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Large divergence of satellite and Earth system
model estimates of global terrestrial
CO2 fertilization
W. Kolby Smith1,2*, Sasha C. Reed3, Cory C. Cleveland1, Ashley P. Ballantyne1,
William R. L. Anderegg4, William R. Wieder5,6, Yi Y. Liu7 and StevenW. Running1

Atmospheric mass balance analyses suggest that terrestrial
carbon (C) storage is increasing, partially abating the atmo-
spheric [CO2] growth rate1, although the continued strength
of this important ecosystem service remains uncertain2–6.
Some evidence suggests that these increases will persist
owing to positive responses of vegetation growth (net primary
productivity; NPP) to rising atmospheric [CO2] (that is, ‘CO2
fertilization’)5–8. Here, we present a new satellite-derived
global terrestrial NPP data set9–11, which shows a significant in-
crease in NPP from 1982 to 2011. However, comparison against
Earth systemmodel (ESM)NPP estimates reveals a significant
divergence,withsatellite-derived increases(2.8 ± 1.50%) less
than half of ESM-derived increases (7.6± 1.67%) over the
30-year period. By isolating the CO2 fertilization e�ect in
each NPP time series and comparing it against a synthesis
of available free-air CO2 enrichment data12–15, we provide
evidence that much of the discrepancy may be due to an
over-sensitivity of ESMs to atmospheric [CO2], potentially
reflecting an under-representation of climatic feedbacks16–20
and/or a lack of representation of nutrient constraints21–25. Our
understanding of CO2 fertilization e�ects on NPP needs rapid
improvement to enable more accurate projections of future
C cycle–climate feedbacks; we contend that better integration
of modelling, satellite and experimental approaches o�ers a
promising way forward.

Global trends in NPP have been difficult to characterize with
observations and models, and remain an unresolved area of
scientific research—hampered by the limited availability of long-
term, large-scale data and an incomplete understanding of the
variety of interacting feedbacks that regulate NPP. For example,
rising atmospheric [CO2] may enhance NPP by stimulating
photosynthetic activity5–8, resulting in an increase in intrinsic
vegetation water use efficiency8 (WUE). Yet, warmer climatic
conditions resulting from rising [CO2] may increase vegetation
moisture stress, attenuating the direct positive effects of enhanced
[CO2] on NPP (refs 19,20). Adding complexity, the magnitude and
duration of the direct positive effects of rising [CO2] on NPP are
thought to be constrained by nutrient availability, specifically the
availability of nitrogen (N) and phosphorus (P), which play critical
roles in regulating plant photosynthesis and growth21,22. Thus,
long-term trends inNPP reflect a complex balance betweenmultiple

interacting biophysical (for example, temperature and water) and
biogeochemical (for example, [CO2] and nutrient) feedbacks.

ESMs face the difficult challenge of representing these potentially
counteracting feedbacks in a realistic way. The comprehensive ESMs
that participated in the Fifth Coupled Model Intercomparison
Project (CMIP5) represent our collective best approximation of
future global C dynamics, and thus have been used to define
critical policy targets, such as future allowable anthropogenic
CO2 emissions2,3. Some have questioned the validity of these
projections, often citing model oversimplifications or missing
C cycle feedbacks as reasons for concern23,24. Here, we attempt
to advance current understanding by isolating biophysical and
biogeochemical feedbacks within a representative CMIP5 ensemble
using the results from two experimental scenarios: fully coupled
model simulations driven by prescribed [CO2], climate, and land
use change forcing for the historical and RCP8.5 scenario periods2,3
(CMIP5CO2+CLIM; Supplementary Table 1); and radiatively coupled
model simulations driven by the same forcing as the fully coupled
simulations but in which the vegetation does not respond to
increasing [CO2] for the historical and RCP8.5 scenario periods2,3
(CMIPCLIM; Supplementary Table 1). We then evaluate the relative
strength of biophysical and biogeochemical feedbacks represented
in the CMIP5 ensemble against NPP estimates from satellite and
ground observations.

