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Abstract
Land use type is key factor in restoring the degraded soils due to its impact on soil chemical

properties and microbial community. In this study, the influences of land use type on arbus-

cular mycorrhizal fungal (AMF) community and soil chemical properties were assessed in a

long-run experimental station in subtropical hilly area of southern China. Soil samples were

collected from forest land, orchard and vegetable field. Soil chemical properties were ana-

lyzed, and PCR-DGGE was performed to explore the AMF community structure. Cloning

and sequencing of DGGE bands were conducted to monitor AMF community composition.

Results indicate that the contents of total P, available P and available K were the highest

while the contents of soil organic matter, total N, total K and available N were the lowest in

vegetable field soils, with forest land soils vice versa. According to DGGE profiling, AMF

community in forest soils was more closely related to that in orchard soils than that in vege-

table field soils. Sequencing indicated that 45 out of 53 excised bands were AMF and

64.4% of AMF belonged to Glomeraceae, including some “generalists” present in all soils

and some “specialists” present only in soils of particular land use. Category principle com-

ponent analysis demonstrated that total N, soil organic matter and available P were the

most important factors affecting AMF community, and some AMF phylotypes were closely

associated with particular soil chemical properties. Our data suggest that AMF communities

are different with different land use types.
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Introduction
Southern China is one of the most populated regions, resulting in strong pressure on soil envi-
ronments. In this region, the typical agricultural soils are red soil [1], classified as Ultisols in the
Soil Taxonomy System of the USA and Acrisols and Ferralsols in the FAO legend [2]. Domi-
nated by hilly or mountainous geomorphology and monsoon climate, this region is character-
ized by severe soil erosion, especially in the rainy season at the intensive farming areas [3–5]. To
restore the eroded soils, many investigations have focused on the potential of land use types to
decrease the soil erosion and positive results have been reported repeatedly [4], [6]. Presently,
the most popular land use types in this region include forest lands, orchards and sometimes veg-
etable fields [4], [5], [7], representing low, moderate and high intensity of land use, respectively.
On the other hand, the feedback of soil environments to land use types is of special interest to
soil ecologists. The effects of land use types on soil erosion and soil physiochemical properties
have been intensively evaluated [8–11], however, information of the effects on soil microbial
community, especially arbuscular mycorrhizal fungal (AMF) community, is less reported.

Soil microbes are essential biotical components in soil ecosystems, involved in almost all
biogeochemical processes in pedosphere [12], [13]. Taking AMF, a kind of symbiotic soil
fungi, as example, they normally establish symbiosis with>80% terrestrial plants [14], and
actively help host plants resist to diverse environmental stresses [15], with surprising effect on
nutritional stress [16]. In degraded soils, nitrogen (N) and phosphorus (P) are main limiting
factors for well ecosystem functioning, and thus, inputs of N and P to are of primary signifi-
cance for restoration of the degraded ecosystems [17]. In this circumstance, AMF may play a
unique role in it. There is some evidence that N-uptake is enhanced by some AMF [18–21].
The promotive effect of AMF in plant P uptake has been more intensively and deeply investi-
gated and confirmed for decades [14]. In southern China, AMF species are abundant partially
due to the diverse plant species in this region, with higher diversity than that in the northern
China [21]. It is also established that AMF in forest lands are diverse on the basis of both mor-
phological types and genetic types [22], [23], which lays a pavement to the utilization of AMF
in restoring the eroded soils in the hilly or mountainous areas in southern China. On the other
hand, however, land use types may shift AMF community [24–26], leading to uncertain eco-
logical consequence. For example, Oehl et al. [24] demonstrated that AMF species richness
decreased with increased land use intensity, which supported by Tchabi et al. [27]. In contrast,
unchanged and even increased AMF species richness have also been reported [25], [26].
Clearly, when different land use types are practiced in the hilly or mountainous areas in south-
ern China, not only the full use of AMF but also the protection of AMF resource should be
born in mind. Unfortunately, up to date, no information on the effects of land use types on
AMF community in this region is available.

