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Abstract
Atmospheric nitrogen (N) deposition is an important component that affects the structure

and function of different terrestrial ecosystem worldwide. However, much uncertainty still

remains concerning the magnitude of N deposition on grassland ecosystem in China. To

study the spatial and temporal patterns of bulk N deposition, the levels of N (NH4
+-N and

NO3
--N) concentration in rainfall were measured at 12 sites across a 1200 km grassland

transect in Inner Mongolia, China, and the respective N deposition rates were estimated.

The inorganic N deposition rates ranged from 4.53 kg N ha-1 to 12.21 kg N ha-1 with a mean

value of 8.07 kg N ha-1 during the entire growing season, decreasing steadily from the east-

ern to the western regions. Inorganic N deposition occurred mainly in July and August

across meadow steppe, typical steppe, and desert steppe, which corresponded to the sea-

sonal distribution of mean annual precipitation. A positive relationship was found between

inorganic N deposition and mean annual precipitation (R2 = 0.54 ~ 0.72, P < 0.0001) across

the grassland transect. Annual estimation of inorganic N deposition was 0.67 Pg yr-1 in

Inner Mongolia, China based on the correlation between N deposition rates and precipita-

tion. N deposition was an important factor controlling aboveground biomass and ecosystem

respiration, but has no effect on root biomass and soil respiration. We must clarify that we

used the bulk deposition samplers during the entire sampling process and estimated the

dissolved NH4
+-N and NO3

--N deposition rates during the entire growing season. Long-term

N deposition monitoring networks should be constructed to study the patterns of N deposi-

tion and its potential effect on grassland ecosystem, considering various N species, i.e.,

gaseous N, particle N, and wet N deposition.
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Introduction
Nitrogen (N) deposition, an important component in the global N cycle, significantly impacts
the structure and function of terrestrial ecosystems [1]. Human activities in the past few
decades, including fossil fuel combustion, fertilizer production, cultivation, and urban develop-
ment, have led to substantial increases in atmospheric N deposition [2]. The global rate of
anthropogenic reactive N production have increased from approximately 15 Tg N yr-1 before
1860 to 187 Tg yr-1 in 2005, and is expected to double over the next 25 years [3–6]. In China,
inorganic N bulk deposition increased approximately 25%, from 11.11 kg ha-1 yr-1 in the 1990s
to 13.87 in the 2000s [7]. Approximately 60% of reactive N was removed from the atmosphere
to the terrestrial and aquatic ecosystems via N deposition [3]. As a key limiting nutrient reac-
tive N deposition can stimulate plant growth in N-limited regions and cause substantial CO2

uptake in terrestrial ecosystems if the load is not too high [8]. However, excessive atmospheric
N deposition has negative impacts on terrestrial ecosystems, such as a loss of biodiversity and
soil acidification [9,10]. Therefore, excess N deposition has become an important public con-
cern due to its close relationship with human health, biodiversity, and climate change.

During the past two decades, high rates of N deposition have been widely reported in
Europe [11], Africa[12], and North America [13,14]. In China, increasing N deposition and
the ecological impacts of this deposition have been a great concern since the 1980s [1,7,9,15–
20]. Based on current N deposition monitoring networks and published data, the total amount
of N deposition was estimated to be up to 12~18 Tg N yr-1 in China, a relatively low value but
equal to approximately 60% of the national N fertilizer consumption [18,21]. Combining site-
level monitoring, gridded precipitation data, and atmospheric transport modeling results, it
was estimated that N bulk deposition had increased by 59%, from 13 kg N ha-1 yr-1 in the
1960s to 20 kg N ha-1 yr-1 in the recent decade [16]. Based on ten sites observation across
urban, suburban, industrial, agricultural, and rural areas during three-year period, the magni-
tude of total wet and dry deposition of atmospheric N species in Northern China was 60 kg N
ha-1 with a range from 28.5 to 100.4 kg N ha-1 yr-1 because of the high rates of wet deposition
and gaseous NH3 dry deposition [10]. Bulk N deposition in the North China Plain, an intensive
agricultural region undergoing rapid economic development in China, was estimated to be 27
kg N ha-1 ranging from 15 to 50 kg N ha-1 yr-1[22]. Although several N deposition monitoring
programs and N deposition simulation experiments have been conducted since the late 1990s
[23,24], much remains unknown concerning the magnitude on different ecosystems across
China because of a scarcity of measurements and quantitative knowledge [18,19]. Dissolved
inorganic N deposition from eight typical forest ecosystems along the North-South Transect of
Eastern China was studied, which showed that N deposition increased from north to south
along the transect with a range from 1.3 to 29.5 kg ha-1 yr-1[25]. Ammonium dominated N
deposition in forest ecosystem with a mean NH4