Satellites provide high spatiotemporal resolution, global
coverage of multiple facets of vegetation dynamics including
photosynthetic capacity (that is, the fraction of photosynthetically
active radiation absorbed by the vegetation; FPAR), leaf area index
(LAI), and vegetation water content of above-ground biomass
(that is, vegetation optical depth; VOD), which have been shown
to strongly relate to vegetation productivity9–11. We used the
Moderate Resolution Imaging Spectroradiometer (MODIS) NPP
algorithm9,10, driven by long-term Global Inventory Modeling and
Mapping Studies (GIMMS) FPAR and LAI data11, to calculate a
new 30-year global data set of satellite-derived NPP (1982–2011).
To account for potential bias introduced by the algorithm, we
generated uncertainty bounds across a wide range of parameter
combinations (see Methods). We further compare our results
against a global eddy covariance flux-derived NPP data set26,27 (Flux
MTE; 1982–2008; Methods); and an independent satellite-derived
VOD data product that is less prone to saturation in dense canopies
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Figure 1 | Temporal changes in NPP. a, The change in NPP from 1960 to
2099. Heavy lines represent the ensemble mean for each CMIP5
experiment. b, The NPP anomaly from 1982 to 2011. Lines represent linear
trends and shading indicates uncertainty (±1σ ) due to among-model
variability for CMIP5 and model parameterization for satellite estimates.
Box and whisker plots (right panels), show the distribution of estimates for
the full time period. For comparison, the CMIP5 model that considered
nutrient constraints (CESM1-BGC; dashed green line; green circle), Flux
MTE (dashed red line; red diamond), and satellite FPAR (dashed cyan line;
cyan circle) are shown separately. Letters indicate statistically significant
di�erences in distributions at α=0.05.

and highly sensitive to changes in vegetation water content28
(1988–2008; see Methods). By considering multiple independent
observation-based data sets, we provide a robust characterization
of long-term changes in global vegetation productivity.

By the end of the twenty-first century, the ensemble mean
NPP for fully coupled simulations that included the response
of vegetation to increasing [CO2] (CMIP5CO2+CLIM) increased by
roughly 63%, whereas the ensemble mean NPP for radiatively
coupled simulations that included only the radiative effects of
changes in [CO2] (CMIP5CLIM) decreased by roughly 6% (Fig. 1a
and Supplementary Fig. 1). Over the period of satellite observation
(1982–2011), a similarly strong positive CO2 fertilization effect
persists in CMIP5 NPP estimates; CMIP5CO2+CLIM NPP estimates
significantly increased (7.6 ± 1.67%), whereas CMIPCLIM NPP
estimates did not significantly change (−1.7±2.38%). Interestingly,
satellite-derived NPP estimates increased over this period by
2.8±1.50%, a rate of change significantly different from either
CMIP5 scenario (Fig. 1b). These satellite-derived NPP trends are
largely consistent with long-term Flux MTE NPP and satellite VOD

trends (Fig. 1b and Supplementary Fig. 2). The differences inCMIP5
and satellite-derived NPP trends are not a localized phenomenon,
but are apparent along a global latitudinal gradient (Fig. 2) and
across global climatic zones and biomes (Supplementary Figs 2
and 3). Thus, after taking into account among-model variability
in the CMIP5 ensemble and model uncertainty in the satellite
estimates (see Methods), the CMIP5 ESMs show significantly
stronger global-scale CO2 fertilization effects on NPP compared
with satellite-derived estimates.

Why is the relatively strong CO2 fertilization effect simulated
by the CMIP5 ensemble not observed in the satellite-based record?
One potential explanation could be differences in the sensitivity
of NPP estimates to changing climatic constraints. In general,
CMIP5 and satellite-based climate data show warming (that is,
increasing minimum temperatures (TMIN)) and drying (that is,
increasing atmospheric moisture demand or vapour pressure deficit
(VPD)) trends that occur in parallel with increasing atmospheric
[CO2] (Supplementary Fig. 4). Hotter and dryer climatic conditions
resulting from rising [CO2] are known to increase vegetation
moisture stress and reduce NPP (refs 16–20). Indeed, both CMIP5
and satellite-derived NPP estimates were found to be significantly
negatively correlated with TMIN and VPD over large regions,
suggesting that vegetation productivity is negatively impacted by
increasing atmospheric moisture demand (Supplementary Figs 5
and 6). Yet, particularly in arid and temperate ecosystems, the
relatively large negative effects of increasing atmospheric moisture
demand are more than compensated for by even larger positive
effects of CO2 fertilization, resulting in an apparent insensitivity
of CMIP5CO2+CLIM NPP trends to increasing VPD (Supplementary
Figs 2 and 4). Thus, CMIP5 and satellite NPP estimates seem
to be diverging partially owing to differential sensitivity to
the compensatory effects of increasing atmospheric [CO2] and
moisture demand.