In this study, we chose a long-run ecological experimental station, Heshan Hilly Land Inter-
disciplinary Experimental Station of the Chinese Academy of Sciences, as experimental sites to
explore: i) the AMF resource and diversity; ii) the effects of land use types on the AMF commu-
nity; and iii) the possible mechanisms underlying the effects in the restored subtropical soils in
southern China. In this experimental station, much data has been accumulated involving
diverse ecological processes, however, without any data on AMF community.

Materials and Methods

Site Description and Soil Sampling
This study was carried out at the Heshan Hilly Land Interdisciplinary Experimental Station
(HHLIES), Chinese Academy of Sciences (CAS), China, and was permitted by HHLIES. The
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climate in this region is typical of subtropical monsoon. The average annual temperature and
precipitation are 21.7°C and 1700 mm, respectively [28]. Studies involving multiple disciplines
have been conducted in this station to explore the ecosystem processes in the subtropical areas
[28–33].

Three land use types, e.g. vegetable field (112.9045°E, 22.6720°N), orchard (112.9053°E,
22.6722°N) and forest land (112.9052°E, 22.6717°N) (representive of land use with different
intensity in descending order), were selected as sampling sites. In detail, four plots (5 m × 10
m) were established for each land use type, with a distance of about 20 m between plots. All
plots were located at the same altitude. In each land use type, the four plots distributed in a
small area, and consequently the differences among four plots represented experimental error.
However, the differences among three land use types can still reflect the influence of land use
type on AMF community composition. In forest land, the understory vegetation was domi-
nated by Dicranopteris dichotoma, with the coverage as high as almost 100% [28]. Orchard and
vegetable field were transformed from forest land and managed for over 30 and 10 years,
respectively. The orchard floor was naturally dominated by D. dichotoma, while rotation crop-
ping was practiced for vegetable production with tomato, pepper, lettuce and winter fallow
sometimes. In each plot, six soil cores of 20 cm depth were randomly sampled and mixed well
by sieving through 2 mmmesh. A total of 12 soil samples were collected, and each soil sample
was further divided into two subsamples for the analysis of soil chemical properties and molec-
ular analysis of AMF community.

Measurement of Soil Chemical Properties and AMF Spore Extraction
Soils were air dried and sieved for chemical analysis [31]. Soil pH was measured in deionised
H2O (1:2.5 w/v). Soil organic matter content was determined using the K2Cr2O7 titration
method after digestion. Total nitrogen (TN), total phosphorus (TP) and total potassium (TK)
were analyzed using Kjeldahl method, molybdenum blue colorimetric method and flame pho-
tometer, respectively. Available N (alkali-hydrolyzable N) was released and transformed to
NH3 by 1.07 M NaOH and FeSO4 powder at 40°C for 24 h, and then absorbed with 2% (w/v)
H3BO3 and titrated with 0.005 M H2SO4. Available P was extracted with the solution of Bray-1
(0.03 M NH4F-0.025 M HCl) and measured by colorimetry. Available K (exchangeable K) was
extracted with 1.0 M NH4OAc (pH = 7.0) and then determined by flame photometer.

Twenty five gram of air dried soils were used for AMF spore extraction with the modified
method of soil sieving and sucrose centrifugation [24]. The extraction followed the described
procedure except that soils were rinsed in tap water for 60 min with stirring at an interval of 20
min and then the soil suspension was sonicated for 30 s before soil sieving. These steps were
included to release the spores associated with soil matrix. The spore number in each sample
was recorded and AMF species were identified on the basis of spore morphology under a ste-
reo-microscope (Motic BA410) according to online information on the species descriptions
(http://invam.wvu.edu/the-fungi/species-descriptions).

Extraction of Soil Total DNA and PCR-DGGE
To extract soil total DNA, PowerSoil DNA Isolation Kit (MO BIO Laboratories Inc.) was used
according to the manufacturer protocol. After soils were transported to the laboratory, soil
DNA was extracted immediately, and then the extracted DNA was stored at -20°C for
PCR-DGGE analysis.

