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Abstract
Distribution function estimation of the random variable of river flow is an important problem

in hydrology. This issue is directly related to quantile estimation, and consequently to return

level prediction. The estimation process can be complemented with the construction of con-

fidence intervals (CIs) to perform a probabilistic assessment of the different variables and/or

estimated functions. In this work, several methods for constructing CIs using bootstrap tech-

niques, and parametric and nonparametric procedures in the estimation process are stud-

ied and compared. In the case that the target is the joint estimation of a vector of values,

some new corrections to obtain joint coverage probabilities closer to the corresponding

nominal values are also presented. A comprehensive simulation study compares the differ-

ent approaches, and the application of the different procedures to real data sets from four

rivers in the United States and one in Spain complete the paper.

Introduction
Studies about river flows or, in general, hydrological processes are based on available records.
Many times, the amount, accuracy and representativeness of the records are not enough to
achieve an adequate reliability in results. Usually, there is a considerable uncertainty in measur-
ing extreme values. In order to increase the accuracy of the estimates, several procedures of
flood frequency analysis employing all the geographical and hydrological information available
in the region of interest have been proposed. Some of the most handled methods are based in
the estimation of quantiles. A p-quantile xp of a random variable X is defined as the value
which is exceeded with probability p, that is P(X> xp) = p [1]. In a hydrological context, this
quantity may correspond to design values of environmental loads (waves, snow), river dis-
charges and flood levels. Quantile and return level notions are closely related. If the variable X
measures the river flow, the return level for a given period T is the quantile xT with probability
1/T [2]. Formal definitions of the return level and return period concepts are given in the fol-
lowing section.
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Quantile estimation is a valuable issue in decision making in water-related models. It
appears naturally as a secondary factor in the estimation problem of F, the cumulative distri-
bution function (CDF) of the variable X. Usually, given a data set, the CDF is fitted assuming
that this function belongs to a known parametric family. Then, the corresponding unknown
parameters have to be estimated [3]. This parametric scheme has been widely investigated in
the specialized literature and, in recent years, efforts have been made in developing more
accurate and robust estimation techniques [4]. Note that to apply these parametric
approaches, a statistical model for the variable under study has to be assumed, which can rep-
resent an important drawback of this methodology if model assumptions are violated. On the
other hand, nonparametric techniques have been employed to deal with hydrological prob-
lems in the last decades. Nonparametric estimation uses the information provided by the
recorded data to construct directly estimators of the functions of interest, supposing only
general assumptions about the random variable in study. These kind of proposals are nor-
mally well adapted to the more irregular shapes found in practice for hydrological variables.
Applications of the CDF estimation in this setting are presented, for instance, in [1, 5, 6]
and [7].

In both cases (parametric and nonparametric estimation), the evaluation of the estimator
variations can be made by computing an assessment of their uncertainty. Some significant
research on uncertainty analysis in a hydrological context has been performed in, for example,
[8, 9], and references therein. In the present research, we are mainly interested in the study of
the statistical uncertainty related with the prediction of statistical measures of interest (quan-
tiles) of certain random variables [10]. This can be carried out calculating confidence intervals
(CIs) for these quantiles or return levels. The proper estimation of these CIs provides hydrol-
ogy experts with a robust tool in the risk evaluation and management strategies. Return level
overestimation clearly supposes an increase of the costs related with monitoring and life pro-
tection. On the contrary, underestimation of return leves could lead to increase damages and
associated costs, with the consequent losses for insurance companies. CI estimation for quan-
tiles was previously considered in, among others, [6, 10–13]. Other types of uncertainty include
the randomness of the natural process or the uncertainty depending on the choice of a particu-
lar model [10] and are excluded from this study.

In hydrology, CIs are usually computed for given quantiles corresponding to fixed return
levels. Given a high confidence level (95%, for instance), each one of these CIs will contain the
corresponding unknown quantile with a high probability (0.95, for example). In other words, a
single 0.95-CI for each one of the quantities of interest is computed and, in this sense, they are
called pointwise CIs. However, if the target is the estimation of a vector of values (such as the
CDF or the return level function evaluated in a grid of points, for instance), more accurate than
computing the corresponding pointwise CIs for each one of the quantities of interest is to con-
struct simultaneous CIs (also called a confidence band). Simultaneous CIs are a group of CIs (a
CI for each one of the quantities of interest) designed to jointly contain this vector of unknown
values with a prescribed high probability (95%, for instance). In this way, it would be possible
to make a joint probabilistic assessment for some quantiles of the corresponding CDF. Because
simultaneous CIs include information on model reliability, they are are much more informa-
tive than pointwise CIs [14].