+-N:NO3
--N ratio of 2.5 in bulk deposition

and throughfall, and high N deposition, especially of ammonium, exceeded the critical N loads
for large areas of China’s forests[26]. However, little information is available on the N deposi-
tion in grassland ecosystems. Therefore, it is crucial to study the spatial and temporal patterns
of N deposition and its potential ecological impacts on grassland ecosystems and to utilize this
environmentally derived nutrient resource to realize the sustainable development of grassland
ecosystems.

Grassland covers approximately 40% of the land in China. Major grasslands include tem-
perate grasslands in arid and semi-arid regions, alpine grasslands on the Tibetan Plateau, and
small areas of grasslands in the warm temperate and tropical regions. Semiarid grasslands on
the Mongolian Plateau are important part of the widely distributed Eurasian Steppe, including
meadow steppe, typical steppe, and desert type. The seasonal and spatial variations of N
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deposition and its ecological effects on plant-soil-microbe interactions have been reported in
typical steppe in this region [27–30]. However, the vast area and wide distribution of different
types of Chinese grasslands have been largely ignored in terms of global N deposition. The
objectives of this study were (1) to identify the magnitude and spatio-temporal variability of
atmospheric inorganic N deposition, (2) to reveal the controlling factor on N deposition and
estimate the annual N deposition in Inner Mongolia, China, (3) to analyze the ecological
impacts of N deposition on the carbon cycle in grassland ecosystems.

Methods and Materials

2.1 Site description
Twelve monitoring sites were established to determine atmospheric N deposition, primarily the
deposition of inorganic N, along a transect from Baokang (123.25 E, 44.11 N) to the Siziwang
Banner (111.89 E, 41.79 N), approximately 1200 km across Inner Mongolia, China (Fig 1). Three
different vegetation types, including meadow steppe (Experiment sites #1–4), typical steppe
(Experiment sites #5–8), and desert steppe (Experiment sites #9–12), were included along this
transect, and the distance between sites was approximately 100 km. Experiment sites #7 is a long
term experimental station of Inner Mongolia grassland ecosystem operated by Chinese Academy
of Sciences. Experiment sites #12 is another long term experimental station of grassland ecosys-
tem in Siziwang Banner. The rest sites are private land rented from local farmers who gave the
permission to conduct the study on these sites. All the fields studies did not involve endagered or
protected species. At each site, an area of 30 m × 30 m of flat ground and homogeneous vegeta-
tion was fenced for our investigation. This transect covered a mean annual precipitation (MAP)
gradient from 120 to 450 mm and a mean annual temperature gradient from 0.5 to 7.1°C. Rain-
fall showed a strong gradient decreasing from east to west along this transect.

Fig 1. The location of the twelve sampling sites across different steppe types in Inner Mongolia,
China.

doi:10.1371/journal.pone.0144689.g001
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2.2 Sampling and Measurement
N deposition rate. To analyze the N content in rainwater, precipitation collectors distrib-

uted evenly at all monitoring sites were installed. Four duplicate rainfall samples (bulk deposi-
tion) were collected at each site, using a glass funnel (diameter 7.5 cm) and brown bottle that
was put into a PVC cube to try to prevent dust pollution. The volume of each rainfall sample
was determined using a measuring cylinder. The sample was then transferred into a white plas-
tic bottle and put into a thermostatic chamber to measure the inorganic N deposition. All of
the precipitation collectors were cleaned with deionized water immediately after each collec-
tion. We collected the bulk precipitation samples included soluble and insoluble particulates
every ten days during the entire grass growing season.