To investigate the genetic diversity of AMF, 18S rRNA fragments of AMF were amplified
using nested PCR strategy. The first PCR reaction with the universal eukaryotic primers
NS1/NS4 amplifies a 1100 bp fragment [34], with the following PCR condition: 3 min initial
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denaturation at 94°C; followed by 30 cycles of 30 s at 94°C for denaturation, 1 min at 40°C for
annealing, and 1 min at 72°C for extension; and a final extension at 72°C for 10 min. Products
of the first PCR reaction were diluted 100-fold and used as template DNA in a second PCR
reaction performed using the AMF-specific primers AML1 and AML2 [35]. The second PCR
reaction was carried out with the following PCR condition: 3 min initial denaturation at 94°C;
followed by 30 cycles of 1 min at 94°C for denaturation, 1 min at 50°C for annealing, and 1 min
at 72C for extension; and a final extension at 72°C for 10 min. Products of the second PCR
reaction were diluted 200-fold and further subjected to the third PCR reaction using primer set
NS31-GC/Glo1 [36]. PCR reaction was performed with the following PCR condition: one cycle
of 2 min at 94°C for initial denaturation; followed by 30 cycles of 45 s at 94°C for denaturation,
45 s at 54°C for annealing, and 35 s at 72°C for extension; and a final extension at 72°C for 10
min. The sequences of three primer sets are shown in Table 1. For each step, the PCR product
was checked for correct size by electrophoresis on a 2% agarose gel stained with Gold view
(SBS Genetech Inc., China). The final products were subjected to DGGE analysis.

DGGE analysis was conducted with a D-Code Universal Mutation Detection System (Bio-
Rad Laboratories). DGGE fingerprints were run on a 6% polyacrylamide gel for 15 h at a con-
stant voltage of 70 V and at 60°C in a 30%-60% horizontal denaturant gradient (the 100%
denaturant agent is 7 M urea and 40% deionized formamide). Gels were photographed with
UV transillumination after SYBR- GOLD staining for 30 min. For DGGE-based microbial
community analysis, Quantity One software (Bio-Rad Laboratories Inc.) was employed to cal-
culate the Shannon-Weaver diversity index (H) and species evenness (E), while species richness
(R) was recorded as the number of DGGE bands of each sample [37–39].

Cloning of AMF Phylotypes and Sequencing
According to DGGE profiles, 66 bands were detected. Except 13 bands too weak to cut, 53
bands were excised for recovery and purification of DNA fragments using UNIQ-10 column
DNA recovery kit (Sangon Biotech. Co., Shanghai). The purified DNA fragments were further
amplified using the primer set NS31/Glo1 and products were recovered using SanPrep column
DNA recovery kit (Sangon Biotech. Co., Shanghai).

PCR products were cloned into pMD19-T vector (TaKaRa Co., Dalian, China), and the
clones were transformed into competent Escherichia coli DH5α cells (TaKaRa Co., Dalian,
China) by heat shock at 42°C for 90 s. After overnight growth on Luria-Bertani plate with X-
gal/IPTG (containing 100 μg/ml ampicillin) at 37°C, the white clones were picked and incu-
bated overnight in Luria-Bertani medium (containing 100 μg/ml ampicillin) at 37°C shaken at
240 rpm. Only the clones with single band of appropriate size were selected for sequencing.
Sequencing was performed commercially (Invitrogen Co., Shanghai, China). The vector
sequences were eliminated using VecScreen (http://www.ncbi.nlm.nih.gov/VecScreen/) [40].
Altogether, approximately 84.9% (45/53) of sequenced clones were usable Glomeromycota

Table 1. Sequences of primer sets used in this study.

Primers Sequence (5'!3') Amplified fragment References

NS1 GTA GTC ATA TGC TTG TCT C 1100 bp [34]

NS4 CTT CCG TCA ATT CCT TTA AG 1100 bp [34]

AML1 ATC AAC TTT CGA TGG TAG GAT AGA 795 bp [35]

AML2 GAA CCC AAA CAC TTT GGT TTC C 795 bp [35]

NS31-GC CGC CCG GGG CGC GCC CCG GGC GGG GCG GGG GCA CGG GGG TTG GAG GGC AAG TCT GGT GCC 300 bp [36]

Glo1 GCC TGC TTT AAA CAC TCTA 300 bp [36]

doi:10.1371/journal.pone.0130983.t001
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sequences. Basic Local Alignment Search Tool (BLAST) searches were conducted to find
sequences that shared high identity with our fungal phylotypes. Furthermore, a phylogenetic
tree was constructed using Clustal X1.83 and MEGA 4.0. All sequences from our study were
submitted to GenBank and the accession numbers were KP238323 to KP238367.

