
responsible for applying this transformation to the ligand’s atomic coordinates. The new electrostatic complementarity term is also computed entirely on the
GPU. (B) For each protein-ligand complex in our set (S1 Table), we timed DARC when docking the ligand back into its cognate receptor, using either GPU
+CPU or CPU alone. We find an average speedup of 90-fold when using the GPU (red line), an improvement over the 27-fold speedup we achieved in our
original GPU implementation of DARC [26]. (C) The GPU led to an even greater speedup over the analogous calculation on the CPU when electrostatic
complementarity was included in both calculations (190-fold speedup).

doi:10.1371/journal.pone.0131612.g006
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was not unexpected, based on our previous observation that other docking methods also strug-
gle with this target class: in a virtual screening experiment, we found the native ligand ranked
in the top 2% for 80% of the targets in a “traditional” set, compared with only 50% of the targets
in a set of protein interaction inhibitors [21]. It is thus unsurprising that the challenges associ-
ated with docking to the surfaces typical of protein interaction sites are reflected in the overall
success rate of this experiment.

We also note that our benchmark included the crystallographic (protein-bound) ligand con-
formers among those sampled: in a “true” application, such a structure would not be available.
In this experiment, we included the “correct” ligand conformer in order to avoid apparently
negative results for cases in which no ligand conformer at all was available within 2 Å RMSD of
the crystallographic ligand. As shown in S1 Table, in fact there were three cases in which none
of the (non-crystallographic) ligands generated by OMEGA were within 2 Å RMSD of the crys-
tallographic ligand. In such cases, even a perfectly docked conformer could not have achieved
our goal of docking to within 2 Å RMSD of the crystallographic ligand. In S4 Fig, we show the
results of docking using only the OMEGA-generated conformers: again our starting version of
DARC docked only one of the ligands in our test set to within 2 Å RMSD of its position in the
crystal structure, and while the overall improvement is still evident, “DARC 2.0” now achieves
this level of accuracy in fewer cases (7 of 25 complexes). In retrospect, this highlights the chal-
lenges facing modern tools that generate reasonable (likely bio-active) conformations of small
molecules; further advances in pose recapitulation by docking tools may require corresponding
advances in generating “near-correct” conformers.

Fig 7. Summary of the collective effect of enhancements to DARC described here. For each protein-
ligand complex in our set (S1 Table), we used DARC to dock the ligand back into its cognate receptor. Here
we compare performance of DARC before the enhancements described in this work (“DARC 1.0”), to its
current performance (“DARC 2.0”). Each point represents a separate complex; points above the diagonal are
those for which the use of multiple origins led to better pose recapitulation. Previously, only one ligand (of 25)
was docked to within 2 Å RMSD of its position in the crystal structure; in contrast, “DARC 2.0” now achieves
this level of accuracy in 12 cases.

doi:10.1371/journal.pone.0131612.g007
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Nonetheless, the ability to achieve such a dramatic collective improvement in DARC 2.0 rel-
ative to DARC 1.0 is striking in part due to the success of DARC 1.0 for virtual screening. As
noted earlier, our initial deployment of DARC in a screen against Mcl-1 allowed us to identify
4 new inhibitors with Ki values ranging from 1.2 to 21 μM [22]; given that we tested 21 com-
pounds suggested by DARC, this corresponded to a success rate of 19% at this potency cutoff.
In retrospect, the unimpressive performance of DARC for pose recapitulation did not foretell
poor performance in this seemingly more challenging arena, because in fact virtual screening
is—in many ways—an easier task.

In a virtual screening experiment, two types of errors can limit performance: false negatives
(compounds that do not receive a high ranking, though they are in fact active) and false posi-
tives (compounds predicted to be active that are not actually active). In practice, as long as
some hits are identified then a screening campaign is considered successful: missing out on
additional active compounds in the library does not detract from this success. In other words,
provided that the number of “true” hits in a library is not exceedingly small, false positives
limit the perceived performance of virtual screening much more than false negatives. This is
deceptive in some ways, however, since these additional hit compounds that were (incorrectly)
excluded may have superior potency than the compounds that were ultimately prioritized for
further characterization (i.e. in “wetlab” assays).

In a pose recapitulation benchmark, such as the one used in this study, the ligand to be used
for each testcase is pre-determined, and there is a single “right answer” (i.e. the bound pose
from the crystal structure). This is a far more stringent test than a virtual screen; when screen-
ing, failing to correctly dock an individual (active) compound from the library would simply
lead to exclusion of this compound from among the hits (a false negative), and would go
unnoticed.

