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Changes in large-scale climate alter spatial
synchrony of aphid pests
LawrenceW. Sheppard1*, James R. Bell2, Richard Harrington2 and Daniel C. Reuman1,3*
Spatial synchrony, the tendency of distant populations to
fluctuate similarly, is a major concern in ecology1–8. Except in
special circumstances3,9, researchers historically had di�culty
identifying drivers of synchrony in field systems5,6,10. Perhaps
for this reason, the possibility9,11,12 that changes in large-scale
climatic drivers may modify synchrony, thereby impacting
ecosystems and human concerns, has been little examined.
Here, we use wavelets to determine environmental drivers of
phenological synchrony across Britain for 20 aphid species,
most major crop pests. Consistently across species, changes
in drivers produced large changes in aphid synchrony.Di�erent
drivers acted on di�erent timescales: using a newwavelet ana-
logue of the Moran theorem1, we show that on long timescales
(>4years), 80% of synchrony in aphid first flights is due to
synchrony in winter climate; but this explanation accounts for
less short-timescale (≤4years) synchrony. Changes in aphid
synchrony over time also di�ered by timescale: long-timescale
synchrony fell from before 1993 to after, caused by similar
changes in winter climate; whereas short-timescale synchrony
increased. Shifts inwinter climate are attributable to theNorth
Atlantic Oscillation, an important climatic phenomenon7,11,13,
so e�ects described here may influence other taxa. This
study documents a new way that climatic changes influence
populations, through altered Moran e�ects.

Spatial synchrony is defined as the tendency of spatially separated
populations of a species to fluctuate in a similar way. Synchrony
can affect regional ecosystem functioning14–17: asynchronous local
population fluctuations negate each other in the regional average
population and hence have limited influence; but synchronization
can result in large-scale outbreaks, shortages18–20 or extinctions21.

Annual time series from 1976 to 2010 for 20 aphid species’
first flight day, flight duration (length of the flying season), and
total annual count were extracted from the Rothamsted Insect
Survey suction-trap data set (Methods) for 11 locations spanning
Britain (Supplementary Table 1). The survey includes daily counts
of hundreds of species from many locations. Locations were
selected for their duration of operation. Species (Supplementary
Table 2) were selected before analyses for their importance as pests
and model species for population dynamics studies22,23. Data for
potential environmental drivers for the sites for the same years
were used. Analyses examining average winter (December–March),
April, andMay temperatures are presented here. British aphids are a
classic system for studies of synchrony2,24, but changes in synchrony
have not been examined.

The strength of population synchrony can differ by timescale20
and can change over time25. These features can be detected with the
waveletmean field (Methods and Supplementary Fig. 1), a technique
that provides a plot showing strength of synchrony as a function

of timescale and time. The wavelet mean field is an average of
normalized wavelet transforms of available time series.

Using wavelet mean fields we found marked timescale structure
and substantial changes in aphid first-flight synchrony. Patterns
were consistent across all but two species. We compared two
17-year-long parts of each species’ wavelet mean field, dividing
the study period into equally sized early and late halves. To
summarize timescale structure we compared the part of the mean
field describing long timescales (period> 4 years, corresponding to
Fourier components with positive lag-1 autocorrelation) with the
part describing short timescales (period ≤ 4 years, Fourier compo-
nents with negative lag-1 autocorrelation). First-flight synchrony
was biased towards longer timescales for the first 17 years of the
study period, 1976–1992 (Fig. 1a arrow tails, p=1.1×10−6, p values
in this paragraph are from paired t-tests across species). For the
period after 1993, long-timescale synchrony dropped significantly
(p= 7.4× 10−9, Fig. 1a cyan arrows) by an average of 35%, and
short-timescale synchrony increased (p= 1.2× 10−3, Fig. 1a green
arrows) by 26%, with the result that short-timescale synchrony
dominated in 1994–2010 (p=2.4×10−6, Fig. 1a arrow heads).
The only two species for which long-timescale synchrony did not
decrease markedly were the corn leaf aphid (Rhopalosiphummaidis;
species 6) and the sycamore aphid (Drepanosiphum platanoidis;
species 19).