Data Analysis and Statistics
All data were the means of four replicates. Principle component analysis (PCA), categorical
principle component analysis (Cat-PCA, also called optimal scaling) and clustering analysis
(CA) were performed using SPSS v21.0 (IBM SPSS In., Chicago). For soil chemical properties,
PCA and CA were conducted to group soils of different land use types. For DGGE-based
genetic data, PCA and CA were conducted according to the presence (1) or absence (0) of each
particular band. Taking band matrics as analysis variables, soil physiochemical properties as
supplementary variables, land use types as labeling variables, Cat-PCA was conducted to inves-
tigate the impacts of soil properties on band distribution among different soils and the relation-
ship between soil properties and land use types [41], [42]. Biplot was constructed for
visualization.

Results

Effects of Land Use Types on Soil Chemical Properties
Table 2 shows that the soil chemical properties of the different plots were different. Total P
content, available P content and available K content were the highest in vegetable field soils
and the lowest in forest land soils, with the medium in orchard soils. In contrast, total N con-
tent, soil organic matter content, total K content and available N content were the highest in
forest land soils and the lowest in vegetable field soils, again with the medium in orchard soils
(Table 2). These data strongly supported that high intensity of land use increased total P con-
tent, available P content and available K content, while decreased total N content, soil organic
matter content, total K content and available N content. Interestingly, it seems that soil pH was
not related to the intensity of land use.

PCA and CA demonstrated that four replicates of each land use type grouped closely (Fig
1). Three land use types were clearly separated from each other (Fig 1A), indicating their dis-
tinct soil properties. However, orchard soils were more close to vegetable field soils when com-
pared to forest land soils (Fig 1B).

Table 2. Chemical properties of soils as influenced by different land use types.

Soil chemical properties Forest land Orchard Vegetable field

pH 4.68±0.15c 6.20±0.13a 5.60±0.03b

Soil organic matter (g/kg) 31.0±2.7a 18.7±0.7b 15.2±0.5b

Total N (g/kg) 1.11±0.09a 0.83±0.02b 0.60±0.02c

Total P (g/kg) 0.19±0.01c 0.59±0.09b 0.78±0.05a

Total K (g/kg) 13.40±1.24a 13.28±0.64a 8.97±0.09b

Available N (mg/kg) 68.45±5.92a 59.97±2.16a 40.03±1.49b

Available P (mg/kg) 1.42±0.41c 38.31±8.56b 120.01±11.19a

Available K (mg/kg) 29.97±1.03c 64.67±13.06b 138.32±13.43a

Data are presented as average ± s.e. Data followed by the same letter are not significantly different at the 5% level (Duncan’s multiple range test) for each

soil chemical property.

doi:10.1371/journal.pone.0130983.t002
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AMF Communities in the Soils of Land Use Types
According to the spore morphology, 6, 7 and 2 morphotypes were isolated respectively from
the soils of forest land, orchard, and vegetable field (S1 Fig), including Ambispora gerdemannii,
Claroideoglomus etunicatum, Funneliformis coronatum, F. verruculosum, F. caledonius,
Rhizophagus diaphanus, Septoglomus deserticola, S. constrictum, Glomus sp., and five other
unidentified Glomeromycota sp. Despite the unidentified morphotypes, 88.9% of the identified
morphotypes belong to Glomeraceae.

Fig 1. Principle component analysis (PCA) and cluster analysis (CA) of soils of different land use
types based on the soil chemical properties. (A) PCA. (B) CA. Squares, triangles and circles indicate
forest land soils, orchard soils and vegetable field soils, respectively. Four replicate soils of each land use
type were grouped using circles.

doi:10.1371/journal.pone.0130983.g001

Difference in AMF Community by Land Use Types in Subtropical China

PLOS ONE | DOI:10.1371/journal.pone.0130983 June 24, 2015 6 / 16



DGGE profiles of AMF 18S rRNA genes demonstrated that AMF community structures
were much different in the soils of different land use types (Fig 2). Totally, there were 66 bands
detected in the soils (Fig 2B).