The unfiltered rainwater samples were frozen in a refrigerator until analysis for ammonium
(NH4

+-N) and nitrate (NO3
--N) by a Continuous Flow Analyzer (TRACCS2000, BranLuebbe

Inc., Germany). All of the samples were collected at a frequency of 10 days and taken back to
the lab as soon as possible before the dissolved inorganic nitrogen analysis. Each sample was fil-
tered by gravity through a 0.45 μmmembrane filter to remove insoluble particulates, and 15
mL filtrates were then frozen and stored in plastic bottles until chemical analysis. The methods
of duplicates, blank, and standard materials were used to control data quality. NH4

+-N and
NO3

--N concentrations and N deposition were calculated using the following equation:

C ¼
Xn

i

Ci� Li =
Xn

i

Li ð1Þ

Where C refers to the volume-weighted concentration of NH4
+-N and NO3

--N (mg N L-1); Ci
is the concentration of NH4

+-N and NO3
--N (mg N L-1) for the individual event with a precipi-

tation amount Li (L); and n refers to the number of samples taken during the entire growing
season.

The deposition flux of NH4
+-N and NO3

--N was calculated using the N concentrations and
the amount of precipitation for each event by the following equation:

N deposition flux ðkg N ha�1Þ ¼ ðð
X

Ci� 10�6 � ViÞ=AÞ � 10000 ð2Þ

Where Vi is the actual volume of the deposition that was collected in the brown bottle in the
monitoring sites every ten days each month, and A the area of the glass funnel (m2). Nitrogen
deposition per month was the sum of N deposition per event in a month. All statistical analysis
was performed using SPSS 16.0 (SPSS, Inc. 2008).

ANPP and BNPP measurement. Aboveground net primary productivity (ANPP) and
belowground net primary productivity (BNPP) were considered when evaluating the ecological
impacts of N deposition on plant growth in the grassland ecosystem. To determine the ANPP,
we established 3 plots of 1 m length and 1 m width which evenly distributed across each site.
All plants were hand clipped at ground level. Most dead material remained attached to the
grass and the ground litter content was little compared with the attached dead materials. All
plants were fresh weighed, bagged and subsequently oven dried at 70°C to constant weight, and
weighted to the nearest 0.1 g. For the BNPP sampling, coring was done with a root auger (8 cm
inner diameter) at the depth of 0–10 cm, 10–20 cm, and 20–30 cm. Three duplications of soil
samples were collected in different soil depths at each site. Once collected, root samples were
brought to the laboratory where they were gently washed in a standardized sieve (2 mm) to
separate roots from soil particles. Roots were then oven-dried to a constant weight at 65°C,
approx. 2–3 days for the fine roots.
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Re and Rs measurement. Ecosystem carbon exchange including ecosystem respiration
(Re) and soil respiration (Rs) were considered when evaluating N deposition on carbon
exchange. Static chamber-gas chromatography method was used to measure Re and Rs at an
interval 10 days during the experimental period. Three static chamber were set up at each site
to measure Re and Rs, respectively [31]. We clipped the grass 1–2 days before sampling to
detect Rs, while no clipping was carried out to detect Re. Four gas samples from a chamber
were regularly collected at an interval of 10 min between 08:00 am and 11:30 am on every sam-
pling day. The chamber size was 50 cm×50 cm×25 cm. The CO2 concentration was measured
by gas chromatography (Hewlett-Packard 5890 Series II). The CO2 fluxes were calculated
according to the following equation:

F ¼ r� V
A
� Dc

Dt
� 273

273þ T
ð3Þ

Where F stands for CO2 flux in mg CO2-C m-2 h-1, ρfor density of CO2 in the standard
state, V for effective volume of the chamber (m3), A for area of the patch of field, from which
CO2 was emitted into the chamber (m2),4c/4t for rate of accumulation in ppmv CO2-C h-1,
and T for temperature in celsius in the chamber. Mean CO2 flux during the growing period
was the average of the fluxes in the triplicates of each treatment weighted by the interval of two
measurements.