To further explore the interacting effects of increasing
atmospheric [CO2] and moisture demand on vegetation
productivity, we calculated the unit change in NPP per unit
change in VPD using a sliding window of 10 years (Fig. 3).
In theory, increasing atmospheric [CO2] could drive static or
decreasing sensitivity to VPD if the positive effects of CO2
fertilization and increasing WUE are larger than the negative
effects of moisture stress on NPP. This type of response would be
characterized by relative increases in NPP in years of both low
and high atmospheric moisture demand, resulting in constant or
reduced inter-annual variability of NPP. Alternatively, sensitivity
to VPD could increase if the negative effects of moisture stress are
larger than the positive effects of CO2 fertilization and increasing
WUE on NPP. This type of response would be characterized by
relative reductions in NPP in years of high atmospheric moisture
demand and relative increases in NPP in years of low atmospheric
moisture demand, resulting in increased inter-annual variability of
NPP. For CMIP5 NPP estimates, we find a response similar to the
former, relatively constant VPD sensitivity across all ecosystems,
resulting in constant or reduced inter-annual variability in CMIP5
NPP estimates (Fig. 3 and Supplementary Fig. 7). In contrast, for
satellite-derived NPP estimates, we found a response similar to the
latter, significant increases in VPD sensitivity for arid (4.7±1.24%,
P < 0.0001) and temperate (2.3 ± 1.35%, P < 0.01) ecosystems
as well as significant increases in inter-annual variability of NPP
estimates across arid ecosystems (7.0± 2.27%, P < 0.0001) (Fig. 3
and Supplementary Fig. 8). Field experiments conducted in arid
and temperate grassland ecosystems support these satellite-derived
trends, and have shown that positive CO2 fertilization effects on
NPP are apparent in wet years, but not in years when moisture
constraints are relatively strong19. These findings are consistent
with work showing increased sensitivity of C uptake to precipitation
across Australian semi-arid ecosystems17, and add to a growing
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Figure 2 | Spatial and latitudinal changes in NPP from 1982 to 2011. a, CMIP5CO2+CLIM NPP. b, CMIP5CLIM NPP. c, Satellite-derived NPP. In the latitudinal
plots (right panels), shading indicates uncertainty (±1σ ) due to among-model variability for CMIP5 and model parameterization for satellite estimates. For
comparison, the CMIP5 model that considered nutrient constraints (CESM1-BGC; top right panel, dashed line) and satellite FPAR (bottom right panel,
dashed line) are shown separately. Values represent the average percentage change in NPP (±1σ ) for the Northern Hemisphere (NH) and Southern
Hemisphere (SH) for the full time period.

body of evidence that suggests temperate and arid ecosystems
have largely contributed to recent increases in the inter-annual
variability of the terrestrial C cycle17,18. The significant differences
in VPD sensitivity of CMIP5 and satellite NPP estimates provide
insight into the divergent NPP trends, and highlight the need for
research aimed at untangling the complex relationship between
vegetation moisture stress and CO2 fertilization effects, particularly
in arid and temperate ecosystems.

Another potential explanation for differences between satellite
and CMIP5 NPP trends is that the CO2 fertilization effect could
be constrained by nutrient availability21–25, a factor implicit in
satellite estimates but largely missing from CMIP5 simulations.
Nutrient gradients have been detected in satellite indices at the
global scale, and areas with relatively low nutrient availability show
correspondingly low maximum vegetation greenness29. By isolating
the CMIP5model in the ensemble that includes N cycling (CESM1-
BGC; Supplementary Fig. 1), we show that NPP trends are reduced
by roughly a factor of two and align well with satellite estimates
(Fig. 1b and Supplementary Fig. 2). Although we were able to
consider only one model, our findings are supported by free-
air CO2 enrichment (FACE) experiments that include fertilization
plots14,17,21,22 and by a recent modelling study that showed a similar

attenuation of NPP due to nutrient constraints for a full ensemble of
CMIP5 models23.

