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Abstract

Warming-induced drought has widely affected forest dynamics in most places of the north-
ern hemisphere. In this study, we assessed how climate warming has affected Picea crassi-
folia (Qinghai spruce) forests using tree growth-climate relationships and the normalized
difference vegetation index (NDVI) along the Qilian Mountains, northeastern Tibet Plateau
(the main range of Picea crassifolia). Based on the analysis on trees radial growth data from
the upper tree line and the regional NDVI data, we identified a pervasive growth decline in
recent decades, most likely caused by warming-induced droughts. The drought stress on
Picea crassifolia radial growth were expanding from northeast to southwest and the favor-
able moisture conditions for tree growth were retreating along the identical direction in the
study area over the last half century. Compared to the historical drought stress on tree radial
growth in the 1920s, recent warming-induced droughts display a longer-lasting stress with a
broader spatial distribution on regional forest growth. If the recent warming continues with-
out the effective moisture increasing, then a notable challenge is developed for Picea cras-
sifolia in the Qilian Mountains. Elaborate forest management is necessary to counteract the
future risk of climate change effects in this region.

Introduction

The rapid warming over the last half century is unequivocal, and many observed changes are
unprecedented. More than half of the observed increase in global average temperature is caused
by anthropogenic forcing [1]. This anthropogenic warming affects all ecosystems, notably
those at high latitudes and in alpine regions [2-4]. This warming not only causes temperature
limitations for certain plant species [5] but also induces consequent droughts because of the
changing hydrothermal conditions at the regional scale [6]. According to recent research,
regional droughts in certain areas are intensifying and will become more frequent in the future
as a result of recent warming [7].
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As the dominant ecosystem in many mountain areas, forests are expected to experience
some of the most dramatic warming [8] and show consequent responses to warming induced
drought in areas of the northern hemisphere [5, 9]. The significant declines in forest dynamics
are caused by a widespread moisture-driven drought in the tropical forests in the Amazon
basin [10, 11], temperate forests in the western United States [12], and trembling aspen stands
in western Canada [12-14]. This large distribution of forest decline may cause a significant
change in the terrestrial carbon sink [15-18]. Therefore, forest dynamics and the response of
trees to recent warming must be investigated, notably in the mid-latitudes of the northern
Hemisphere.

On the Tibet Plateau (TP), which is called the “third pole of the earth”, an observed water
deficit appeared along the periphery, notably in the northern and northeastern portion [19],
and pronounced warming has occurred in recent decades [20]. Forests on the TP play an
important role in regulating water flow of those rivers which rise from the TP; these rivers are
crucial for local agriculture and ecology. Because of the large distribution and old ages, the
dominant coniferous species on the TP, Picea crassifolia, has been widely used in dendroclima-
tological and dendroeccological research [21-24]. Generally, dendrochronologists mainly
investigate the signal that has been recorded in trees and how to extract the signal for paleo-
reconstructions. Only a few studies focus on how varying regional hydrothermal conditions
effect the growth of Picea crassifolia and forest dynamics at spatial scales during the recent
warming [25]. The general hypothesis on tree growth-climate relationship is that trees growing
at upper elevation tree lines are more sensitive to temperature, and trees growing lower than
this position are moisture limited [18, 26]. Prior studies found that Picea crassifolia at its upper
tree line in Qilian Mountains are limited mainly by temperature and/or moisture and trees
growing lower than upper tree line are mainly limited by moisture [27, 28]. Therefore, investi-
gating the forest dynamics and tree growth-climate relationship from tree lines could generally
reflect how this warming affects the entire forest dynamics and tree growth. The objectives of
this study were to explore the effect of varying regional hydrothermal conditions on the radial
growth and dynamics of Picea crassifolia, one of the dominant coniferous species on the TP.
The regional hydrothermal conditions reflected recent warming over a large portion of the nat-
ural climatic envelope of Picea crassifolia. Therefore, this study was designed to elucidate the
spatial-temporal variability of recent Picea crassifolia growth and regional forest dynamics vari-
ation over the last century.