Different techniques have been proposed to produce CIs. In a parametric framework and
assuming a certain distribution for the variable under study, exact or approximate CIs could
be constructed, using maximum likelihood theory or the maximum product of spacings
method (proposed in [15]). Nevertheless, in some practical situations, these approximations
can be quite inaccurate (some numerical examples of this issue can be found in, for example,
[16–18]), or it could be necessary to employ theoretical calculations and manipulation of
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complicated forms of estimators. Moreover, in a nonparametric setting, these approaches
cannot be applied and it is necessary to use other proposals. The present research focuses on
the use of bootstrap methods to construct CIs. These techniques allow to overcome some of
these problems. In general, bootstrap [16] is a resampling technique that attempts to estimate
the sampling distribution of a population, and to determine the accuracy of statistics, by
drawing new samples from the original data. Depending on the resampling process used, the
method is called nonparametric bootstrap, when the new samples are obtained with replace-
ment from the original data, or parametric bootstrap, when they are randomly generated
from a parametric model (distribution) fitted to the data. Under certain probabilistic condi-
tion (readers are referred to the first chapter of [19], where the theoretical conditions
required for this method to work are briefly described), bootstrap methods can produce
more accurate and reliable results than the traditional methods based on asymptotic approxi-
mations (using central limit theorems, for instance). This is specially true in situations when
the distribution of the variables under study are unknown and the distribution of these vari-
ables is far from normality [20]. Nowadays, as a computer-aided statistical technique, boot-
strap is largely used in many fields of applied statistics such as medicine, biostatistics, or
hydrology [21–23].

Different approaches producing good approximate bootstrap CIs have been proposed.
These include, among others, standard normal bootstrap CIs, percentile bootstrap CIs, basic
bootstrap CIs, bootstrap-t CIs or corrections of the previous methods using, for example, the
Bias Corrected and accelerated (BCa) technique [17, 24]. Some of these procedures to construct
CIs have been used to compare parametric and nonparametric bootstrap approaches for
extreme value distributions in [12, 13]. The main conclusions of these papers is that the differ-
ences among the different types of bootstrap CIs (percentile, bootstrap-t and BCa) are usually
smaller than those between the parametric and nonparametric versions of bootstrap. Further-
more, in [12, 13], it is also concluded that parametric bootstrap should be preferred for small
to moderate sample sizes, and when a suitable distribution for the data is known or can be
assumed.

When the estimation target is a function, to construct a 1 − α simultaneous CI, that is, a con-
fidence band containing the whole curve with a prescribed probability of 1 − α, one can think
of computing the 1 − α pointwise CIs in a grid of selected points using one of the previous tech-
niques, and considering this set of CIs as the confidence band. It is clear that the probability
that the whole curve is inside this band is smaller than the desired 1 − α. Some approximations
have been proposed to address this problem, for example, the well-known Bonferroni correc-
tion [25]. In this research, simultaneous CIs constructed applying the Bonferroni method, and
also using a correction of this approach trying to solve the well-known conservative feature of
the Bonferroni technique are compared with synthetic data.

In the current paper, a comprehensive simulation study comparing different pointwise and
simultaneous bootstrap CIs of the return level function and the CDF, mainly focusing on esti-
mations obtained in large quantiles, are presented. As stated previously, the estimation of these
values is a very interesting issue in hydrology. In the present research, nonparametric bootstrap
methods are used in the resampling process, and parametric and nonparametric approaches
are employed to estimate the functions of interest. This allows, on the one hand, comparing
both estimation methodologies in this framework and, on the other hand, observing the influ-
ence of using pointwise or simultaneous CIs when the estimation target are the return levels
and the CDF evaluated in large quantiles. The study is completed with the application of the
bootstrap approaches to real flow data from US rivers previously used in [10], and to a data set
from a Spanish river (Ebro river).

Comparing Confidence Intervals with Applications in Hydrology

PLOS ONE | DOI:10.1371/journal.pone.0147505 February 1, 2016 3 / 28



Statistical methods

Statistical functions
In hydrological applications, CDF estimation is considered an important problem due to the
existence of relevant functions of interest directly related to it. One of these functions is the
probability of exceedance. It gives, for a value x, the probability of occurrence of a flow larger
than x. This information is quite significant in this framework. If X is the variable measuring
the flow, the function returning the probabilities of exceedance is simply defined as