The Shannon-Weaver diversity indices of AMF in soils of different land use types were simi-
lar, without significant difference between them. Similarly, land use type did not affect AMF
species richness (Table 3). However, AMF species evenness in forest land soils was significantly
lower than those in orchard soils and vegetable field soils (Table 3). It is worthy to note that
AMF species richness of only 27.0~28.0 for each land use type in contrast to total 66 bands sug-
gests the strong influence of land use types on AMF community composition.

In total, 53 out of 66 bands were excised for sequencing, and 45 sequenced bands were
related (87%-100% similarity) to AMF 18S rRNA gene already deposited in the GenBank data-
base. The results of sequence identification using the BLAST-X algorithm are shown (S1
Table). The phylogenetic tree clearly indicates that 29 AMF sequences (64.4%) belong to Glo-
meraceae, 1 (2.2%) belongs to Paraglomeraceae and 1 (2.2%) belongs to Ambisporaceae. The
other 13 AMF sequences can not be assigned to the properly identified (mostly cultured) spe-
cies (Fig 3).

According to the DGGE profiles, four replicate soils of each land use pattern grouped well
as revealed by PCA (Fig 4A). AMF community structure in forest soils was more similar to that
in orchard soils than to that in vegetable field soils, which was also supported by clustering
analysis (Fig 4B).

Effect of Land Use Types on AMF Community Composition as Revealed
by Cat-PCA
To investigate the influence of soil chemical properties on AMF community, Cat-PCA was per-
formed on the basis of DGGE profiles. Eight soil properties can be categorized into 3 types,
with total N content, soil organic matter content, total K content and available N content posi-
tive to X-axis, available P content, available K content and total P content negative to X-axis,
while pH less related to X-axis (Fig 5). According to the distance from the coordinate origin,
total N content, soil organic matter content and available P content ranked the first three soil
properties, indicative of the three most influential factors.

When three land use types were grouped, they separated well (Fig 5). Forest land soils
located on the right part of the plot, in good accordance with total N content and soil organic
matter content, indicating that forest land soils were typical of high contents of total N and soil
organic matter, which is supported by Table 2. Similarly, vegetable field soils located on the left
part of the plot, in good accordance with available P content, available K content and total P
content, indicating that vegetable field soils were typical of high contents of available P, avail-
able K and total P, which is supported by Table 2.

All 66 bands (e.g. putative AMF phylotypes) scattered in the plot, and some of them located
closely to soil chemical properties or land use types (Fig 5). For example, B29, B53, B4, B50,
B49, B32, B38 are close to available P content, available K content and total P content, suggest-
ing that these AMF phylotypes may prefer to appear in soils with high contents of available P,
available K and total P (such as vegetable field soils in this study). B3, B34, B60, B22, B12, B17
locates closely to forest land soils, suggesting that these AMF phylotypes may be present in for-
est ecosystems. More interestingly, some “generalists” and “specialists” AMF stains were also
demonstrated, e.g. B26 and B54 present in all soils while B4 and B28 present only in vegetable
field soils (Fig 2).
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Fig 2. DGGE profiles and their corresponding patterns of 18S rDNA fragments of arbuscular
mycorrhizal fungal (AMF) community in soils of different land use types. (A) DGGE profiles of AMF
community. (B) DGGE patterns of AMF community. A total of 66 bands were detected using Quantity One
software.

doi:10.1371/journal.pone.0130983.g002
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Discussion

Domination of Glomeraceae in Studied Soils
In this study, AMF communities in soils of three land use types were investigated. Sequencing
and BLAST analysis indicate that most (>64%) AMF phylotypes belong to the Glomeraceae
(S1 Table), and meanwhile the AMF identification based on spore morphology also supported
it. In other investigation, similar result was obtained. Zhang et al. isolated 40 AMF taxa from
rhizosphere soils of pteridophytes, and indicated that 80% taxa belonged to Glomus, the largest
genus in the Glomeraceae [43].

