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Abstract

Soil moisture is a key variable in dryland ecosystems since it determines the occurrence
and duration of vegetation water stress and affects the development of weather patterns
including rainfall. However, the lack of ground observations of soil moisture and rainfall
dynamics in many drylands has long been a major obstacle in understanding ecohydrologi-
cal processes in these ecosystems. It is also uncertain to what extent rainfall controls soil
moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to
nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014
to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in
the Namib Desert are reported. A process-based model simulating the stochastic soil mois-
ture dynamics in water-limited systems was used to study the relationships between soil
moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation
parameters under diverse soil textures was also investigated. Our field observations
showed that surface soil moisture dynamics generally follow rainfall patterns at the two
gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a sig-
nificant relationship with rainfall pattern. The modeling results suggested that most of the
soil moisture dynamics can be simulated except the daily fluctuations, which may require a
modification of the model structure to include non-rainfall components. Sensitivity analyses
suggested that soil hygroscopic point (s,) and field capacity (s;.) were two main parameters
controlling soil moisture output, though permanent wilting point (s,,) was also very sensitive
under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall,
the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil
hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling
results as well as sensitivity analyses provide soil moisture baseline information for future
monitoring and the prediction of soil moisture patterns in the Namib Desert.

1. Introduction

It has long been suggested that soil moisture is a critical component of earth systems [1].
Although the amount of soil moisture is relatively small when compared with other
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constituents of the hydrological cycle [2, 3], it is of great importance to many hydrological, bio-
logical and biogeochemical processes. Soil moisture, as one source of water for the atmosphere
through evapotranspiration [4], is a key variable in controlling the exchange of heat fluxes
between the land surface and the planetary boundary layer [5]. Spatial and temporal variability
of soil moisture provides an essential indicator for evaluating and understanding vegetation
patterns and dynamics [6, 7]. Soil moisture also controls microbial dynamics and affects a
number of soil chemical/physical properties [8], such as O, levels, pH and the concentration of
mineral nutrients (e.g., ferric iron) in soil solution, which in turn affect activities and popula-
tion dynamics of microbial biomass.

Soil moisture is especially important to link climate, soil, and vegetation in dryland ecosys-
tems. Drylands cover about 40% of the earth surface and are typically located in continental
regions where rainfall is less than potential evapotranspiration [9-11]. Dryland soil water con-
tent is typically low, but soil water is critical for vegetation dynamics and moisture in the top-
soil can effectively protect the dryland soil from wind erosion [12, 13]. Typically, precipitation
is the major source of soil moisture in drylands, though in some fog dominated systems, the
non-rainfall water (e.g., fog and dew) can exceed annual rainfall [14]. Dryland near-surface cli-
mate is affected by soil moisture, which has been revealed as a major factor contributing to the
occurrence of extremely high temperature and drought weather [10]. Therefore, understanding
interactions between soil moisture and precipitation is critical to predict the response of dry-
land ecosystems to global environmental changes. To make a long-term prediction of soil
moisture, process-based modeling is often required. One of the recent advances in ecohydrol-
ogy is the successful modeling of stochastic rainfall-soil moisture relationships. Recently a
modeling framework was developed based on the stochastic characteristic of rainfall events
and analytical results of the probability distributions of soil moisture were successfully
obtained. The modeling framework was improved and modified in a previous study to achieve
a more accurate description of soil moisture dynamics especially in water-limited systems [15].
A series of studies have applied the modeling framework to different dryland environments
[16-18]. Although the modeling framework has been used for years, the sensitivities of the key
parameters and their dependence on soil texture are poorly understood. The hyper-arid envi-
ronment of the Namib Desert and the diverse soil textures under similar rainfall regimes make
it an ideal place to test the sensitivities across various soil textures.