We further explored NPP sensitivity to atmospheric [CO2]
by comparing CMIP5 and satellite-derived NPP estimates with
available FACE NPP data12–15—the most comprehensive field-based
experimental data assessing the response of NPP to elevated
[CO2] (Supplementary Table 2). Across multiple global biomes, we
found that CMIP5 NPP estimates are generally two to three times
more sensitive to atmospheric [CO2] compared with FACE NPP
data; whereas CESM1-BGC, satellite-derived, and Flux MTE NPP
estimates are similarly sensitive to atmospheric [CO2] compared to
FACE NPP data. (Fig. 4). The importance of nutrient constraints
on NPP are emphasized by recent work suggesting that much of
the CO2 fertilization effect initially observed at FACE sites may
represent a transient phenomenon that slows over time owing to the
depletion of soil nutrients14,21,22. Although improvements in model
representation of nutrient constraints are still critically needed, the
implementation of nutrient constraints in ESMs could result in
improved CO2 sensitivity that better matches that of observation-
based estimates14,30.

Terrestrial NPP plays a fundamental role in regulating the global
C cycle and the discord between observational-based estimates

308

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE CLIMATE CHANGE | VOL 6 | MARCH 2016 | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate2879
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2879 LETTERS

Δslope = −4.67 ± 1.24%
Δslope = 0.59 ± 1.19%

Arid
Δs

lo
pe

 (Δ
N

PP
/Δ

V
PD

) s
ta

nd
ar

di
ze

d 
an

om
al

y
Δs

lo
pe

 (Δ
N

PP
/Δ

V
PD

) s
ta

nd
ar

di
ze

d 
an

om
al

y

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00a
CMIP5
Satellite

∗

Δslope = −2.34 ± 1.35%
Δslope = −0.61 ± 0.83%

Temperate

Year
1995 2000 2005 2010

Year
1995 2000 2005 2010

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

∗

Increasing clim
ate sensitivity →

Increasing clim
ate sensitivity →

b

Figure 3 | The sensitivity of NPP to VPD. a,b, The change in NPP per unit
change in VPD was calculated for arid (a) and temperate (b) climatic zones
using a sliding window of 10 years. Shading indicates uncertainty (±1σ )
due to among-model variability for CMIP5 and model parameterization for
satellite estimates. Box and whisker plots (right panels) show the
distribution of estimates for the full time period. For comparison, the
change in FPAR per unit change in VPD (cyan dashed lines) is shown
separately. Asterisks indicate statistically significant di�erences in
distributions from zero at α=0.05.

and model simulations is disconcerting. The large divergence
of satellite-derived and ESM NPP estimates suggests that our
understanding of CO2 fertilization effects on terrestrial ecosystems
is inadequate or not fully incorporated into ESMs, limiting our
ability to accurately represent future C cycle–climate feedbacks.
If satellite-based NPP estimates and field CO2 experiments
realistically reflect terrestrial ecosystem responses to increasing
atmospheric [CO2], the results would substantially alter projections
of future terrestrial C storage and thus climate change, and suggest
the need to reconsider allowable anthropogenic CO2 emissions to
achieve future climate change targets.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Satellite NPP data.We used the MODIS NPP algorithm, driven by newly available
30-year (1982–2011) Global Inventory Modeling and Mapping Studies (GIMMS)
FPAR and LAI data, to calculate a new 30-year global data set of satellite-derived
gross primary productivity (GPP), net primary productivity (NPP), and
autotrophic respiration9–11 (RA):

NPP=
t∑

i=1

[FPARi× IPARi×LUEmax× f (VPDi)× f (TMINi)−RAi]

where FPAR represents the satellite-derived fraction of photosynthetically active
radiation absorbed by the vegetation, IPAR represents the incoming
photosynthetically active radiation, LUEmax represents biome-specific maximum
light use efficiency, f (VPD) represents a water stress reduction scalar, f (TMIN)
represents a low-temperature stress reduction scalar, and RA represents
autotrophic respiration. LUEmax, f (VPD), f (TMIN) and RA were initially
parameterized according to ref. 9. IPAR, TMIN, and VPD data were derived from
NCEP-DOE Reanalysis II (http://www.esrl.noaa.gov). VPD was computed as the
difference between saturation and actual vapour pressure using daily temperature,
surface pressure, and specific humidity variables according to the method used by
ref. 9. All satellite NPP data were re-gridded to a common 1◦ global grid.