Observed changes in synchrony may have important
implications for pest management: the balance of long- and
short-timescale synchrony determines year-to-year volatility of
average first flight times, and observed changes mean volatility
increased. Before 1993, when first flight times were synchronized
predominantly on long timescales, time series of species-average
first flight times across Britain were dominated by low frequencies
because synchronized long-timescale fluctuations reinforced
each other in the average but short-timescale fluctuations tended
more to cancel out. Thus, average timing of flights changed
slowly from year to year. When long-timescale synchrony was
replaced by short-timescale synchrony after 1993, high-frequency
oscillations in local first flight times occurred more in unison
across Britain, so timing of average first flights became dominated
by high frequencies, and was more volatile. These changes can
be detected using lag-1 autocorrelations (Supplementary Fig. 2),
which decreased significantly (p=7.2×10−8, paired t-test) from an
average of 0.234 before 1993 to−0.203 after; although it would have
been difficult to know to look for this change without first having
done a systematic wavelet or equivalent analysis. This constitutes a
change from persistent to anti-persistent dynamics with respect to
year-to-year changes in UK-average phenology.

Flight durations and total counts were also synchronized, and
species often showed changes in synchrony and its timescale
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Figure 1 | Synchrony of aphid first flights changed, driven by synchrony in winter climate. a, Arrows go from values representing strength of synchrony in
1976–1992 to values for 1994–2010 for long (L, cyan;>4 years) and short (S, green; 4 years) timescales; tips and tails are averages of wavelet mean field
magnitudes (Methods). Bar heights and colours show p values for spatial coherences between first flights and winter temperatures. Red p<0.001; orange
p<0.01; yellow p<0.05. b,c, Surface plots show wavelet mean field magnitudes representing synchrony (red) and asynchrony (blue), averaged across
aphid species (b), and for winter temperatures (c).

structure, but regularities across species were not observed
(Supplementary Figs 3 and 4). Total count and flight duration
are subject to many factors acting on the reproduction of the
aphids through the year. These variables may be considered
composite variables, in the sense that they are functions of several
simpler variables. For instance, flight duration is influenced by
first flights and last flights, which are themselves subject to
different regulating factors. The variability of total count and flight
duration thus may be less subject to single controlling factors than
first flight.

Winter-temperature synchrony on long timescales also decreased
from before to after 1993 (Fig. 1a, red arrow), and in fact detailed
patterns of how synchrony depends on time and timescale were
strikingly similar for winter temperatures and on average across
species for first flights (Fig. 1b,c). This similarity suggests, but
does not prove, the hypothesis that winter-temperature synchrony
causes first-flight synchrony. To formally test this hypothesis, we
evaluated wavelet spatial coherences for long and short timescales
for each species. Spatial coherence measures the extent to which
two variables have consistent phase differences and correlated
magnitudes of oscillation over time at all locations of measurement,
as a function of timescale (Supplementary Fig. 5 and Methods). As
oscillations in aphid variables cannot plausibly cause oscillations
in environmental variables, a significant spatial coherence shows a
causal effect of the environmental variable, or one highly coherent
with it, on the aphid variable26. This is because irregular oscillators
that are not causally related are unlikely tomaintain consistent phase
differences or magnitude correlations over time.