The Namib Desert, which is one of the oldest and largest deserts, is located between a high-
land plateau and the Atlantic Ocean [19]. The hyper-arid environment of the Namib Desert
was formed by the cold subantarctic upwelling combined with a hot subtropical interior, result-
ing in a bleak coastal condition [20, 21]. The annual average rainfall of the Namib Desert is typ-
ically low and the distribution is very heterogeneous. The western Namib Desert, on average
receives about 5 mm annual rainfall while the eastern part receives about 85 mm [22, 23]. In
addition to the hyper-arid environment and extremely rare rainfall, the frequent occurrence of
fog is the most distinctive characteristic in the Namib Desert [21]. The fog in the Namib Desert
is often considered as a westerly advection fog mainly driven by the Bengula cold current [24].
It has long been observed that the Namib Desert fog forms from the coastal areas between mid-
night and morning and dissipates towards noon. After fog forms at the coastal areas, it is
pushed inland by the westerly wind resulting in a west-east gradient foggy zone [25]. The
Namib Desert fog as a source of water has been playing an important role in sustaining plant
growth by means of interception and can also be used for the survival of small animals [26, 27].
For example, fog water uptake has been observed for three beetle species of the Namib Desert
when the beetles face extreme surface temperature and wind [28]. The Namib grass Stipagrostis
sabulicola was found to rely heavily on fog water to sustain themselves and is able to transfer
fog water intercept by leaves to their plant base by stem flow [29]. It has also been reported that
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19% of the water within the Sequoia sempervirens, and 66% of the water within the understory
plants come from fog in the California redwood forests [30, 31].

Despite the recognition of the importance of soil moisture in controlling various ecohydro-
logical processes in the Namib Desert, soil moisture dynamics and how much soil moisture
variability can be explained by rainfall in the foggy Namib Desert have not been reported. In
this study, twelve to nineteen months’ daily records of rainfall and soil moisture records from
diverse ecosystems in the Namib Desert were reported. The objects of this study are to, 1) pres-
ent field observations of soil moisture and rainfall records acquired from different soil types in
the Namib Desert; 2) use process-based modeling to simulate soil moisture dynamics under
diverse soil textures; and 3) quantify the sensitivity of the stochastic modeling with a range of
soil and vegetation parameters.

2. Materials and Methods
2.1 Field sites

The Namib Desert is an ancient desertlocated in the coastal area of Namibia. It has a total
length of 1900 km along the coast of the Atlantic Ocean, from the Olifants River in South
Africa to Carunjamba River in Angola (Fig 1). The average rainfall in the Namib Desert ranges
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Fig 1. Location of the Namib Desert and the Namib “Sand Sea”. Blue points show locations of sites in Gobabeb and Kleinberg. The map was generated
using ArcGIS for Desktop 10.3.1 (http://www.arcgis.com).

doi:10.1371/journal.pone.0164982.9001
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from 50 to 100 mm in the far south, 5-18 mm in the central Namib Desert and less than 50
mm along the Angolan coast in the north [22, 26]. Three main land forms are found in the
Namib Desert. The southern Namib Desert is mainly covered by the endless sand dunes called
the Namib “Sand Sea”, whereas gravel plains are dominant in the Central Namib dotted with
inselbergs of granite and limestone. Moving north from the central Namib Desert, gravels
plains finally give way to rugged mountains and dune fields [32].

Gobabeb is located at the edge of the Namib “Sand Sea” (Fig 1), 60 km inland from the
Atlantic Ocean [22]. The climate is hyper-arid with average annual rainfall less than 50 mm
primarily concentrated around January to March. Two different landscapes occur near Goba-
beb along both sides of the Kuiseb River, the “Sand Sea” to the south and the gravel plains (cal-
crete soil) to the north [33]. Major plant species in the gravel plain are Zygophyllum simplex
and Z. stapffi, while Stipagrostis sabulicola and Trianthema heroensis are the most commonly
seen species dotted in the sand dune area [34]. Kleinberg (Fig 1), located about 33 km from the
Atlantic Ocean, has been a field site attached to the Gobabeb Research and Training Centre for
over 30 years, with most of the area covered by gravel plains (gypsum soil) [33] dotted with
pencil bush (Arthraerua leubnitziae) and assorted lichens. The total annual rainfall amounts in
both Gobabeb and Kleinberg are similar and rainfall events rarely occur.