The MODIS NPP algorithm and the GIMMS FPAR and LAI data have been
evaluated extensively against a wide range of observational data and model output,
and have been found to generally provide realistic information on vegetation
production across the global range of observed climates and biome types9–11. That
said, NPP cannot be measured directly at large scales and satellite-derived NPP
estimates are influenced by algorithm parameterization, especially in areas of dense
evergreen forests (for example, tropical forests) where satellite FPAR and LAI
indices can saturate31,32. To account for these challenges, we calculated uncertainty
bounds that represent the full range of potential parameter combinations in the
MODIS NPP algorithm, enabling a focus on the actual satellite signal. Climate
constraints f (VPD) and f (TMIN) were thus allowed to range from optimized
(parameterization derived from ref. 9) to a fixed mean value resulting in the
simplified equation:

NPP=
t∑

i=1

[FPARi× IPARi×LUEmax× f (VPD)× f (TMIN)−RAi]

The full range of variability in autotrophic respiration and its influence on NPP
trends was captured using two independent RA approximations: a temperature
sensitivity (that is, non-acclimation) approach, by which RA was calculated using a
Q10 function that is sensitivity to changes in average temperature, implemented
according to ref. 9; and an acclimation approach, by which RA was calculated
simply as a fixed ratio of GPP, resulting in the further simplified equation:

NPP=
t∑

i=1

[FPARi× IPARi×LUEmax× f (VPD)× f (TMIN)×RAscalar]

where RAscalar represents the constant fraction of GPP (0.5) that is respired through
maintenance and growth respiration. This simplified representation of RA best
matched that of the CMIP5 models, which were generally found to model GPP and
RA as tightly coupled for the full temporal extent of the study. See ref. 9 for
additional algorithm detail.

Flux MTE and satellite VOD data.We included 27-year eddy covariance
flux-based NPP data, derived from a diagnostic model calibrated using global flux
site-level data by means of a model tree ensemble machine learning technique
(1982–2008; Flux MTE; refs 26,27) as a largely independent observation-based
vegetation production data set. Flux MTE data were converted from GPP to NPP
using a fixed ratio (0.5). We also included 21-year (1988–2008) satellite vegetation
optical depth (VOD; that is, an indicator of vegetation water content of
above-ground biomass, including leaf and woody components) data as an
independent observation-based indicator of vegetation production28. VOD is
derived from passive microwave remote sensing and is less prone to saturation and
atmospheric effects. VOD is, however, less reliable in areas with substantial open
water bodies, and it is not available when the surface temperature is below 0◦ or in
the presence of snow. Thus, we limit our VOD analyses to regions without
substantial open water bodies and we consider only summertime (July–September)
months when examining forests in high latitudes of the Northern Hemisphere.
Finally, to better reflect net annual change, we base our analyses on1VOD (that is,
the annual difference in VOD).

CMIP5 NPP data. Data from individual ESMs were downloaded from the CMIP5
archive (Supplementary Table 1). These data included NPP, GPP and RA (land
variables) as well as TMIN and VPD (atmospheric variables). VPD was computed
as the difference between saturation and actual vapour pressure using daily
temperature, surface pressure, and specific humidity variables according to the
method used by ref. 9. Data from the ‘historical’ and RCP8.5 scenario periods2,3
were combined to generate continuous variable fields from 1960 to 2099. We used

all ESMs with complete data records included in the esmFdbk2 experiment—in
which the carbon cycle sees pre-industrial (control) atmospheric [CO2], whereas
the radiation code sees observed increases. The CMIP5 ensemble thus included five
members and variability was calculated as one standard deviation (±1σ ) of the
mean (Supplementary Fig. 1). It is important to note that we focus this analysis on
30-year trends, not inter-annual variability in NPP, because the CMIP5 model runs
considered in this study were not forced by climate data and instead started from
an arbitrary point of a quasi-equilibrium control run, resulting in inter-annual
variability that does not, and should not, be expected to align with the
observational record. All CMIP5 data were re-gridded to a common 1◦ global grid
using the bilinear method of interpolation.