Materials and Methods
Tree ring data

Picea crassifolia is a shade tolerating species growing at locations with annual precipitation of
approximately 400-700 mm. In this study, trees from 12 sites were sampled from upper or
close to upper tree lines in Northeastern TP (Fig 1). All field and sampling work have been
done with the permission from the forestry bureau of Wulan. All series of increment cores of
each site were taken from dominant and co-dominant trees which appeared healthy, were rela-
tively isolated, and were close to their upper limit (Table 1). In total, 317 trees were collected in
this study. Site elevations display the approximate topography of these mountain chains. All
cores were processed by following standardized dendrochronological methods [26]. Referring
to prior research [25], RES chronologies were employed to investigate the spatial and dynamic
effect of the regional hydrothermal condition on Picea crassifolia growth at the upper/near for-
est line (S1 Table). To evaluate the shared variance of the chronologies network, a principal
component analysis (PCA) was performed based on the correlation matrix during the common
period (1900-2005).
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Fig 1. Study area and sample sites. Green stars indicate samples sites, black crosses indicate the gridded
data for CRU and green the shaded area indicate the distribution of the coniferous forest in situ.

doi:10.1371/journal.pone.0129959.g001

Changes in forest dynamics

Basal area increment time-series consist of a long-term positive trend and with a level off or
declines when trees encounter stress or enter senescence [29]. In addition to ring width chro-
nologies, the basal area increments (BAI) were used to reconstruct historical episodes of vegeta-
tion dynamics declines and releases. The BAI were calculated using Eq (1):

where Rt and Rt-1 are the stem radial increments at the end and the beginning of a given

BAI = nR’ — nR> |

Table 1. Characteristics of the sample sites and site chronologies.

(1)

Site Latitude(N) Longitude(E) Elevation Sample size(tree/cores) Length of chronology
wi1 37.03 98.65 3777 11(22) 1690-2005
Qi1 38.13 100.39 3357 23(41) 1642-2005
SDL 38.42 99.94 3304 30(30) 1785-2005
DDS 39.04 100.81 2826 28(33) 1779-2005
XM1 37.22 103.18 3000 26(41) 1838-2005
XM2 37.21 103.17 3000 18(19) 1845-2005
KGM 38.79 99.73 2900 24(29) 1848-2005
DYK 38.52 100.25 3040 24(32) 1780-2005
XDH 38.09 101.40 2755 22(40) 1770-2005
QKD 39.39 98.51 2800 20(33) 18502005
JG 39.61 97.86 2852 15(31) 1727-2005
CLS 37.43 103.70 2447 20(20) 1852-2005

doi:10.1371/journal.pone.0129959.1001
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annual ring increment, respectively. The site BAI series is calculated based on the mean R of
trees from the identical site.

To remove the age effect, BAI series were detrended by a power transformation and then
normalized [30]. A sequential application of Student’s t test for change-point detection was
applied on the normalized series [31]. Ten years was selected for the cut-off length of the deter-
mined growth phase. We ran the analysis on all site-level BAI time-series. The change-point
locations for each year have been collected during the period covered by the tree-ring data. A
Bayesian calculation with an uninformative prior distribution was employed to check the con-
fidence level of the change-point [32]. The positively (or negatively) identified change-point
represents the start of growth decline (or increase). Typical episodes of forest dynamics varia-
tion were determined by two reversing changing points. To obtain regional trend results, the
mean of all standardized site BAI (SPI) was detected by using the above mentioned methods.