Winter temperatures were strongly spatially coherent with
first flights (Fig. 1a, horizontal bars), supporting the hypothesis
that these variables are causally related. Additional evidence also

supports the hypothesis. First, the only two species not showing
significant spatial coherence with winter temperatures were the
corn leaf and sycamore aphids, the same two species that did not
show changes in synchrony consistent with winter temperature.
Second, species overwintering in active life stages (codes 6, 9, 10,
15, 16, 18, Fig. 1) were significantly more spatially coherent with
winter temperature than species overwintering as eggs (1, 3, 4, 5,
7, 8, 13, 17, 19), which are less susceptible to cold (average factor
1.23, p=7.5×10−3 for long; average factor 1.41, p=0.030 for short
timescales, one-tailed t-tests). April and May temperatures were
not generally spatially coherent with first flight (Supplementary
Fig. 6), even though April and May are closer to when aphids first
fly (April–July) than is winter.

Some relationships with winter temperature in Fig. 1 can
be explained by known mechanisms. Active overwinterers are
adversely affected by low temperatures and outbreak after mild
winters22,27. Overwintering eggs of aphids are very tolerant of low
temperature whereas mobile stages are not. Mobile stages suffer
direct mortality if temperatures fall sufficiently low for a sufficient
length of time, threshold values varying with species and clone. At
higher low-temperature thresholds and shorter durations, sublethal
effects on the development and fecundity of offspring can occur.
Movement by walking is also inhibited. For all of these reasons, the
abundance of aphids in spring, and hence the time of first detection
in traps, is expected to be more closely linked to winter temperature
in species overwintering in mobile stages rather than as eggs.
Mechanismsmay also be indirect: cereal aphid outbreaks are related
to the previous winter for some species owing to wheat phenology22.
Flight duration and count fluctuationswere also sometimes spatially
coherent with winter temperatures, but less consistently than first
flight (Supplementary Fig. 6).
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Figure 2 | Inter-species variation and changes in synchrony are explained
by winter climate. a–d, Species marker heights represent strengths of
first-flight synchrony. Horizontal displacements are spatial coherences of
first flights with winter temperatures, colours representing significance as
in Fig. 1a. Lines are expected synchrony, according to the wavelet Moran
theorem, if winter temperature were the sole synchronizing influence.
Vertical distances between points and lines represent residual synchrony
from other influences. Line slopes are strengths of winter-temperature
synchrony. a,c, On long timescales, residual synchrony is minimal, species
with greater coherence are more synchronized, and reductions from before
1993 to after generally follow reductions in winter-temperature synchrony.
Mathematical details are given in ‘Moran theorem’ results in Methods.

To explore further the influence of winter-climate synchrony on
first-flight synchrony, we developed a timescale-specific version of
theMoran theorem, a classic theorem relating population synchrony
to synchrony of environmental fluctuations1. In words, the new the-
orem states that at timescale σ , if the only synchronizing influence
on a biological variable, b, is the environmental variable e, then the
strength of biological synchrony is the strength of synchrony in the
environmental driver times the coherence of that driver with the
biological variable. Precisely,

〈
|r (b)
σ
(t)|

〉
≈

〈
|r (e)
σ
(t)|

〉
|5(be)

σ
|, where

the rσ arewaveletmean fields (superscripts (b) and (e) indicating the
two variables), | · | represents complex magnitude, 〈·〉 is the square
root of the time-averaged squared value (r.m.s.), and |5(be)

σ
| is spatial

coherence. The left side measures biological synchrony and the
first multiplicand measures environmental synchrony. The theorem
formalizes the reasoning that synchrony of a driven variable should
depend on synchrony of the driver and the strength of its influ-
ence. Additional independent influences may exist that increase
biological synchrony, turning the approximate equality, ≈, into an
inequality,>. The right side of the formula is then the amount of
synchrony attributable to the environmental variable e, with the
remaining synchrony attributable to the action of these other factors.