It is well established that the Glomeraceae, the largest family of AMF, can adapt to diverse
ecosystems [14]. This can be a reason why the Glomeraceae dominates in the sites of our study.
More importantly, in our study, the dominant plants in the understory of forest land and in
covering plants in orchard were ferns (Dicranopteris) [28]. As for vegetable field, it has been
previously dominated by fern plants for decades. The domination by fern plants in these soils
probably determines the AMF community composition to a large degree. A large body of
investigation indicates that the Glomeraceae is the most associated AMF family with fern
plants [43–45]. Kovács et al. [44] found that most of the AMF detected in Botrychium virginia-
num belonged to Glomus group A, although several AMF lineages showing similarities with
Scutellospora (Gigasporaceae) also colonized roots. In the investigation of AMF status of ferns
collected from Eastern andWestern Ghats regions in India, Muthukumar and Prabha [45]
reported a total of nine AMF spore morphotypes, including Glomus, Claroideoglomus, Funneli-
formis and Rhizophagus, all of which belong to the Glomeraceae. This is in well agreement with
our result. Differently, we identified AMF based on the sequence of a small DNA fragment,
which was amplified with the primer set NS31/Glo1. This primer set was demonstrated to
amplify all genera (except Septoglomus) from the Glomeraceae and even genera from the fami-
lies of Ambisporaceae, Claroideoglomeraceae, Gigasporaceae, Acaulosporaceae, Paraglomera-
ceae [46]. In a field investigation, 96% of Angiopteris lygodiifolia and 95% of Osmunda
japonica gametophytes contained AMF hyphae, and molecular analysis based on SSU rDNA
revealed that all these AMF belonged to Glomus group A [47].

Effect of Land Use Types on AMF Community Composition
We selected three land use types and established four sampling plots for each land use type.
However, for each land use type, due to the small distance among individual plot, the difference
in AMF community composition in each plot represented the within-locality variation. Despite
of this, data in our study indicate that land use types affected the AMF community composi-
tion, as revealed by DGGE profile (Fig 2) and BLAST analysis (S1 Table), although Shannon-
Weaver diversity index and species richness were not affected. For example, B4 and B28 were
present only in vegetable field soils, while B13 and B15 were absent only in these soils. Similar
to our results, results of González-Cortés et al. [48] suggest that the impact of land use change

Table 3. Community parameters of arbuscular mycorrhizal fungi in soils as influenced by different land use types.

AMF community parameters Forest land Orchard Vegetable field

Shannon-Weaver diversity index (H) 3.17±0.05a 3.13±0.08a 3.22±0.13a

Species richness (S) 27.8±2.0a 26.5±1.0a 27.0±1.6a

Species evenness (E) 0.941±0.005b 0.957±0.004a 0.966±0.003a

Data are presented as average ± s.e. Data followed by the same letter are not significantly different at the 5% level (Duncan’s multiple range test) for each

soil chemical property.

doi:10.1371/journal.pone.0130983.t003
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Fig 3. Phylogenetic tree of AMF species in the investigated soils based on the fungal 18S rDNA
fragments. All the named species as reference sequences appear with the scientific names of recent
taxonomy (http://schuessler.userweb.mwn.de/amphylo/).

doi:10.1371/journal.pone.0130983.g003
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is greater on the community composition than on the richness of AMF. The different AMF
community composition modified by land use types has been reported elsewhere. Helgason
et al [49] revealed the different AMF community in adjacent soils of wood land and arable
land. Bedini et al. [50] indicated that different land use types (maize monoculture, grassland
and poplar grove) affected not only AMF population (spore number) but also AMF function-
ing (GRSP content). Land use types significantly affected glomalin concentrations, with native

Fig 4. Principle component analysis (PCA) (A) and cluster analysis (CA) (B) of arbuscular mycorrhizal
fungal (AMF) community in soils of different land use types based on DGGE profiles of fungal 18S
rDNA fragments. Squares, triangles and circles indicate forest land soils, orchard soils and vegetable field
soils, respectively. Four replicate soils of each land use type were grouped using circles.

doi:10.1371/journal.pone.0130983.g004
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forest soils having the highest concentrations when compared to the soils of an afforested sys-
tem and an agricultural field [51].