In retrospect, DARC 1.0 exhibited impressive performance for virtual screening because a
number of active compounds were identified—but many other compounds more potent than
those we chose to characterize may have been present in our library. Because of the improved
performance demonstrated by DARC 2.0 in pose recapitulation, we anticipate fewer false nega-
tives in screening applications—leading, in turn, to improved potency of initial screening hits
from DARC 2.0 relative to DARC 1.0.

Methods

Implementation in Rosetta
DARC is implemented as part of the Rosetta macromolecular modeling suite [48]. Rosetta is
freely available for academic use (www.rosettacommons.org), with the new features described
here included in official releases 2015.05 and beyond. The Protocol Capture accompanying this
manuscript (S1 Dataset) contains all the commands required for running DARC, including
sample input and output files. All results reported here were generated using git revision
011e012 of the master source code.

Running DARC with Rosetta (no electrostatics)
Running DARC within Rosetta is a two-step process: first generating the ray file, and second
docking with DARC.

In the first step we generate the protein surface pocket and map the shape of the pocket
shell (points in direct contact with the protein) to a spherical coordinate file; we call this a “ray-
file”. To generate this ray-file we need to input the protein (in PDB format), and specify one or
more target residue(s). The command to run DARC is as follows:
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Rosetta/main/source/bin/make_ray_files.macosclangrelease-pro-
tein 4ERF.pdb

-central_relax_pdb_num 54,99

To use multiple origins, we use:
Rosetta/main/source/bin/make_ray_files.macosclangrelease-pro-

tein 4ERF.pdb

-central_relax_pdb_num 54,99 –multiple_origin

In the second step, we are actually running the docking calculations using the pre-generated
ray-file. Here we give the input ligand(s) for screening against the ray-file, as follows:

Rosetta/main/source/bin/DARC.macosclangrelease-protein 4ERF.
pdb-ligand 0R3_0001.pdb

-extra_res_fa 0R3.params-ray_file eggshell_rosetta_4ERF_54,99.
txt

To search conformers on-the-fly:
Rosetta/main/source/bin/DARC.macosclangrelease-protein 4ERF.

pdb-ligand 0R3_0001.pdb

-extra_res_fa 0R3.params-ray_file eggshell_rosetta_4ERF_54,99.
txt

–search_conformers true

Rather than center the pocket grid at the target residue(s), we can instead center it using a
bound ligand (primarily for benchmarking purposes):

Rosetta/main/source/bin/make_ray_files.macosclangrelease-pro-
tein 4ERF.pdb

-central_relax_pdb_num 54,99 -bound_ligand 0R3_0001.pdb

-extra_res_fa 0R3.params –lig_grid

The output of the DARC run is a docked model of the protein-ligand complex; in this case
it would be named “DARC_4ERF_0R3.pdb”

Fullatomminimization in Rosetta
Fullatom minimization of the DARC models can either be carried out separately in Rosetta, or
immediately after completion of the DARC. To minimize the DARC models immediately after
docking we add the flag “-minimize_output_complex” as follows:

Rosetta/main/source/bin/DARC.macosclangrelease-protein 4ERF.
pdb-ligand 0R3_0001.pdb

-extra_res_fa 0R3.params-ray_file eggshell_rosetta_4ERF_54,99.
txt

–minimize_output_complex

This gives an additional output file named “mini_4ERF_0R3.pdb”.
Other optional flags to use when running DARC include:

-origin_cutoff 9-atom_radius_scale 0.9 -num_particles 100 -num_-
runs 100
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-missing_point_weight 13.3-steric_weight 3.12-extra_point_weight
8.13

–esp_weight 0.03 –use_connolly_surface

Multiple origin points
Whether using a single origin or multiple origins, we begin by placing the first origin point
(O1) at a distance 30 Å from the center of the pocket, and at a location centered “behind” the
pocket. When using a single origin, we noted that the location of the origin is key for suitably
defining the topography of the protein surface. The protein center of mass can work well for
globular proteins, but can be “off-center” for many proteins that are not nearly-spherical.
Below we describe several ways to define O1: their applicability depends in part on the geome-
try of the pocket itself. We note, however, that the use of multiple origins provides more robust
results with respect to the location of O1.