If winter-climate synchrony is indeed the principal driver of first-
flight synchrony, the theorem provides three expectations: the right
side of the equation will be close in magnitude to the left side for
winter temperatures and first flights; species with greater spatial
coherence with winter temperatures will be more synchronized;
and changes over time in winter-temperature synchrony will be
parallelled by proportional changes in first-flight synchrony. On
long timescales, all three expectations were met for the 18 species
excluding the corn leaf and sycamore aphids (Fig. 2a,c). First,
winter-temperature synchrony explained an average of 80% of
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Figure 3 | Changes in winter-temperature synchrony mirrored changes in
the NAO. a, Wavelet mean field magnitudes for winter temperatures from
13 long-maintained UK weather stations resembled their counterparts for
the 11 aphid sampling locations (Fig. 1c); the comparable part of the plot is
indicated by black lines. b, A normalized wavelet transform of Hurrell’s
winter NAO index showed similar features to a on long timescales
(4–27 years). The real part of the 10-year-timescale component of this
NAO transform is plotted in c. c, The envelope enclosing the fluctuations is
the height of b at 10-year timescale. Times for which long-timescale NAO
oscillations were strong (red) or weak (blue) are also marked in c.

long-timescale synchrony (see Methods for how this value is cal-
culated). Second, species more coherent with winter temperature
were more synchronized. Third, andmost importantly, the decrease
in winter-temperature synchrony from before to after 1993 was
parallelled by a decrease in first-flight synchrony. In contrast, short-
timescale first-flight synchrony was much greater than expected
if winter temperatures were the only synchronizing influence on
those timescales (Fig. 2b,d), indicating that additional influences
exist. Although winter-temperature synchrony changed minimally
on short timescales, first-flight synchrony increased owing to the
other influences.

612

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE CLIMATE CHANGE | VOL 6 | JUNE 2016 | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate2881
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2881 LETTERS
The observed long-timescale changes in winter-temperature

synchrony, shown to have caused changes in first-flight synchrony,
were in turn related to changes in the North Atlantic Oscillation
(NAO). On long timescales, wavelet mean fields of winter temper-
atures for our 11 sampling locations, and also for 13 long-running
weather stations across the UK (see Methods and Supplementary
Table 3), resembled wavelet transforms of Hurrell’s NAO index
(Fig. 3a,b and Methods). Coherences between the NAO index and
winter temperatures were significant on long timescales (aphid sam-
pling locations, p= 0.017; long-running stations, p= 2.6× 10−3).
Thus, on long timescales, the synchronous component of winter
temperatures in theUK is largely controlled by theNAO.The change
around 1993 in long-timescale winter-temperature synchrony
(Fig. 1c) also manifests as a change in the NAO (Fig. 3b). Similar
changes in the NAO occurred previously with multidecadal spacing
(Fig. 3b,c). Although it is unsurprising that the NAO affects winter-
temperature synchrony because theNAOhas known importance for
winter climate, relating changes in aphid synchrony to the NAO,
as our results do, is important because the NAO has widespread
ecological influence11,13,25 and hence changes in synchrony as we
observed may be seen broadly in other locations and taxa25.

Our results could probably not be obtained if we were unable
to disaggregate synchrony by timescale. For instance, population
synchrony has previously beenmeasured by computing correlations
between population time series at all pairs of locations and aver-
aging; and strength of relationship between population and envi-
ronmental variables has previously been measured by computing
correlations between them in all locations and averaging. First-flight
synchrony and strength of relationship between first flight and win-
ter temperature were uncorrelated across species when measured in
these ways (Pearson test, p= 0.74), contrasting with the results of
Fig. 2a,c. As different mechanisms can drive synchrony on different
timescales, combining timescales using correlation approaches17,28
obscures causal influences10,19,20,29 that our methods can reveal.