Interestingly, most investigation found that increased land use intensity is unbeneficial to
AMF development. The numbers of AMF spores and species were highest in the grasslands,
lower in the low- and moderate-input arable lands, and lowest in the lands with intensive con-
tinuous maize monocropping [23]. They concluded that the increased land use intensity was
correlated with a decrease in AMF species richness and with a preferential selection of species
that colonized roots slowly but formed spores rapidly. Based on the spore morphology, Oehl
et al. [52] indicated that the diversity and community composition of AMF showed strong
dependence on land use intensity. In these AMF communities, several species were associated
with a specific land use type while others could be considered as “generalists” colonizing all
soils. This result is similar to that in our study, demonstrating the existence of some “special-
ists” and some “generalists”. Spore density and species richness were generally higher in the
natural savannas and under yam than at the other cultivated sites and lowest under the inten-
sively managed cotton [27]. Despite of data from morphological study, genetic data also sup-
ported this point. Using pyrosequencing approach, Lumini et al. [53] demonstrated that the
environments with low inputs (pasture and covered vineyard) showed a higher AMF biodiver-
sity than those subjected to human input (managed meadow and tilled vineyard). In contrast
to this point, some studies indicated that high intensity of land use did not change or even
increased AMF diversity or species richness. Jefwa et al. [26] reported that AMF species diver-
sity and richness were maintained unchanged despite dramatic changes in land use types

Fig 5. Category principle component analysis (Cat-PCA) biplot. The relationship between soils of
different land use types (squares) and arbuscular mycorrhizal fungal (AMF) phylotypes (solid circles), soil
chemical properties (solid circles with red arrows) are encompassed. For fungal phylotype, 1 and 0 were used
to represent presence and absence of particular species in each soil sample according to DGGE profiles.
Four replicate soils of each land use type were grouped using dash-lined circles. Bn (n = 1~66) indicates AMF
phylotype corresponding to DGGE band as shown in Fig 2.

doi:10.1371/journal.pone.0130983.g005
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including indigenous forest, planted forest and croplands with coffee, maize, horticulture or
napier, although some AMF species showed preference for either cropped or non-cropping
systems. Stürmer and Siqueira [25] even found that mean AMF species richness in crop, agro-
forestry, young and old secondary forest sites was twice that in pristine forest and pasture in
Western Brazilian Amazon following the conversion of pristine forest into distinct land uses.
They argued that practices adopted in this region helped maintain a high AMF diversity.

Impact of Land Use Types on AMF Community via Soil Chemical
Properties
We explored the relationships between AMF composition, soil chemical properties and land
use types using Cat-PCA. Three land use types were grouped well and were also in well accor-
dance with soil properties, e.g. forest land soils (with high contents of SOM, total N, total K
and available N but with low content of total P, available P and available K) versus vegetable
field soils (vice versa). Furthermore, these soil properties are well associated with some AMF
phylotypes in our study. For example, B29, B53 are closely associated with high contents of
available P, available K and total P. These data strongly suggest that land use types affect AMF
community composition via soil chemical properties, which has been demonstrated in diverse
ecosystems [52], [54], [55].

It is worthy to note that AMF phylotypes in vegetable field soils may be of ecological signifi-
cance. Douds and Schenck [56] reported that Rhizophagus intraradices (formerly known as
Glomus intraradices) is tolerant to P levels. In a study investigating the AMF diversity in green-
house soils, Acaulospora excavata, A. rehmii, Glomus aggregatum, Claroideoglomus claroideum
(formerly known as G. claroideum), Claroideoglomus etunicatum (formerly known as G. etuni-
catum) and Funneliformis mosseae (formerly known as G.mosseae) appeared in soils with 151
mg/kg available N, 59 mg/kg available P and 291 mg/kg available K, and A. nicolsonii, C. claroi-
deum, C. etunicatum and F.mosseae appeared in soils with 178 mg/kg available N, 75 mg/kg
available P and 355 mg/kg available K [57]. In our study, the available P and available K were
as high as 120 mg/kg and 138 mg/kg in vegetable field soils. The nutritional function offered by
AMF is less important in these circumstances, and thus their novel ecological functions and
the corresponding consequence are to be explored.
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