NDVI data

The normalized difference vegetation index (NDVI), a satellite measurement of surface green-
ness, is an effective way to represent the vigor of forest in summer. The GIMMS NDVT dataset
with 8 km resolution from 1982-2006 was used in this study [33]. The GIMMS NDVT dataset
is a vegetation index product developed by NASA GSFC (Goddard Space Flight Center)
GIMMS (Global Inventor Modeling and Mapping Studies) group, which is synthesized over a
15 day (15 d) period at 8 km resolution. The GIMMS NDVT dataset ensures high data quality
because it eliminates the effects of volcanic eruptions, solar elevation angles and sensor sensi-
tivity changes with time. Therefore, this dataset has been widely used in global and regional
vegetation monitoring [34]. To monitor the dynamics of Picea crassifolia forests during recent
decades, the pixels of conifer forest NDVI were extracted according to the distribution within
our study area. The yearly change of each pixel was calculated. Trend curve models were
employed to predict a change trend by regression analysis. The change trend of the NDVI of
each pixel was modelled using 24 years of data during 1982 to 2005, which represents the inter-
annual change of forest covered area. The equation is expressed as the following:

nx Z::1k X YNDVIk - ZzzlkzzzlyNDVIk

nx Z::1k2 B (Zzz1k)2

where k ranges from 1 to n, n stands for the year number, and YNDVIk indicates the average

slope =

(2)

NDVI value of vegetation during the growing season of the k™ year. The inter-annual NDVI
change trend of the study area is shown in the change trend image. The trend curve of each
pixel indicates the total change trend by regression analysis to the average NDVI series of the
growing season. The slope means the slope of this trend curve. If slope>0, it means that NDVI
value is increasing, otherwise decreasing.

Climate data

Concerning the distribution and data quality, the CRU gridded data were employed in the cli-
mate analysis. All grid points within N 35°- 42° / E 95°-105° were selected. Clear hydrothermal
gradients were noted over our study area. The precipitation decreases from greater than 400
mm/y in the southeast to less than 100 mm/y in the northwest along the mountain chains,
whereas the temperature increases from the TP to the peripheral area. The observed precipita-
tion shows an insignificant increasing trend on the central TP and decreasing trends along

the TP periphery, whereas evaporation shows an overall increasing trend [19]. Individual
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meteorological records show that the mean annual temperatures displayed a significantly
abrupt increase starting around 1987-1997 [25].

To better reflect the effect of regional hydrothermal conditions on radial tree growth, we
employed a climate index (CI) which has been used in other studies [25, 35]. This CI, com-
pared to a PDSI, is ecologically more appropriate to test for the influence of the combination of
precipitation and temperature (hydrothermal conditions) on radial tree growth. Higher corre-
lations between tree growth and CI indicate a higher moisture deficit caused by warming
induced drought.

The response of tree growth to climate

The response of single sites to climate change was estimated using correlation relationships.
The dynamic spatial effects of regional hydrothermal conditions on the growth of Picea crassi-
folia forests were accessed by calculating moving correlation relationships between PC1 and
PC2 of all sites and the regional hydrothermal condition (CI) with a 30 year window over time.
To concisely display the results, three time slices were extracted to represent the dynamic
response of tree growth to the regional hydrothermal condition. The first time slice consists of
the first 30 years of the respective climate record and the corresponding tree growth. The sec-
ond time slice starts 10 years later. The third time slice covers the last 30 years of the climate
record and the corresponding tree growth.

Results
Characteristics of chronologies and multivariate analysis

The main statistical properties of chronologies display a clear relationship along elevations.
Trees from low elevations have higher mean sensitivities (MS). Additionally, low elevations
have a higher correlation between trees (R1) and the population signal of single sites (PC1)
than trees from high elevations, indicating that trees distributed at low elevations shared more
common information than trees distributed at higher elevations (Table 1, Fig 2). The elevation
difference between sample sites in this research is larger than 1000 meters. The age span of the
forests shared a similar spatial distribution. The oldest trees, approximately 360 years old, grew
in the middle of the Qilian Mountains. Younger trees were found at the western and eastern
edge of the study area. The first two components explained 38% and 18% of the variance indi-
vidually and 56% of the total variance cumulatively. A positive loading of all sites for PC1 indi-
cates that all forest sites were regionally affected by a common environmental variable.