2.2 Data collection

Three sites (Kleinberg gravel plain, here after GPK; Gobabeb sand dune (High Dune), here
after SDG; Gobabeb gravel plain, here after GPG) were selected in our study because of the
similar meteorological conditions and different soil textures among these three sites. Twelve to
nineteen months’ volumetric soil moisture data and the corresponding rainfall data (January 1,
2014 to August 3, 2015 for GPK; July 28, 2014 to July 28, 2015 for SDG; January 2, 2014 to July
28,2015 for GPG) were collected and used to test the stochastic modeling (data were available
in S1 Table). The data collection was granted with a research permit from Gobabeb Research
and Training Center of Namibia. Daily rainfall data were obtained from two tipping-buckets
(one at GPG and another at GPK), which have been calibrated in the field. The same tipping
bucket data was used for GPG and SDG because of their proximity (about 3.5 km apart). Soil
moisture from both bare soil and vegetated areas were continuously monitored at one-hour
interval using CS655 Water Content Reflectometer (Campbell Scientific, Inc. Logan, Utah,
USA). In total six probes were used to measure soil moisture under different layers at the three
sites. Three probes were used at GPG with two being installed at the same location under bare
soil at 7.5 cm and 22.5 cm and the other one being installed under vegetation cover at 7.5 cm.
Two probes were installed at SDG with one under bare soil at 15 cm and another one under
vegetation cover at 7.5 cm. The depths of the two probes at the sand dune site were different
due to the movement of shifting sand. One probe was installed at GPK under bare soil at 5 cm.
Saturated hydraulic conductivity (K;) were estimated using the mini disk tension infiltrometer
(Decagon Inc. Pullman, WA, USA) from multiple locations at each site.

2.3 Data analyses of the field data

Hourly volumetric soil moisture data were averaged to daily scale in order to match the model
time scale. Data central tendency and variability were reported as mean, standard deviation,
and coefficient of variation. The Mann-Whitney U test was deployed to examine the differ-
ences of mean soil moisture among the three sites in PAST (Paleontological Statistics, Natural
History Museum, University of Oslo). Surface soil moisture distribution was examined using
Q-Q/P-P plot in IBM SPSS (IBM Inc. NY, USA) and the corresponding probability density
functions (pdfs) were described as Gamma distributions using two parameters (shape
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parameter k and scale parameter 0) in MATLAB. Correlations between rainfall events and soil
moisture were tested using Pearson’s correlation. The significance level was set as o = 0.05.

2.4 Model structure and parameterization

Field soil moisture observations were modeled at daily scale by utilizing a process-based sto-
chastic model. The model was defined with rainfall inputs as a non-homogeneous Poisson pro-
cess with storm arrival rate A and mean event depth o. However, in this study, we used a
deterministic approach using field rainfall data to drive the model. Soil moisture dynamics are
expressed as following equations:

ang =I(t, s) — ET(s) — L(s), (1)

where # is the porosity, s is the relative soil moisture, Z, is active soil depth or rooting depth, I
(s, t) is the infiltration rate of rainfall, ET(s) is the rate of evapotranspiration, and L(s) is the
rate of leakage or the loss of soil moisture from the bottom layer. The model assumes that all
the water input from rainfall is immediately infiltrated into the ground and no surface runoff is
generated.

There are three major factors in Eq (1) controlling soil moisture content. The increase of
soil moisture is due to infiltration and the decrease of soil moisture is due to evapotranspiration
and leakage through the bottom layer. The combined effect of those processes can be described
as:

Evap + <Emax - Evap) ~ Sw <s S S*
st —s,
L(s) +ET(5) =4 ¢ eacy @)
'max — “fc
K
s Bl=sge) _
max T R (e 1) s <s<1

where s, is the soil water content at wilting point, s. is the soil water content at field capacity,
s* is the soil moisture in conditions of incipient stress, Kj is the hydraulic conductivity, 8= 2b +
4, with b being the pore size distribution index; Eyqp is the evaporation rate of ground surface
while E ;. being the maximum evapotranspiration under well-watered condition. For s > s,
losses of soil moisture come from evapotranspiration and leakage. For s* < s < s, only evapo-
transpiration contributes to the loss of soil water at the maximum evapotranspiration rate E,.
For s,, < s < s¥, vegetation begins to suffer from water stress and regulates the transpiration rate
through stomata closure. Thus, transpiration starts to be limited by soil moisture and the total
evapotranspiration also decreases with decreasing soil moisture. For s < s,,, ET(s) linearly
decreases reaching a zero at s = s, (hygroscopic point) where soil begins to absorb water from the
atmosphere.