This study demonstrates a new way in which environmental
changes can affect populations on large spatial scales. Changes
in the relationships between local environmental drivers, more so
than changes in those drivers themselves, altered regional aphid
dynamics; thus, mechanisms were fundamentally different from
widely studied effects of climate on phenology and species ranges.
Moran effects, of which the observed phenomena are an aspect, are
thought to be widespread4,6,7,30, especially for winter-climatic drivers
in temperate regions3,9,13,16,25. The NAO affects climate and many
species across a wide area11,13,25. It is therefore reasonable to expect
that the phenomena explored here may be seen broadly.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Data. Aphid counts, usually daily, were available from the Rothamsted Insect
Survey31,32 for all 20 species and 11 sites throughout the flight season. Aphid
recording sites and their active periods are in Supplementary Table 1. Some daily
counts were estimates based on subsampling, when aphid catches were particularly
high. The Julian date at which the first aphid of a given species was recorded at a
site in a given year was taken as the first flight day for that species, site and year.
When samples included more than one day’s catch, the first day in the first period
to have a non-zero catch was used. The total count over all days of the year for
which aphids of a given species were recorded was taken as the count for that year.
To determine flight duration, 5 and 95% quantiles of the total year’s count were
determined, and the Julian dates at which those thresholds were exceeded were
computed. The difference was flight duration. If the count for a given species, year
and site was zero, the flight duration was taken to be zero and the first flight date
was taken to be the latest first flight date observed in other years for that species
and site. For the 3.38% of site-years for which no data were available for a year the
median values found at that site over other years were used for first flight, flight
duration and count. This fraction of data that were missing is small, and data were
missing in patterns unrelated across sampling locations, so replacing missing data
with medians will have added noise and reduced significances of detected patterns,
but could not artefactually have produced the results we report. Lists of active and
egg overwinterers excluded species that commonly show both behaviours in
the UK.

Aphid suction-trap locations were deliberately chosen (decades ago) to give as
much coverage of the UK as possible, commensurate with staffing resources.
However, notable gaps in the suction trapping network are Wales, Northern
Ireland, and central southern England. It is possible, a priori, that patterns or
causes of synchrony in these areas differ from the patterns described in our results.

Monthly temperature time series were averaged across winter months. Winter
was always taken to be December–March. Two of Hurrell’s winter NAO time series
indices were used, one based on the difference of normalized sea level pressure
between weather stations in Lisbon and Reykjavik33, and the other based on
principal component time series from empirical orthogonal function analysis of sea
level pressure fields in a whole region of the North Atlantic34. Results in Fig. 3 use
the former, but results using the latter were substantially the same. In addition to
the winter-temperature measurements at the aphid sampling locations,
13 long-duration time series of winter temperature35 were used for comparison to
the NAO indices. These spanned 1932–2014 and were from the locations in
Supplementary Table 3.

Wavelet mean field. If x(t) (t=1, . . . ,T ) is a time series, then the wavelet
transform at timescale (period) σ and time t ,Wσ (t), is a complex number with
magnitude and phase that can be interpreted as the strength and phase of
oscillation in x(t) at timescale σ and time t . The specific transform used is defined
precisely below. Wavelet methods have been used often in ecology20,36–42 and
general introductions43,44 are readily available.

If xn(t) (t=1, . . . ,T ) is the nth of N time series from different locations, and
Wn,σ (t) is its wavelet transform, then the wavelet mean field is

rσ (t)=(1/N )
N∑
n=1

wn,σ (t), where

wn,σ (t)=Wn,σ (t)

/√√√√(1/NT )
N∑
n=1

T∑
t=1

Wn,σ (t)Wn,σ (t)

Overbar denotes complex conjugation. The wn,σ (t) are power-normalized
transforms in the sense that the denominator in the previous expression is the
square root of the average wavelet power of the time series over sampling locations.
As that denominator is only a single positive rescaling factor, the wn,σ (t) contain
essentially the same information as theWn,σ (t). In particular, the phases of wn,σ (t)
andWn,σ (t) are the same, equal to the phase of oscillation in xn(t) at time t and
timescale σ .