Dynamic relationships between tree growth and regional hydrothermal
conditions during the last half century

The single site tree growth-climate relationship shows that trees from most sites have a signifi-
cant negative correlation with the growing season temperature but lack a significant correlation
with precipitation. The dynamic spatial relationship between tree growth and regional hydro-
thermal conditions shows that PC1 (explains 38%) had a significant positive and PC2 (explains
18%) had a significant negative correlation relationship with CI. These two correlation rela-
tionships displayed a clear spatial dynamic variation over time. The positive relationship
(drought stress) is expanding in the northeast to the southwest, and the negative relationship
(favorable growth conditions) is retreating along the identical direction over time (Fig 3).
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Fig 2. Statistical characteristics of regional tree growth along elevation gradients. Ms is the mean

sensitivity which indicates the sensitivity of tree growth to common environmental changes. R1 is the
correlation between trees, and PC1 is the population signal of single sites.

doi:10.1371/journal.pone.0129959.g002

The variation of radial growth and forest dynamics

Regional forest BAI shows a general increasing trend with variation and a notable growth
decline in late 20" century. After removing the growth trend, seven typical episodes of forest
dynamics variation were identified in the SPI during the last two centuries (Fig 4). The lower
growing periods are 1850-1880, 1925-1933, 1957-1979, and 1986-2005. The higher growing
periods are 1841-1850, 1880-1925, 1933-1957, and 1979-1986. In terms of the individual
sites, differences in the different regimes were noted, but the most common periods are the late
1920s and late 1980s. Relative to the long term mean growth rates over the last century, two
notable growth declines were observed in 1920-1940 and after the 1980s at most sites. By con-
trast, increasing tree growth rates were recently found only at sites W1 and XM1.

Picea crassifolia and Juniperus przewalski (Qilian Juniper) are two dominant conifer species
in our study area. The maximum yearly NDVI of the regional coniferous forest displays a clear
decline/browning over last 24 years (Fig 5). A significant decline was noted in all pixels, except
for one pixel displaying a slight increasing trend because of problems with technique. The gen-
eral coniferous growth reduction has spatial differences that show the most of the declines hap-
pened in the central eastern part of our study area, and the peripheral area showed a lower
decrease.
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Fig 3. Relationships between tree growth and regional hydrothermal conditions. Spatial correlations between PC1 and PC2 with the gridded climate

index (Cl). Correlations of PC1 (left) and PC2 (right) with regional Cl show the increasing influence of drought stress on our tree ring network over the last half

century, concurrent with a retreat of conditions favorable to tree growth. The calculation periods were for (a) and (b) 1951-1982; (c) and (d) 1962—1993; and
(e) and (f) 1974—2005. Colored areas are significant at the a = 0.1 level.

doi:10.1371/journal.pone.0129959.9003

Discussion

In this study, we found that Picea crassifolia stands and coniferous forests in general were
experiencing a significant drought stress. This stress was documented by remote sensing
(NDVI) and in situ (BAI) data on the northeastern TP in recent decades. Several similar
responses of tree growth-forest dynamics to recent warming have been reported either on a
regional or local scale in the Northern Hemisphere in terms of growth decline or even die-off
events [2, 36-38]. The rapid warming has also accelerated tree growth decline in semi-arid for-
ests in Inner Asia close to our study area [39]. The water deficit induced by the recent warming
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doi:10.1371/journal.pone.0129959.g004