Free-air CO2 enrichment (FACE) comparison. Data from FACE experiments
were used to evaluate model sensitivity to atmospheric [CO2] (refs 12–15). Site
locations and characteristics can be found in Supplementary Table 2. Two
approaches were used to estimate the sensitivity of NPP to atmospheric [CO2]
(β ; that is, the change in NPP per 100 ppm change in CO2). For FACE NPP
estimates, β was calculated by isolating the CO2 fertilization effect:

β=
1NPP
1CO2

where1NPP represents the difference between NPP measured under elevated and
ambient CO2 treatments.1CO2 represents the corresponding change in
atmospheric [CO2] (Fig. 4).

For CMIP5 and satellite estimates, a multiple regression approach was used and
β factors were calculated according to the general linear model:

NPP=β(CO2)+C1(VPD)+C2(TMIN)+C3+ε

where NPP represents the NPP time series, and CO2, VPD and TMIN represent the
atmospheric [CO2], vapour pressure deficit and the minimum temperature time
series for each model, respectively. β , C1, C2 and C3 represent regression
coefficients and ε is the residual error term. Regression coefficient β was
estimated using maximum likelihood analysis. As we were interested in relative
differences, it is unlikely that the inclusion of other confounding drivers (for
example, precipitation and radiation) would greatly change the conclusions of
this analysis.

Statistical analyses. Linear correlation coefficients (Pearson’s R) were calculated to
quantify the concurrent association between time series. Time series data were
detrended before correlation analyses to account for potential auto-correlation
among variables. Trend and maximum likelihood estimates were calculated using
the lm() function in R 2.11.1 (R development Core team). Sliding trends were
calculated as the change in the trend over a 10-year sliding window using the lm()
function in R 2.11.1. Statistical significance (P values) were estimated throughout
this analysis using a two-factor analysis of variance (ANOVA) and Tukey’s HSD
(ANOVA() and TukeyHSD() functions in R 2.11.1) or a Student’s t-test (t .test()
function in R 2.11.1) for pair-wise differences. Comparisons across land-cover
types and climate zones were defined using the MODIS collection 5 global
land-cover classification (https://lpdaac.usgs.gov/dataset_discovery/modis/
modis_products_table; ref. 33) and the Köppen–Geiger climate zones classification
(http://people.eng.unimelb.edu.au/mpeel/koppen.html; ref. 34).

Limitations and potential missing mechanisms.We do not explicitly consider the
effects of disturbance35 or shifting land cover36 on NPP; factors implicit in
satellite-derived NPP estimates but missing from CMIP models. Although these
factors could have important local effects in some regions, it is unlikely that they
explain the large-scale observed differences in CMIP5 and satellite-derived
NPP trends.

Our comparison against field-based experimental data is limited in tropical
regions where differences in NPP and uncertainty are greatest37,38 (Supplementary
Fig. 2). Quality remote sensing data from tropical regions are also limited owing to
saturation effects as well as frequent cloud and aerosol contamination28,31,32. Still,
trends in satellite VOD data—relatively insensitive to saturation and cloud
effects—are slightly negative for tropical ecosystems over the 1988–2008
observation period, suggesting that any positive CO2 fertilization effects are
ameliorated by or even secondary to negative climate and/or land use change
effects on NPP (refs 28,31,32; Supplementary Fig. 2). This finding is supported by a
recent analysis of tropical tree growth rings that found no evidence for growth
simulation due to CO2 fertilization39 as well as a long-term field study that found
negative climate effects far exceed slight positive CO2 fertilization effects on NPP
for a tropical forest site40.

NPP and terrestrial carbon storage. Global-scale atmospheric [CO2]
measurements and estimated trends in terrestrial carbon storage are a common
benchmark for CMIP5 models1,41. Holding all factors equal, reduced rates of NPP
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would result in an underestimation of historical C uptake and an overestimation of
atmospheric [CO2] in CMIP5 models. However, this apparent discrepancy can be
easily reconciled by realistically modified C turnover times, as demonstrated by a
recent study23. Using a multiple optimization framework that considers
atmospheric CO2 measurements, CO2 emission estimates, and satellite-derived
NPP trends could improve ESM performance and provide key insight into the
potential impact of climate change on C turnover times4,42.
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