Estimation of annual N deposition. To determine the annual N deposition, monthly pre-
cipitation was collected from twelve meteorological stations in Inner Mongolia that were close
to the sampling sites. According to the relationship between precipitation and N deposition
rates, monthly N deposition was determined. Annual N deposition was the sum of monthly N
deposition in a year.

2.3 Data calculation and analysis
Sample differences of inorganic N deposition among sampling sites and different months were
tested with the two-way analysis of variance. Comparisons of means were conducted using the
Tukey’s HSD test. Regression analysis was used to examine the relation between precipitation
and inorganic N deposition. Correlation between N deposition rates and precipitation was cal-
culated during the entire grass growing season from the beginning of May to the end of Sep-
tember. Annual precipitation at the 12 experimental sites was taken from the stations close to
these sites. Total N deposition was estimated based on the relationship formed during the
entire growing season. Analysis of variance was carried out using SPSS 16.0 (SPSS, Inc. 2008)
software considering the main effect of month, site, and steppe type on N deposition.

Results

3.1 Seasonal variations of inorganic N deposition
Atmospheric NH4

+-N concentration was relatively higher than that of NO3
--N from three dif-

ferent steppe types, i.e., meadow steppe, typical steppe, and desert steppe during the entire
growing season (Fig 2). Inorganic N concentration including NH4

+-N and NO3
--N ranged

from 1.2 to 6.4 mg N L-1 across the grassland transect, with a mean value of 3.1 mg N L-1. Con-
centrations of NH4

+-N and NO3
--N at desert steppe sites were higher than that at the sites of

meadow and typical sites by a factor of 2.1~4.1. Relatively lower inorganic N concentration was
found in August in typical and desert steppe, while higher values occurred in June, July, Sep-
tember, and October. In meadow steppe, no significant difference of NH4

+-N and NO3
--N con-

centration between months was found during the period from July to October.
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Seasonal patterns of inorganic N deposition rates (NH4
+-N, NO3

--N, and NH4
+-N plus

NO3
--N) fluctuated dramatically during the grass growing season, with peaks occurred in July

and August across different steppe types (Fig 3). High rainfall amounts occurred in July and
August, accounting for 50~64% of the precipitation during the entire growing season. Overall,
the deposition of inorganic N corresponded to the seasonal distribution of precipitation in
Inner Mongolia, China. The monthly deposition flux of N ranged from 59 to 437 mg N m-2 in
meadow steppe, 38 to 311 mg N m-2 in typical steppe, and 46 to 186 mg N m-2 in desert steppe,
respectively (Fig 3).

Fig 2. Seasonal variations of inorganic N concentrations in three different steppe types, i.e., meadow
steppe, typical steppe, and desert steppe across the grassland transect during the entire growing
season.

doi:10.1371/journal.pone.0144689.g002
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Monthly mean N deposition across different steppe types ranged from 74 mg Nm-2 in June
and 309 mg N m-2 in July (Table 1). Statistical analysis indicated that month was an important
factor controlling N deposition across the 12 experimental sites (P< 0.0001). Mean inorganic
N deposition rates are 219, 147, and 125 mg N m-2 for meadow steppe, typical steppe, and des-
ert steppe, respectively (Table 1). N deposition at the meadow steppe sites was significantly
higher than those at other sites (P = 0.01), but similar N deposition was found between typical
steppe and desert steppe (Table 1). No significant interactive effect between steppe type and
month was found in this study (data not shown). This might be because N deposition rates

Fig 3. Seasonal variations of inorganic N deposition rates in three different steppes, i.e., meadow
steppe, typical steppe, and desert steppe across the grassland transect during the entire growing
season.

doi:10.1371/journal.pone.0144689.g003
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were largely determined by precipitation pattern in different months, and there is no causal
relationship between steppe type and N deposition.