2.5 Model sensitivity analyses

Sensitivity analyses were conducted to examine the response of the modeled soil moisture out-
put to soil and vegetation parameters under different soil textures. Sensitivity analyses were
conducted by changing one parameter while fixing others (i.e., no interactive effects were
tested). Before sensitivity analyses, we divided the key model parameters into bounded group
(e.g., porosity (n), field capacity (s¢.)) and non-bounded group (soil depth (Z,), saturated
hydraulic conductivity (Kj)) in terms of whether they have been normalized to the range of 0
to 1 or not. The maximum values of the bounded group were all set to 1, while the maximum
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values of the non-bounded group were set to different values. We predefined 20 as the maxi-
mum value for Z,, Ty, and E,,. Meanwhile, 100 was set to be the maximum value for K con-
sidering its magnitude in reality. Then in order to ensure the accuracy and precision of our
sensitivity analyses, the parameter ranges were further refined to determine new parameter
ranges based on the model outputs obtained from the previous procedures. Finally, based on
the curve shape of the model output, we divided them into three groups: (1) monotonic
increasing group, (2) monotonic decreasing group, and (3) non-monotonic group. For mono-
tonic groups, the minimum values of the parameter ranges were defined as values that start
making average-simulated soil moisture greater than zero while the maximum values were
defined as values after which the average-simulated soil moisture will level off within the prede-
fined or normalized ranges. For the non-monotonic group, the largest monotonic range (either
monotonic increasing or decreasing) within the predefined or normalized range was regarded
as the final range of the parameter. The average of the difference between two consecutive soil
moisture output values divided by the parameter increment was then define as the parameter’s
sensitivity, which can be described as:

2 (s(i) = s(i= 1))

(n—1)xx

Sensitivity = * 100%, (3)
where s (i) is the correspondent soil moisture value, s (i-1) is soil moisture value one increment
before s (i) produced within the predefined parameter range, n is the number of values, which
equals to the determined parameter range divided by the parameter increment, x is parameter
increments (e.g., 0.001 for porosity).

3. Results and Discussion
3.1 Field observations

Table 1 shows the rainfall parameters and mean soil moisture values measured at the three
sites. It was observed that total rainfall at GPG and SDG was 15.75 mm in 2014, which was
slightly less than that at GPK (18.45 mm, Table 1). Despite average rainfall depth for GPG/
SDG (2.63 mm) was slightly higher than that of GPK (1.95 mm), rainfall frequency at GPG/
SDG (0.01) was only one quarter of that in GPK (0.04) (Table 1). Although divergences of rain-
fall parameters and total annual rainfall amount existed among these sites, the rainfall patterns
were generally the same (Fig 2). Most of the rainfall concentrated on the wet season from
November to May and large rainfall events mainly occurred in January (Fig 2).

Fig 3 shows the simulated soil moisture probability density functions (pdfs) of GPG (bare
soil 7.5 cm), GPK (bare soil 5 cm) and SDG (bare soil 15 cm) based on field measurements.

Table 1. Mean soil moisture, standard deviation, coefficient of variation (CV), rainfall depth (mm), rainfall frequency A (unitless) and average rain-
fall depth a (mm) for different soil depths of Gravel plain (Gobabeb) (January 2, 2014 to July 28, 2015), Sand dune (Gobabeb) (July 28, 2014 to
July 28, 2015) and Gravel plain (Kleinberg) (January 1, 2014 to August 3, 2015).

Study site Bare soil/Vegetation Mean soil moisture (%) CV (%) Rainfall (mm) A o (mm)
Gravel plain (Gobabeb) Bare soil (7.5cm) 1.97+0.39 19.79 15.75 0.01 2.63
Bare soil (22.5cm) 0.62+0.19 30.65 15.75 0.01 2.63
Vegetation (7.5cm) 2.69+1.07 39.78 15.75 0.01 2.63
Sand dune (Gobabeb) Bare soil (15cm) 0.57+0.12 21.05 15.75 0.01 2.63
Vegetation (7.5cm) 0.73+0.08 10.96 15.75 0.01 2.63
Gravel plain (Kleinberg) Bare soil (5.0cm) 0.70+0.40 57.14 18.45 0.04 1.95

Note: The bold letters refer to two sensors at different depths of the same location.

doi:10.1371/journal.pone.0164982.t1001
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Fig 2. Rainfall regimes and volumetric soil moisture patterns for different depth of soil types in gravel
plain at Gobabeb (GPG), sand dune at Gobabeb (SDG) and gravel plain at Kleinberg (GPK).