The magnitude of the wavelet mean field makes sense as a time- and
timescale-specific measure of the strength of synchrony because when
oscillations at time t and timescale σ have similar phase in all time series,
and are therefore synchronized, the sum

∑N
n=1wn,σ (t) will be a large complex

number, whereas unrelated phases will tend to produce a small sum. The wavelet
mean field is also a natural choice because of its mathematical properties. The
mean squared magnitude of the wavelet mean field, (1/T )

∑T
t=1 |rσ (t)|2, is

between 0 and 1, and equals 1 for all σ if and only if the time series xn(t)
(t=1, . . . ,T ) are identical (Supplementary equations, lemma 1). Also, this
quantity is the power of the average time series divided by the average of the
powers of all the time series (Supplementary equations, lemma 1). If time series
are unsynchronized, power in the average time series will tend to be reduced, as
unsynchronized fluctuations will cancel. In contrast, synchronized fluctuations
will reinforce each other and contribute power to the average. In this way
(1/T )

∑T
t=1 |rσ (t)|2 represents synchrony for each timescale, σ . It is the

wavelet generalization of var ((1/N )
∑N

n=1 xn(t))/((1/N )
∑N

n=1 var (xn(t)))
(Supplementary equations, lemma 1), a familiar quantity readily interpretable
as synchrony because it represents the extent to which oscillations in local time
series reinforce each other or cancel in the average time series. Methods
related to the wavelet mean field have been used previously to study synchrony
in ecology20,36–38.

Arrow tips and tails in Fig. 1a were obtained by averaging |rσ (t)|2 over the time
period before or after 1993 and then averaging the square root of the result over
long or short timescales. Figure 1b was obtained by producing a wavelet mean field
magnitude plot for the first flight for each species, and then averaging across
species for each time and timescale. The dividing year, 1993, between the two
periods considered and the dividing timescale, 4 years, between long and short
timescales were chosen after inspecting wavelet mean field magnitude plots for
these reasons: 1993 divides the data into two equal (and therefore easily
comparable) parts; and 1 cycle every 4 years was exactly half the Nyquist frequency
for annual sampling and is a boundary between persistent and anti-persistent
behaviour in sinusoidal oscillations (Fourier components), as measured by the
lag-1 autocorrelation. Wavelet transform magnitudes of NAO indices were divided
by the power at each timescale in Fig. 3b, for comparability with wavelet mean field
plots, which used a similar power normalization (above).

We used a continuous complex Morlet wavelet transform44. The mother wavelet
was Ψ (t)=(ei2πf0 t−e−(2πf0)2/2)exp(−t 2/2), with f0=0.5. Wavelets associated with a
range of timescales were produced using rescaling:
Ψσ (t)= s−1/2(ei2πf0 t/s−e−(2πf0)

2/2)exp(−t 2/2s2). Following convention41 we identify
each wavelet with a characteristic timescale, σ = s/f0, and characteristic frequency,
f = f0/s. The actual peak in the Morlet wavelet power spectrum of a sinusoid signal
with frequency f ′, period σ ′=1/f ′, is at s=((2πf0+(2+(2πf0)2)1/2)/4π)(σ ′), so
f ≈ f ′ (ref. 45). The centre frequency f0 of the mother wavelet, which has width s=1
and σ =2, was taken to be 0.5 to give a high degree of temporal resolution, but
necessitating the subtraction of a constant to keep the mean of the wavelet equal to
zero44. The mother wavelet was scaled so that one wavelet oscillation was equal to
two years, that is, σ =2, because a two-year period corresponds to the
highest-frequency fluctuation that can be identified in an annual time series.
Wavelets with a range of periods from 2 years to over 27 years were generated,
starting with σ =2 and multiplying each period by 1.05 to get the next. Convolving
a time series xn(t) from location n with wavelets having different periods produces
a set of complex wavelet componentsWn,σ (t)=

∑
t ′ xn(t+ t ′)Ψσ (t ′). The transform

is scalloped to remove poorly estimated values44, specifically where the wavelet
envelope at the edge of the time series in the convolution has 1% or more of its
maximum amplitude.