3.2 Spatial patterns of inorganic N deposition
The spatial patterns of atmospheric N deposition rates (NH4

+-N, NO3
--N, and NH4

+-N plus
NO3

--N) along the grassland transect decreased steadily from the eastern meadow steppe to
the western desert steppe regions (Fig 4). The inorganic N deposition rate ranged from 453 mg
N m-2 (equals to 4.53 kg N ha-1)at Site 9 of the desert steppe to 1221 mg N m-2 (equals to
12.21 kg N ha-1) at Site 3 of the meadow steppe, with a mean value of 807 mg N m-2 (equals to
8.07 kg N ha-1) across the grassland transect. Such differences in N deposition were found
across all the sites that indicated the presence of geographic trends in the spatial distribution of
N deposition.

Mean annual precipitation decreased from the eastern to the western sites with a range
from 121 mm in desert steppe to 452 mm in meadow steppe, a trend that agreed well with the

Table 1. Inorganic N deposition rates from three different steppe types during the entire growing sea-
son in 2012. Different letters in the column of mean N deposition indicated the significance (P < 0.05).

Factors Analysis of variance

Mean N deposition (mg N m-2) F P

Month 9.94 < 0.0001

June 74 a

July 309 b

August 156 c

September 169 c

October 110 ac

Steppe type 4.99 0.01

Meadow steppe 219 a

Typical steppe 147 b

Desert steppe 125 b

doi:10.1371/journal.pone.0144689.t001

Fig 4. Spatial variations of the atmospheric deposition flux of N species at the 12 experimental sites.

doi:10.1371/journal.pone.0144689.g004
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N deposition trends (Fig 4). Statistical analysis indicated that significant correlations between
N deposition (NH4

+-N, NO3
--N, and NH4

+-N plus NO3
--N) and precipitation were found

across all the sites (R2 = 0.54~ 0.72), showing that precipitation was an important factor con-
trolling the geographic patterns in inorganic N deposition in Inner Mongolia, China (Fig 5).

3.3 ANPP and BNPP
Both monthly and mean ANPP decreased regularly from the eastern to western sites and
reached the lowest values at desert steppe (Table 2; S1 Fig), following the similar tendency with
precipitation (Fig 4). Overall, aboveground biomass decreased with the decreasing N deposi-
tion rate (R2 = 0.40, P< 0.05) and precipitation (R2 = 0.60, P< 0.0001) (Table 2; S1 Fig).

Fig 5. Relationship between inorganic N (NH4
+-N, NO3

--N, and NH4
+-N plus NO3

--N) wet deposition and
precipitation at the 12 experimental sites.

doi:10.1371/journal.pone.0144689.g005

Table 2. Plant growth and ecosystem carbon exchange at 12 sites across the grassland transect in Inner Mongolia, China.

Sites ANPP (kg ha-1) BNPP (kg ha-1) Re (mg m-2 h-1) Rs (mg m-2 h-1)

0–10 cm 10–20 cm 20–30 cm

1 12.7 25.1 5.86 4.25 599 358

2 8.56 16.3 5.92 3.60 754 417

3 7.70 26.6 6.68 4.39 440 181

4 8.60 21.0 6.04 4.10 705 333

5 6.61 35.7 18.6 10.4 425 274

6 5.74 18.1 18.1 12.0 515 374

7 5.23 24.5 14.1 7.67 373 212

8 5.38 23.4 11.8 6.92 485 246

9 4.56 23.0 7.06 4.62 265 188

10 5.34 15.7 6.88 5.67 289 194

11 1.68 9.31 5.30 2.82 126 91

12 7.46 22.7 8.83 6.08 390 196

doi:10.1371/journal.pone.0144689.t002
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Both monthly and mean BNPP from different soil depths (0~10 cm, 10~20 cm, and 20~30
cm) showed different spatial patterns across the grassland transect, showing no significant rela-
tionship between BNPP and inorganic N deposition and precipitation (Table 2; S2 Fig).