doi:10.1371/journal.pone.0164982.9002
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doi:10.1371/journal.pone.0164982.9003
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Soil moisture pdf shape of GPG was different from that of SDG, which had smaller mode value
and longer tail. The difference can be directly reflected by the values of shape parameter k and
scale parameter 6, with GPG having a higher k (43.1) and lower 6 (1.3 x 107°). The discrepancy
of soil moisture pdfs between GPG and SDG may result from the different antecedent soil
moisture and the similarity of rainfall patterns (Fig 2). Soil moisture pdfs of SDG and GPK
shared some similarities, with relatively low k (20.0 and 5.9, respectively) and high 0 (7.2 and
2.3 x 1072, respectively). The similarities may be explained by the proximity of their initial soil
moisture of SDG and GPK and the resemblance of soil moisture mode value (Fig 2).
Significant differences of soil moisture dynamics can be found at different depths of soil lay-
ers at GPG (Fig 2) and soil moisture differences became larger after storms. Soil moisture dif-
ference between layers might be explained by the high dependence of surface soil moisture on
the prevailing environment since it is continuously gaining and loosing water by means of rain-
fall infiltration and evapotranspiration. The phenomenon is more pronounced in the unsatu-
rated zone or drylands where soil moisture largely depends on meteorological conditions [35,
36]. This behavior is also consistent with observations from other studies in arid regions [37,
38] but differs from the results obtained in China where researchers found no significant differ-
ences for soil water content at 0.4 m, 0.6 m and 0.8 m in a small watershed [39]. Besides, soil
moisture differences between different layers were even found to be smaller after storms [40,
41]. The consistency between our results and previous research may be explained by the simi-
larities of meteorological conditions. In general, low and irregular annual rainfall tend to result
in high soil moisture in the surface soil and low soil moisture in the deep soil layer because
when rainfall amount is too small, most of them will be retained in the shallow layer. That may
help explain why soil moisture differences between surface layer and deeper layer tend to be
larger after storms in our study sites. The discrepancy between our results and other studies
may be induced by the difference in soil texture and hydrological conditions. Soils in other
study sites may be able to hold less moisture, or have higher infiltrate rate or have more intense
interaction with the groundwater, which may result in insignificant differences between shal-
lower and deeper layers event after a strong storm. Soil moisture under vegetation cover was
higher than that of bare soil at GPG (p > 0.05) (Fig 2, Table 1). This phenomenon is also sug-
gested by other dryland studies [42]. This might be explained by the fact that bare soils tend to
dry out faster due to the higher solar energy they receive. In addition, the net gain between
retaining infiltrating rainfall and soil moisture losses through evapotranspiration under vege-
tated soil is likely larger than bare soil moisture loss through evaporation in water-limited sys-
tems. The combination of those two effects will result in higher soil moisture under vegetated
soil and lower soil moisture in bare soils. However, this was not universal, a negative relation-
ship was found between soil moisture and canopy cover at low soil moisture and the negative
relationship diminished when soil became wetter [43]. More intense temporal soil moisture
fluctuations can be found in the top soil layer than in the deeper layers. This result is in good
agreement with the observations in Wagga Wagga and Tarrawarra [44] and soil moisture fluc-
tuations may became less pronounced in deeper soil layers as suggested by recent studies in
China [45, 46]. At GPG, mean soil moisture and standard deviation in the top layer (1.97% and
0.39% respectively) were more than two times that in the deeper layer (0.62% and 0.19%
respectively), whereas the CV of the deeper layer (30.65%) was nearly double that in the top
layer (19.79%) (Table 1). The soil moisture difference between top layer and deeper layer in at
GPG (bare soil) might be induced by the soil properties. As suggested by previous studies, soils
at the gravel plains around GPG are primarily calcrete [33, 36]. A study conducted in semiarid
southern New Mexico suggested that caliche can absorb considerable amount of water [47]
which is not easy to be released to the surrounding soil or taken up by vegetation. In addition,
calcrete soil has low infiltration capacity limiting water movement toward into deeper soil
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Table 2. The correlations between rainfall and soil moisture for different layers of gravel plain at Gobabeb (GPG), sand dune at Gobabeb (SDG)
and gravel plain at Kleinberg (GPK).