Spatial coherence. The spatial coherence of biological (b) and
environmental (e) variables x (b)n (t) and x (e)n (t) is the magnitude of the
quantity5(be)

σ
=(1/NT )

∑N
n=1

∑T
t=1w(b)

n,σ (t)w
(e)
n,σ (t), and takes values between 0 and

1 (Supplementary equations, lemma 2). As w(b)
n,σ (t)w

(e)
n,σ (t) is a complex number with

a phase equal to the phase difference between the two wavelet components, the
total (summed over n and t) is large if the phase difference is consistent over time
and across locations, and small otherwise. The wavelet components can also have
varying magnitudes, and the spatial coherence is further increased if there are
correlations in the amplitudes of the fluctuations. Thus, the spatial coherence
measures the extent to which the two variables have consistent phase differences
and correlated magnitudes over time and across locations, as a function of
timescale. The spatial coherence indicates the strength of relationship between the
variables whether they are in phase or phase shifted. For a single site (N =1), the
spatial coherence is the (standard) wavelet coherence43,44 of the two variables at that
site. The measure also relates to the phase coherence36,37,46,47. Coherences between
winter-temperature variables and NAO indices were computed with the spatial
coherence formula (above) but with x (b)n (t) taken to be winter temperature and
x (e)n (t) taken to be the NAO index time series for all n.

We developed our methods in application to spatially referenced time series
and refer to them using terminology that references spatial applications (for
example, we use the term ‘spatial coherence’). However, our methods are
applicable to simultaneous time series with or without spatial separation and
referencing, a slightly more general context. For example, the methods could be
used to study inter-species synchrony of plankton density fluctuations in a
single pond.

Surrogate data sets for statistical significance. The level of spatial coherence
consistent with the null hypothesis that there is no relationship between two
variables depends on both the temporal and spatial autocorrelation of the data. For
instance, two variables that oscillate regularly at the same frequency and are both
highly spatially synchronized will have a phase difference that is very consistent
over time and space, and therefore high spatial coherence, even if they are not
related; two irregular oscillators with low spatial synchronization are much less
likely to exhibit consistent phase differences over time and space if unrelated. We
tested spatial coherences for significance through a resampling method based on
Fourier surrogate data sets. Our method is a straightforward extension of the
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widely used Fourier surrogate method48,49. Surrogates randomize away phase
relationships between variables while retaining the same spatial and temporal
autocorrelation properties of each variable (see below for details on how to produce
surrogates). Thus, evaluating the spatial coherences of large numbers of these
surrogate data sets makes it possible to produce a distribution of spatial coherence
values consistent with the null hypothesis of no relationship, for comparison with
the spatial coherence of the data. For all tests, 10,000 surrogates were used. To
produce significance values separately for long (>4 years) and short (≤4 years)
timescales, the rank of the spatial coherence relative to surrogates was found at
each timescale (rank 1 was highest), and then the mean rank was computed inside
the long- and short-timescale ranges. The same procedure applied to each one of
the surrogates produced surrogate mean ranks in the two ranges of timescales, and
the proportion of surrogate mean ranks less than the actual mean rank provided
the p values presented, for example, in Fig. 1a (horizontal bars). Other methods
exist for determining environmental causes of synchrony4,7,17,50–52; we used wavelet
tools because they naturally cope with heterogeneity across times and timescales in
the phenomena examined.

Given time series xn(t) in locations n=1, . . . ,N , we generated surrogate time
series for all N locations simultaneously, which we here call whole-Britain
surrogates. We Fourier transformed the N time series, phase randomized the
Fourier components by the addition of a random phase at each frequency, and
inverse transformed. The resulting time series have the same power spectrum as
the original time series, and hence the same autocorrelation properties, but have
different temporal structure. For each frequency, f , the same random phase was
added to Fourier components corresponding to f for each of the N time series.
Thus, our Fourier surrogates also preserve the cross spectrum and
cross-correlation properties of the N time series. We produced these whole-Britain
surrogates independently for aphid and environmental time series, so that between
aphid and environmental variables the cross spectra, correlations and spatial
coherences were not preserved, and thus the surrogates represent the null
hypothesis of no relationship. Surrogate approaches to obtaining significance for
wavelet analyses are standard41,42,48,49,53.