As a first step, the user can choose whether O1 should simply be placed in the direction of
the protein’s center of mass (this is default). If so, we place O1 30 Å away from the center of the
pocket (P) along the P!Q direction, where Q is the center of the protein. If not, we offer three
distinct methods to set O1: (1)Wemake use of the fact that pockets at protein-interaction sites
are broad and flat, and thus we find the plane that best fits the pocket points (by minimizing
the least-squares distance of points to the plane). We then place O1 along the normal to the
plane passing through P, so that distance P–O1 = 30 Å, yielding two solutions (one “above” the
plane of the pocket and one “below” the plane of the pocket). We then select the solution for
which the O1–Q distance is less (i.e. the rays will emanate from within the protein rather than
from far above the pocket). (2) Alternatively, for pockets that are deeper and narrower, we
define a series of vectors si, each of which defines the distance and direction from the ith surface
point to P. We then carry out a vector summation of all these vectors si, such that we determine
the direction of the pocket which most faces away from solvent. We place O1 in this direction
at a distance of 30 Å. (3) Finally, we offer the user fine control over the location of the origin by
placing O1 30 Å away from P along the P!R direction, where R is a user-specified residue.

Once O1 is defined, four more origin points (O2–O5) are then defined. We add O2–O5 as
follows: O2 and O3 are obtained by rotating O1 by ±45° around vector w = u×v, where u is the
vector from P to O1, v is the vector from P to a randomly chosen point, and × denotes vector
product; O4 and O5 are obtained by rotating O1 by ±45° around vector z = u×w.

Electrostatic potential grid
To prepare the protein, we begin by using Rosetta to fill in any missing atomic coordinates and
add hydrogen atoms. We then use OpenEye’s “molcharge” program to add amber99 partial
charges to each atom.

To generate the electrostatic potential grid, we use OpenEye’s ZAP toolkit [45] (a finite dif-
ference Poisson-Boltzmann solver). We use 0.5 Å grid spacing, with 1.0 and 80.0 for the inner
and outer dielectrics, and 2 Å distance as buffer between the molecule and the edge of the grid.
Once we obtain the electrostatic potential grid that encompasses the whole protein, we extract
from this a smaller grid that matches the dimensions of the “pocket grid” used for ray-casting
(this also matches the bounds of the search space during the docking runs). To avoid extreme
values that occur at certain grid points (i.e. very close to a charged atom) during docking, we
set the maximum/minimum possible value of the electrostatic potential at each point to ±10
kT/e.
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Running DARC with Rosetta (including electrostatics)
To include electrostatics, we first resize the electrostatic potential grid (generated as described
above) to match the size of the interface pocket grid. This step can be carried out while generat-
ing the ray file:

Rosetta/main/source/bin/make_ray_files.macosclangrelease-pro-
tein 4ERF.pdb

-central_relax_pdb_num 54,99-bound_ligand 0R3_0001.pdb

-add_electrostatics –espGrid_file 4ERF.agd-extra_res_fa 0R3.
params

The output from this command will be a ray-file named “eggshell_4ERF_54,99.txt” and an
electrostatic potential grid file named “DARC_4ERF.agd” which we will use as input for run-
ning docking using DARC.

Then we call DARC for running the docking calculations using the pre-generated ray-file
and corresponding electrostatic potential grid as follows:

Rosetta/main/source/bin/DARC.macosclangrelease-protein 4ERF.
pdb-ligand 0R3_0001.pdb

-extra_res_fa 0R3.params-ray_file eggshell_rosetta_4ERF_54,99.
txt

To include electrostatics score:
Rosetta/main/source/bin/DARC.macosclangrelease-protein 4ERF.

pdb-ligand 0R3_0001.pdb

-extra_res_fa 0R3.params-ray_file eggshell_rosetta_4ERF_54,99.
txt

–add_electrostatics -espGrid_file DARC_4ERF.agd

Generating conformers
For each ligand in our test set, we used the OMEGA software [27–29] to generate up to 300
conformers, using default parameters. The number of conformers used for each ligand in our
study is reported in S1 Table (these depend on the number of rotatable bonds and the ligand’s
geometry).

Statistical analysis
The statistical significance of the comparisons presented here was evaluated using Wilcoxon
signed-rank test, as implemented in the R statistical computing environment [49].