Study site Bare soil/Vegetation Depth (cm) r P
Gravel plain Bare soil 7.5 0.49 0.00
(Gobabeb) Bare soil 225 0.03 0.53

Vegetation 7.5 0.03 0.52
Sand dune Bare soil 15 0.07 0.17
(Gobabeb) Vegetation 7.5 0.01 0.82
Gravel plain Bare soil 5.0 0.39 0.00
(Kleinberg)

doi:10.1371/journal.pone.0164982.t002

layers. In SDG, there was no significant difference (p > 0.05) in average soil moisture between
bare soil (0.57%) and under vegetation cover (0.73%) microsites (Table 1). This is consistent
with a previous study which found the average soil moisture is nearly the same in the two
microsites (bare soil and covered with vegetation, respectively) along the Kalahari Transect
[17]. The soil moisture standard deviations were very similar in both microsites, while their
CVs were different with bare soil (20.05%) being two times that of microsites covered with veg-
etation (10.96%). At GPK, the mean soil moisture (0.70%) was similar to the soil moisture for
bare soil at SDG (p > 0.05) (Table 1). This can be clearly reflected by the soil moisture pdfs at
GPK and SDG from which nearly the same shapes have been observed (Fig 3). The CV
(57.14%) for GPK was the highest when comparing with the microsites at GPG and SDG.

At GPG and GPK, soil moisture always followed the rainfall patterns with soil moisture
peaks following rainfall events, whether the surface was covered with vegetation or not (Fig 2).
At the top soil layer, positive correlations between rainfall and soil moisture dynamics were
more obvious (Table 2). However, soil moisture dynamics did not have any correlation with
rainfall at SDG (Table 2). The inconsistencies between the three sites were presumably caused
by the infiltration capacity. In our field measurements, higher K, (50.6 m day™") (Table 3) was
observed at SDG, which was nearly one order of magnitude higher than that of GPG (5.6 m

Table 3. Soil, vegetation and rainfall parameters for gravel plain at Gobabeb (GPG), sand dune at Gobabeb (SDG) and gravel plain at Kleinberg
(GPK).

Unit Gravel plain Sand dune Gravel plain
(Gobabeb) (Gobabeb) (Kleinberg)
Bare soil Bare soil Bare soil
Soil parameters
Porosity n 0.34 0.40 0.48
Field capacity Stc 0.10 0.05 0.09
Hygroscopic point Sh 0.05 0.015 0.01
Saturated hydraulic conductivity K, (mday™) 5.60 50.60 3.50
Soil depth Z, (m) 0.21 0.48 0.35
Rainfall parameters
Average storm frequency A (day™) 0.01 0.01 0.04
Average storm depth a (mm) 2.62 3.02 1.95
Vegetation parameters
Maximum evapotranspiration Epax (MM day™) 1.25 1.15 2.20
Soil-vegetation parameters
Point of incipient stress s* 0.09 0.03 0.08
Permanent wilting point Sw 0.075 0.020 0.045

doi:10.1371/journal.pone.0164982.t003
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day'l) and GPK (3.5m day'l) (Table 3). This indicates that water would leach away at a fast
rate at SDG and can hardly be retained by the soil, whereas some water might be captured by
soil at GPG and GPK after rainfall events.

3.2 Sensitivity analyses

The modeled soil moisture sensitivities to the model parameters from both bounded and non-
bounded groups were tested. In general, the model was more sensitive to the parameters in the
bounded group with the average sensitivity ranging from 0.00011% to 44%. In comparison, the
average sensitivity ranged from -0.00065% to 0.07% for the non-bounded group (Table 4). For
parameters in the bounded group, the sensitivities were all positive except # at SDG. This indi-
cates that simulated soil moisture will increase as values of these parameters become higher. In
the non-bounded group, however, nearly all the parameters had negative sensitivity except Z,
at GPG and GPK.

Sensitivity analyses suggested that parameter sensitivities depended on the overall model
parameterization, thus the parameter sensitivity was different for each site. For the bounded
group at GPG, average sensitivities of sy, s¢, n and s* were of the same order of magnitude.
Among the bounded group, s;, had the largest average sensitivity thousands of times more than
the average sensitivity of s,,. In the non-bounded group, the vegetation parameter T,,,,, and E,,
exhibited the same sensitivity value of -0.11% while average sensitivity values of soil parameter
Z, and K, were quite different, with 0.07% for Z, and -0.00065% for K (Table 4). For all param-
eters at GPK, s, was the most influential factor for the model among all the parameters with an
average sensitivity value of 15%. In the bounded group, the minimum average sensitivity was
n, which was thousands of times smaller than that at GPG. In the non-bounded group, all the
average sensitivity values were negative except Z,, which was far larger than any other values of
the group. With respect to SDG, s;, had the largest average sensitivity value and it had the same
magnitude with sg. which was very similar to that at GPG (Table 4). But the average sensitivity
of n had a totally distinct trend to that of the other two sites suggesting that simulated soil
moisture will decrease as #n goes higher within the predefined interval. The same patterns hap-
pened in the non-bounded group in which the average sensitivity of Z, was -0.036% (Table 4),
though the absolute value of Z, had the same magnitude as those at the other two sites. For
average sensitivities of the three sites, the model was more sensitive to s;, and s¢. and less sensi-
tive to K. All the soil parameters had positive values except #, Z, of SDG and K of all the sites
whereas all the vegetation parameters had negative values.