is the most likely reason for this wide spread in coniferous forest decline. Based on the experi-
ment of the annual resolution tree ring stable carbon isotope (8'3Q), [40] illustrated that the
warming induced drought stress limited Picea crassifolia growth by the iWUE change in recent
decades in Qilian mountains. Reflecting on the tree radial growth and forest dynamics, the
decline starts slightly after this point and strengthens later. Although studies covering all eco-
systems reported that the regional NDVT increased during the last half century over our study
area [41], tree ring based regional NDVI reconstruction displayed a decrease in growth during
the last 30 years [42]. These divergent trends likely are caused by the different responses of
individual ecosystems to recent hydrothermal conditions because regional grassland NDVI
increased significantly in the Qilian Mountains [43].
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Although many studies have predicted that global warming will increase the precipitation in
extra-tropical areas, the latest meteorological data indicated that most middle latitude areas
will receive less precipitation or more precipitation in extreme rainfall events [1]. According to
records from individual meteorological stations in this area, the regional temperature has
increased by more than 1.5°C over the last half century with an abrupt increase after 1980 [44].
Most areas received less precipitation and amplified water limitations because of the increasing
warming [19]. The regional CI displayed a significant decrease during 1952-2005 (R =-0.218,
P<0.11). Using 1980 as a break point, different trends are noted in the two periods. The first
period displayed a significantly increasing CI with R = 0.52 (P<0.003), and the second period
displayed a significantly decreasing CI with R = 0.61 (P<0.0001) (Fig 6). The dynamic ecologi-
cal reaction of Picea crassifolia trees show that the drought stress was expanding gradually
from the peripheral area of the TP onto the TP, displaying a response to the spatio-temporal
variations in the regional hydrothermal conditions (Fig 3). This kind of stress on Picea crassifo-
lia radial growth also strengthened along the elevation gradients from upper tree line to lower
tree line [28]. Notably, the drought stress may cause not only tree growth decline but also a
decrease in the recruitment of trees and an increase in tree mortality and forest die-off. [45]
found that the recruitment of Juniperus przewalskii, one of the other dominant coniferous spe-
cies on the Qilian Mountains, decreased after the 1970s at the upper tree line. Tree mortality
has been observed in more xeric forest areas in the middle arid Asia neighboring our study area
[39]. Droughts caused forest growth decline and is an important climate driver for forest
growth in the northeastern TP. During the last century, similar droughts induced declines also
occurred in the 1920s. The 1920s drought is the most famous drought during the past few cen-
turies, which caused tree radial growth to widely decline and forest dieback in northwest China
[46, 47]. Comparing the two major growth declines during the last century in our study area,
we found that tree growth was recorded in an almost similar manner, but with differences in
timing and intensity. The 1920s forest reduction was extremely short in time. The 1980s forest
growth decline was gradual and was sustained longer.

Upper tree lines are generally assumed to be limited by temperature. Therefore, these lines
are the ideal place to investigate the response of forests to the recent warming [48]. Although
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doi:10.1371/journal.pone.0129959.9g006

sampled at the upper tree line, large altitude gradients remained between the sample sites. At
the edge of the Qilian Mountains, notably in the peripheral western and eastern area, trees
could not grow higher because of topographical (elevation) limitations. Recent dendroclimato-
logical investigations supported that a coherent relationship exists between the tree growth of
Picea crassifolia and climate factors at the upper tree line or along elevation gradients [22, 49,
50]. Most individual site studies found precipitation holding a dominant effect on tree growth
at the beginning of the growing season [51-53]. Select trees growing at higher elevation sites
could benefit from this accelerating warming [25]. The rest of the forest, around and below
3700 m, was gradually affected by moisture stress since the 1980s [28]. Both the NDVT and tree
growth-climate relationships further indicated that almost the entire spruce forest, not only the
upper tree lines, experienced a strengthening drought stress at the northeastern TP. If this
warming continues without an effective precipitation increase, then predicting how this species
will develop under current climate conditions in our study area is difficult without the knowl-
edge of their water use efficiency and other responses to moisture deficits [54]. Expected future
changes in the growth rate of Picea crassifolia trees must be considered in forest management
decisions. We highly recommend that the knowledge of climate—growth relationships, as rep-
resented here, will be combined with adaptive management to reduce the risks and uncertain-
ties associated with forest management decisions.

Supporting Information

S1 Table. RES chronologies from 12 sites we have been used in this analysis. The column

name is the site name. Time spans 1900-2005.
(XLSX)
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