Box–Cox transformations. Fourier surrogates described in the previous section
tend to have normal marginal distributions53, so significance testing based on those
surrogates can be applied only to data that also have normal marginals. Raw time
series sometimes had non-normal marginals. Therefore, we normalized data before
analysis using a straightforward multi-time-series version of standard optimal
Box–Cox transformation techniques54. Transformations used a different Box–Cox
coefficient for each variable, but the same coefficient for all sites for a variable,
determined as follows. The time series for each of the 11 sites was adjusted to have
a minimum value of one by the addition of a constant. Then Box–Cox
transformations with a range of coefficients were applied, and for each coefficient
the maximum likelihood variance, mean and slope parameters were found for a
model of the transformed variable with a Gaussian distribution about a linear
trend. The log likelihood was recorded. For each coefficient, the sum of the log
likelihoods at all sites was found, and the coefficient giving the greatest total log
likelihood was selected and used for all the time series. A linear trend was then
subtracted and the standard deviation rescaled to one for each time series, giving
zero-mean time series with no trend and unit variance. The procedure was applied
separately to each of the three types of time series (first flight, flight duration,
count) for each of the 20 species, and to the environmental variables. Optimal
Box–Cox transformations turned out to be approximately linear for first flight, and
similar to log transformations for count.

Moran theorem results. A proof of the wavelet Moran theorem is in
Supplementary equations, theorem 3. Species marker heights on Fig. 2 are
timescale-averaged (over long or short timescale) root mean square (r.m.s.; mean
over the period before or after 1993) wavelet mean field magnitudes for aphid first
flights (compute |r (b)

σ
(t)|2, average over the appropriate time window, take the

square root, and then average over the appropriate frequency band). Horizontal
marker displacements are timescale-averaged spatial coherences of first flights with
winter temperature, with coherences determined over 1976–2010. Diagonal lines
have slopes equal to the timescale-averaged r.m.s. wavelet mean field of winter
temperatures, with averages again over the timescale band and time period of
interest. Vertical distances between points and lines correspond to residual
synchrony, from influences other than winter temperature.

Species marker heights on Fig. 2 will tend to be in the interval [0,1] even
though wavelet mean field magnitude values at particular times and timescales
need not be in that interval (see Fig. 1b), because lemma 1 in Supplementary
equations proves that the time-averaged quantity (1/T )

∑T
t=1 |rσ (t)|2 must be in

the interval [0,1]. For a given timescale, the quantity |rσ (t)|2 can exceed 1 for a
given t if it is less than 1 for other t . The same reasoning applies to the arrow tail
and head heights in Fig. 1a, as these quantities are the same as the species marker
heights in Fig. 2. Even time averages of |rσ (t)|2 over a subset of the times 1, . . . ,T

(for instance over the years before or after 1993) can exceed 1, as in the right-most
panel in Fig. 1a, but this is less common owing to the greater averaging.

The Moran theorem equation in the main text is a timescale-by-timescale
statement, but Fig. 2 uses averages across long or short timescales for all quantities,
an approximation made for conceptual clarity. An exact version of the figure
(Supplementary Fig. 7) illustrates that this approximation makes essentially no
difference. The details of what is plotted in Supplementary Fig. 7 are explained in
Supplementary Notes.

The fraction of synchrony explained for a species for a timescale band was
obtained by averaging the quantity |5(be)

σ
|
2
〈
|r (e)
σ
(t)|
〉2
/
〈
|r (b)
σ
(t)|
〉2 over the band.

Code availability.Matlab codes for the wavelet mean field, complex Morlet
wavelet transform, spatial coherence, and surrogates are available from the authors
on request.
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