Table 4. Model sensitivity of the key parameters for gravel plain at Gobabeb (GPG), sand dune at Gobabeb (SDG) and gravel plain at Kleinberg

(GPK).
Unit Step Gravel plain (Gobabeb) Gravel plain (Kleinberg) Sand dune (Gobabeb)
Interval Average Interval Average Interval Average
sensitivity(%) sensitivity(%) sensitivity(%)
Bounded
Porosity n 0.001 [0.002,0.981] | 0.75 [0.006, 0.969] | 0.00011 [0.082,0.899] | -0.31
Field capacity Sic 0.001 [0.001,0.156] | 15 [0.001,0.585] | 1.4 [0.001, 0.04] 1.9
Hygroscopic point EN 0.001 [0.001,0.094] | 44 [0.001,0.404] | 11 [0.001,0.059] | 2.1
Point of incipient stress s* 0.001 [0.001,0.985] | 0.75 [0.001,0.847] | 0.17 [0.001,0.984] | 0.37
Permanent wilting point Sw 0.001 [0.001, 1] 0.086 [0.001, 1] 2.6 [0.001,0.964] | 3.2
Non-bounded
Soil depth Z (m) 0.01 [0.01, 15.50] 0.07 [0.06, 15.83] 0.032 [0.1,18.11] -0.036
Maximum transpiration Timax (MM day™) | 0.01 [0.01, 11.04] -0.11 [0.01, 11.13] -0.036 [0.01,7.77] -0.06
Maximum evaporation E. (mmday1) 0.01 [0.01, 13.75] -0.11 [0.01, 8.36] -0.0014 [0.01, 4.27] -0.057
Saturated hydraulic conductivity | K; (m day™) 0.1 [0.1,81.4] -0.00065 [0.1, 82.6] -0.0044 [0.1, 100] -0.00041

doi:10.1371/journal.pone.0164982.t004
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3.3 Stochastic modeling of soil moisture dynamics

Soil moisture from the three sites (7.5 cm bare soil at GPG; 15 cm bare soil at SDG and 5 cm at
GPK) were selected and simulated by a stochastic modeling framework. The modeled mean
relative soil moisture and soil moisture dynamics in general agreed well with field observations
(Fig 4).