3.4 Re and Rs
Both Re and Rs decreased regularly from the eastern to western sites and reached the lowest
values at desert steppe of site #11 (Table 2). Significant positive relationship was found between
precipitation and ecosystem respiration (R2 = 0.64, P< 0.05) and soil respiration (R2 = 0.44,
P< 0.05) (S3 Fig). However, no significant correlation was found between N deposition and
Re and Rs (R2 = 0.24~0.39, P> 0.05) (S3 Fig).

Discussion

4.1 Factors controlling N deposition rates across the grassland transect
Both natural factors and human activities are important for controlling N deposition rates
across different land surface ecosystems. Across the grassland transect, precipitation at the
eastern sites showed higher values than that at the western sites. However, the opposite trend
was observed for the inorganic N concentration in rainwater. It indicated that significant posi-
tive relationships between bulk N deposition rates and precipitation (Fig 5). Previous studies
have reported consistent effects of precipitation on the N deposition [22,32], suggesting that
the amount of rainfall influenced the seasonal trends of N deposition at a given site.

The main anthropogenic source of NH4
+-N in the atmosphere was generally considered to

be NH3 volatizing from N fertilizers in agricultural and natural areas and from the excrements
of human beings and animals, while major anthropogenic sources of NO3

--N were NOx emit-
ted from fossil fuel combustion in industries, vehicles and biomass burning [10]. Hence, the
ratio of NH4

+-N/NO3
--N may indicate the relative contribution of reactive N from agriculture

and animal husbandry and from industry and traffic emissions to N deposition on the local/
regional scale. Determining these relative contributions of reactive N may allow for additional
source information to be obtained concerning N deposition [33]. In this study, the NH4

+-N
deposition rate was, on average, 5.3 times greater than that of NO3

--N, with a range from 3.2 to
10.2 times greater than that of NO3

--N across different sites of the transect (Fig 6). This differ-
ence was more pronounced at the western sites, thereby indicating that NH4

+-N was a greater
contributor to inorganic N in the desert steppe than in the meadow steppe and typical steppe.
Furthermore, NH4

+-N from grassland ecosystems and animal excrement might be remained
the major contributor to N deposition in the desert steppe area, compared with NO3

--N from
fossil fuel combustion in the industrial and transportation sectors in the meadow steppe
regions, where human activities were much more frequent than in the other sites. Therefore, in
addition to precipitation, human activity was another controlling factor that affected the spatial
patterns of N deposition along the grass transect in Inner Mongolia, China.

4.2 Estimation of annual N deposition in grassland ecosystem in Inner
Mongolia
According to the relationship between precipitation and N deposition (NH4

+-N plus NO3
--N)

at different sites across the grassland transect, annual N deposition was estimated according to
the monthly precipitation collected from the meteorological stations (Fig 7). Annual N deposi-
tion was 979 mg N m-2 (equals to 9.79 kg N ha-1), with high peaks occurred during the period
fromMay to September, accounting for 93% of the annual deposition rates. Accordingly, mea-
sured N deposition was 8.07 kg N ha-1 during the entire growing season, accounting for 82% of
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the estimated value. The available area of grassland in Inner Mongolia was 6.8×1011 m2 in
total, and the N deposition was estimated to be 0.67 Pg yr-1 in this study.