Supporting Information
S1 Dataset. Protocol Capture. The protocol capture contains all the example input and output
files, and representative command-lines and flags required for running DARC.
(GZ)

S1 Fig. Selected examples responding to ray-casting from multiple origins. In all cases, the
crystallographic ligand is shown in green, while the docked model is shown in cyan. (A) In this
example (4LUZ, also shown in Fig 2C), the crystallographic ligand includes a ring facing
directly into the protein (at the left side, in this perspective). The use of multiple origins
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captures the “walls” of this well, leading to a much-improved pose (RMSD goes from 11.7 Å to
1.9 Å). (B) Among examples for which performance was slightly deteriorated when using mul-
tiple origins (e.g. 2KP8, RMSD goes from 1.8 Å to 3.0 Å), the pockets were typically relatively
flat and featureless; both docked poses appear to have equivalent shape complementarity, and
the difference is presumably due simply to slight shifts in the relative ranking of these mis-
docked poses when the origin is altered.
(TIFF)

S2 Fig. Selected examples responding to the updated weights. In all cases, the crystallo-
graphic ligand is shown in green, while the docked model is shown in cyan. (A) In this example
(2YEL), the previous weight set may have insufficiently penalized underpacking at the protein-
ligand interface. The new weights increase this penalty, leading to a much-improved pose
(RMSD goes from 6.0 Å to 0.4 Å). (B) Among examples for which performance was slightly
deteriorated when using the newer weight set (e.g. 1ALW, RMSD goes from 1.1 Å to 4.9 Å), the
based for the diminished performance is not clear; both docked poses appear to have equivalent
shape complementarity, and the difference is presumably due simply to slight shifts in the rela-
tive ranking of these mis-docked poses.
(TIFF)

S3 Fig. Selected examples responding to inclusion of electrostatic complementarity. In all
cases, the crystallographic ligand is shown in green, while the docked model is shown in cyan.
(A) In this example (3IN7, RMSD goes from 8.7 Å to 0.8 Å), the crystallographic ligand binds
to a flat region of the protein surface. Using shape alone, the correct pose is not clear; upon
inclusion of the electrostatics term, the correct pose can be identified based on interactions
around the (charged) phosphate group (at the left side of the native pose, in this perspective).
(B) Among examples for which performance was slightly deteriorated when including electro-
statics (e.g. 1YSI, RMSD goes from 2.7 Å to 11.0 Å), we find relatively non-polar protein sur-
faces with nearly symmetric binding pockets. While the sulfonamide group makes favorable
electrostatic interactions in the native pose, the incorrect pose selected upon inclusion of elec-
trostatics includes alternate (equally favorable) electrostatic interactions involving this group.
(TIFF)

S4 Fig. Summary of the collective effect of enhancements to DARC, when the crystallo-
graphic conformer is not included in ligand sampling. As in Fig 7, this plot compares the
performance of DARC before the enhancements described in this work (“DARC 1.0”), to its
current performance (“DARC 2.0”). In this case, however, the ligand conformation drawn
from the crystal structure was not included among those available during docking. Relative to
the benchmark results shown in Fig 7, in this more challenging experiment “DARC 2.0” docks
fewer ligands to within 2 Å RMSD of their positions in the crystal structure (now only 7 of 25
ligands).
(EPS)

S1 Table. Small-molecule inhibitors bound to protein interaction sites.We compiled a set
of 25 unique protein interaction sites for which a crystal structure has been solved in complex
with a small-molecule inhibitor. This set is based upon our previous set of 21 complexes that
were available at the time (drawn in part from the 2P2I [50] and TIMBAL [20] databases) [21],
and we now add 4 additional examples have since become available. We did not include com-
plexes with small molecule stabilizers, or complexes with small fragments or large peptide-like
compounds. We only included one representative complex from each protein family; in cases
where more than one suitable inhibitor-bound structure had been solved from a given family,
we retained only the structure in complex with the most potent ligand. We also report here the
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number of conformers for each ligand used in these studies; conformers were generated using
OMEGA (see Methods), and an average of 163 were used for the ligands in this set. Finally, we
report the RMSD of the ligand conformer that is closest to the crystallographic ligand confor-
mation. In the case of PDB ID 3IN7, for example, 300 conformers were generated but none
were within 2 Å RMSD of the crystallographic conformation; inclusion of the crystallographic
ligand conformation in the benchmark played a particularly important role in these cases.
(DOCX)
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