Simulated mean relative soil moisture at the three sites was 0.056 for GPG, 0.014 for SDG
and 0.015 for GPK (Table 5) and mean soil moisture observed in the field was 0.058, 0.014 and
0.015 for GPG, SDG and GPK, respectively (Table 5). Soil moisture at GPG can be well simu-
lated, with soil moisture peaks corresponding to rainfall regimes. Fig 4 shows that the simu-
lated GPG soil moisture was slightly lower than soil moisture acquired from the field, with soil
moisture increasing sharply to the peak during a rainfall event, and decreasing rapidly to a soil
moisture baseline right after a rainfall event. The sharp decrease of soil moisture might be
explained by the modeling assumption that rainfall is the only contributor to the increase of
soil moisture. When intense rainfall inputs were added, soil moisture would immediately
increase to field capacity and leakage would instantaneously occur until soil moisture returned
below field capacity. For SDG, intense soil moisture peaks can be observed from simulated
results, with each soil moisture peak directly following the rainfall patterns (Fig 4). Although
rainfall patterns at SDG are the same as that in GPG, the soil moisture simulation results at
SDG were quite different. Soil moisture of SDG suddenly increased to a fixed value when a
storm came and stayed at that value until another rainfall came which is different from the per-
sistent decrease of soil moisture at GPG. This is because our initial soil moisture at SDG was
below s, and the first rainfall may not have been sufficient for soil to reach its hygroscopic
point. This caused a flat and a sharp increase of soil moisture in the beginning. On the other
hand, simulated soil moisture of SDG always reached the baseline soil moisture without any
smooth soil moisture transition or soil moisture fluctuation. In contrast, the soil moisture
curve of GPG reached the baseline value very smoothly, though still without any soil moisture
fluctuation (Fig 4). The differences may be induced by soil properties where larger K; and
smaller s¢. was found in SDG (Table 3). For GPK, fluctuations can be seen when rainfall came.
At the beginning, simulated soil moisture was slightly higher than the measured soil moisture
value but after two intense rainfall events the simulated results were smaller than field observa-
tions (Fig 4). In general, soil moisture patterns and mean relative soil moisture can be well-sim-
ulated by the stochastic model. However, daily soil moisture fluctuations cannot be fully revealed
by the model simulation. From our perspective, two factors mainly influence the model output.
The first factor is the effect of non-rainfall components, particularly fog and dew, which influence
the daily soil moisture fluctuations while the model failed to take them into account resulting in
steep slopes of soil moisture of two adjacent days between and after a rainfall event. It has been
suggested that fog has been persistent in Namib Desert [48]. High fog is the most common type
of fog that can be found at Gobabeb, which arrives during early morning hours and dissipates
quickly with sunrise when the surface temperature rises. This is probably the first reason why we
cannot simulate the daily soil moisture fluctuations. In addition to the non-rainfall component
effect, the modeling framework itself is based on the assumption that daily scale infiltration and
redistribution occur instantaneously, and soil moisture that exceeds field capacity will be drained
away immediately [49]. Moreover, the model does not consider vertical distribution of soil mois-
ture, assuming soil moisture is the same along soil columns. In reality, however, soil moisture is
different from one layer to another, with soil moisture in a shallow layer generally having higher
soil water content than that in a deep layer.

Our simulation results showed that the stochastic model can be used to simulate soil mois-
ture patterns in the Namib Desert especially in gravel plains where finer soil texture was found.
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Fig 4. The comparison between field observations and simulated relative soil moisture patterns in
gravel plain at Gobabeb (GPG), sand dune at Gobabeb (SDG) and gravel plain at Kleinberg (GPK).

doi:10.1371/journal.pone.0164982.9004
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Table 5. The observed and simulated relative soil moisture (mean * standard deviation) for gravel plain at Gobabeb (GPG), sand dune at Goba-
beb (SDG) and gravel plain at Kleinberg (GPK).

Study sites
Soil type
Depth (cm)
Observed

Simulated

doi:10.1371/journal.pone.0164982.t005

Gravel plain Sand dune Gravel plain
Gobabeb Gobabeb Kleinberg
Bare soil Bare soil Bare soil

7.5 15 5.0
0.058+0.010 0.014+0.003 0.015+0.008
0.056+0.011 0.014+0.006 0.015+0.008

In the site with coarse soil texture (e.g., SDG), the model did not perform very well, indicating
that the modeling framework may not be able to accurately predict soil moisture dynamics at
daily scale for sites with coarse texture.

4. Summary

In this study, twelve to nineteen months’ daily-scale soil moisture and rainfall data were
obtained from three sites located within the Namib Desert. The ground observations showed
that soil moisture was controlled by rainfall patterns at GPG and GPK, particularly for shallow
soil layers with strong correlations between soil moisture and rainfall, while weak rainfall-soil
moisture correlation was found at the sand dune site. The field observations were simulated
using a process-based modeling framework. The modeled soil moisture patterns and mean soil
moisture values agreed well with field observations. However, soil moisture fluctuations cannot
be simulated and require future work such as taking fog and dew into consideration as addi-
tional water inputs. The model sensitivity showed that sensitivity patterns were quite similar
between the three sites. But the sensitivity magnitude of the model parameters differed from
each other, with s, and s¢. having the largest sensitivities among all the parameters. The sensi-
tivity analyses of the three sites were quantified and can be used as an uncertainty indicator for
this modeling framework in future applications.

Supporting Information

S1 Table. The daily rainfall and soil moisture data from Gravel plain at Gobabeb (January
2,2014 to July 28, 2015), Sand dune at Gobabeb (July 28, 2014 to July 28, 2015) and Gravel
plain at Kleinberg (January 1, 2014 to August 3, 2015).

(XLSX)
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