In this study, the deposition of inorganic N ranged from 4.53 to 12.21 kg N ha-1 yr-1 with a
mean value of 8.07 kg N ha-1 yr-1 during the period from June to October across the grassland
transect in Inner Mongolia (Fig 6), were relatively low compared to the overall values and
those reported for other areas in China [10,18]. The average wet deposition fluxes of inorganic
N were 13.87 kg N ha-1 yr-1 in China and 25 kg N ha-1 yr-1 in North China [7]. Considering dis-
solved organic N in wet deposition and NH3, HNO3, and particulates NH4

+-N plus NO3
--N in

Fig 6. Dissolved inorganic N deposition and the ratio of NH4
+-N/NO3

--N during the entire growing
season at the 12 experimental sites.

doi:10.1371/journal.pone.0144689.g006

Fig 7. Monthly variations of precipitation at meteorological stations and N estimation in Inner
Mongolia, China.

doi:10.1371/journal.pone.0144689.g007
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dry deposition, the average wet plus dry deposition of N was 60.6 kg N ha-1 yr-1 over agricul-
tural and industrial regions in Northern China during the period from 2008 to 2010 [10].

The relatively low deposition of inorganic N may be explained by three factors. First, the
observed period was only 5 months long, spanning the entire growing season, but not a whole
year. However, this might only play a minor role since the N deposition estimation in May to
September accounted for 93% of the annual N deposition (Fig 7). Second, the underlying sur-
face in our study was grassland and did not include agriculture, industry, and urban areas.
Although human activities especially industry development increased NO3

--N and decreased
the ratio of NH4

+-N and NO3
--N in eastern region of Inner Mongolia, it could not alter local N

deposition rates completely. This is because the NO3
--N deposition rates were relatively low

when compared with NH4
+-N deposition (Fig 4). Third, inorganic N species NH4

+-N and
NO3

--N were considered in this study. Dissolved organic N comprises approximately 30% of
total N deposition[34], but organic N in deposition was not considered in this study. N species
of NH3, HNO3, and particulates NH4

+-N and NO3
--N in dry deposition were not taken into

account. The thematic difference such as inorganic, organic, dry N deposition might be the pri-
mary reason for the differences we have observed. Annual deposition of inorganic N was 47
mmol m-2 yr-1; 51% of atmospheric deposition was attributed by dry deposition [38]. The dry
and N deposition should be estimated to be about 16 kg N ha-1 which was comparable with the
previous studies [13,14,38]. Dry N deposition should be involved in the future study.

4.3 Ecological impacts of inorganic N deposition
The increase in atmospheric N deposition can alter rates of C and N cycles of terrestrial ecosys-
tems, and thus affect the structure and function of terrestrial ecosystems. Over the last decade,
numerous simulated N deposition experiments have been conducted in different ecosystems in
China [1,9,17]. Previous studies have focused on the potential effects of atmospheric N deposi-
tion on grassland ecosystem, including aboveground productivity, biodiversity, acidification,
the potential of soil C storage and fixation, and the emission of greenhouse gases [9,21]. ANPP,
BNPP, Re, and Rs were considered when evaluating impacts of N deposition on carbon cycle in
grassland ecosystem (Table 2).

Previous studies found that N was a major limiting factor in the growth of grasslands since
N addition may lessen the N limitation by increasing soil N availability and thus stimulate
plant growth [29,35]. However, previous studies also indicated that ANPP of arid and semiarid
ecosystems was primarily limited by the temporal and spatial patterns of precipitation, and the
effect of N on ANPP was usually neglected [36,37]. A four-year study with several N applica-
tion levels executed in Inner Mongolia grasslands indicated that N produced no effect on
ANPP under dry conditions, however, ANPP can be improved by four times the mean value in
this region with over 105 kg N ha-1 application under relative conditions. This means that if
water restrictions are eased, N becomes another important limiting factor [27].

BNPP was a major source of organic C pool in the soil, with more than 60% of annual C
originating from plants. Changes in biomass allocation patterns may impact C and N fluctua-
tions, corresponding to resource availability and management practices. Previous studies indi-
cated that In North and Central American grasslands, root biomass increases along with N
availability [38]. Oppositely, results from an alpine meadow in India exhibited a decrease of
root biomass after two-year’s N application [39]. Therefore, belowground vegetation biomass
was controlled by comprehensive factors including soil N availability and water content.

Previous reports indicated diverse effects of N input on CO2 effluxes in grassland ecosys-
tems. For example, increased N-inputs have shown to retard mineralization of soil organic
matter and depress soil respiration CO2 losses [40]. N deposition tended to decrease CO2
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emission in an alpine meadow on the Qinghai-Tibetan Plateau, but all the differences caused
by N deposition were all not significant [41]. However, other researchers have observed small
increases in soil respiration in response to increased N-inputs [42]. Nitrogen addition tended
to promote soil CO2 effluxes and this effect increased with the N addition levels; the decrease
in soil CO2 efflux from low N addition was mainly attributed to decrease of aboveground bio-
mass [43]. Previous study found that CO2 effluxes remained unchanged upon five years of
chronic N addition, and these authors suggested that abiotic mechanisms might play a great
role in N retention [35].

Two mechanisms needed to be considered when thinking about the effect of N deposition
on soil respiration and ecosystem respiration. First, N deposition increases plant growth, which
increases uptake of CO2 and the rate of carbon sequestration [44]. Also, N additions can sup-
press rates of soil decomposition and release of CO2 to the atmosphere. Scarcity of plant-avail-
able N often limits plant growth rates, such that N additions typically enhance rates of net
primary production (CO2 uptake) across various terrestrial ecosystems, including temperate
and tropical forests, tundra, grasslands, and wetlands [35]. Second, the reduced soil respiration
in response to increased N deposition might be caused by a combination of reduced root respi-
ration when N becomes more available and reduced microbial demand for recalcitrant forms
of N-containing organic matter [40,45].

4.4 The limitation of the sampling technique
Wemust clarify that bulk rather than wet deposition was collected in this study. The wet depo-
sition referred strictly to wet-only deposition which was collected only during rainfall and
snowfall events since the samplers were closed outside the periods of precipitation[20]. The
bulk deposition referred to rainfall and snowfall samples collected using traditional rain gauges
which were open permanently[20]. This suggested that bulk deposition contained wet plus
unquantifiable dry deposition (including N species of both gases and particles) and therefore it
should be higher than wet deposition [22]. For the rainwater collectors in this study, a glass
funnel inserted into a brown bottle and put into a PVC cube, was used in this study. Although
some insects and particles were prevented to come into the brown bottle, bulk deposition such
as particles and gaseous N was in fact monitored using this equipment. In general, N deposition
sampled by bulk sampler was higher than that of wet-only device but lower than that combined
from individual sampling technique [46]. Thus the method used in this study might underesti-
mate the total N deposition [47]. It is critically important to consider various N species (NHx

and NOy, particles, and wet N deposition) to quantify both the wet and the dry deposition; oth-
erwise, an extrapolation of the total N deposition flux could yield a high underestimation.

Conclusions
Bulk precipitation samples were collected to study the dissolved inorganic nitrogen in grass-
land ecosystem along a 1200 km transect in Inner Mongolia, China. Inorganic N deposition
rates decreased steadily from the east to the west along the grassland transect, exhibiting signif-
icant spatial and temporal patterns. Ammonium dominated N deposition in grassland ecosys-
tem with a mean NH4

+-N:NO3
--N ratio of 5.3 in bulk deposition. NH4

+-N/NO3
--N ratios in N

deposition clearly increased from the eastern to the western regions, which was most likely
caused by the increase in NO3

--N from fossil fuel consumption and the rapid growth of indus-
try and transportation at the eastern sites. Both precipitation and anthropogenic activities
played an important role in defining the spatial and temporal patterns of atmospheric N depo-
sition. Significant impacts of N deposition on aboveground biomass and ecosystem respiration
was found. Different N species in bulk precipitation such as dissolved organic N, particles and
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gaseous N should be considered in the future studies. The patterns of the total N deposition
and its potential effects on grassland ecosystem should be identified through long-term N
deposition monitoring networks and cross-site N addition experiments in China.
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