RðxÞ ¼ PðX > xÞ ¼ 1� FðxÞ; ð1Þ

with F the CDF of X. The return period or recurrence interval is directly associated with it. It is
defined as the mean time interval between exceedances of a specific value x. This is important
particularly when one is dealing with extreme events such as floods, droughts, and wind speeds.
A formal definition of this concept, under some assumptions, is given, for example, in [26]. If
Xi represents the flood in year i, with i = 1, 2, 3, . . ., and assuming that these variables are inde-

pendent and identically distributed, the probability that the time interval ~T between exceed-
ances of a flood of magnitude x equals n, n = 1, 2, . . ., corresponds to the probability function
of a geometric distribution, given by:

Pð~T ¼ nÞ ¼ PðX1 < xÞPðX2 < xÞ � � � PðXn�1 < xÞPðXn > xÞ ¼
¼ ½PðX < xÞ�n�1PðX > xÞ:

Therefore, the return period, defined as the mean of ~T , is given by:

RTðxÞ ¼ 1

PðX > xÞ ¼
1

1� FðxÞ : ð2Þ

In many practical problems, it is useful to estimate quantiles corresponding to certain values
of the probability of exceedance. The T –return level is defined as the value that can be expected
to be once exceeded during a T –period of time, that is

RLðTÞ ¼ xT ¼ F�1 1� 1

T

� �
: ð3Þ

Parametric estimation
A first approximation to estimate F consists in using a parametric methodology. If the empiri-
cal distribution function of a sample of data suggests that Fmay belong to a specific parametric
family (Gaussian, Gamma, etc.), depending on a vector of parameters θ, one just has to esti-
mate the unknown values of that vector of parameters to obtain a parametric estimator of the

CDF. Denoting by ŷ an estimator of θ obtained from a sample data (X1, X2, . . ., Xn), an estima-
tor of F, denoted by Fŷ , is immediately derived. Obviously, from Fŷ , parametric estimators of
the functions given in Eqs (1), (2) and (3) are also easily constructed:

RŷðxÞ ¼ 1� FŷðxÞ; RTŷðxÞ ¼
1

1� FŷðxÞ
and RLŷðTÞ ¼ F�1

ŷ 1� 1

T

� �
: ð4Þ

In this parametric context, if the variable X with distribution function F represents the maxi-
mum value of a quantity of interest measured in a specific period of time, classical extreme
value theory uses the idea that, under certain regularity conditions [27], the limit of the distri-
bution of F is the GEV distribution function. This function is considered to correspond to one
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of the following three families,

FyðxÞ ¼
exp f�½1þ gðx � mÞ=s��1=gg;

1þ gðx � mÞ=s > 0; g 6¼ 0;

exp f� exp ½�ðx � mÞ=s�g; g ¼ 0:

ð5Þ

8>>><
>>>:

with θ = (μ, σ, γ). Here, μ is the location parameter, σ> 0 is the scale parameter, and γ is the
shape parameter. The case of γ = 0 is named the Gumbel distribution.

Nonparametric estimation
Parametric modeling traditionally used in hydrological processes, however, does not always
provide good results. An initial hypothesis on the parametric model for the variable of an
unknown function has to be assumed when using this type of approaches. Goodness-of-fit tests
can be applied to check the validity of these models. However, violated assumptions of the
parametric model or an incorrect estimation of its parameters may lead to a poor performance
of the corresponding estimators. Additionally, anomalous events can lead to wrong results in
these goodness-of-fit tests. Therefore, a nonparametric approximation can be useful in such sit-
uations. This methodology avoids the specification of a particular model to work with (such as
the normal distribution, or a linear relation), and it is a valid alternative to the classical
parametric techniques [28, 29]. Regarding the CDF, F, given a sample data (X1, . . ., Xn), the
well-known kernel CDF estimator [1] is defined at any point x of the domain of F as:

F̂ hðxÞ ¼ n�1
Xn
j¼1

H
x � Xj

h

� �
; ð6Þ

where h is the bandwidth or smoothing parameter, and HðxÞ ¼ R x

�1 KðtÞdt; with K a kernel

function, usually a density function or a smooth function with some regularity conditions [29].
Based on definition (6), estimators of the functions given in Eqs (1), (2) and (3) can be also

derived, substituting FŷðxÞ by F̂ hðxÞ in Eq (4).
Although the choice of the kernel function is of secondary importance, the smoothing

parameter h plays a crucial role in the kernel estimator Eq (6). Small values for hmake a highly
variable estimator while big values produce a very smooth one [6]. Therefore, it is very impor-
tant to use automatic bandwidth selection methods producing reliable estimators.

In the nonparametric distribution estimation framework, only plug-in and cross-validation
approaches have been considered to select the bandwidth. In general, they have shown a good
performance from a theoretical and practical point of view. Two different plug-in methods,
developed by [30] and [31], can be cited. Cross-validation techniques have been investigated
by [32], obtaining good experiences in practice. It can also be seen in [33] and references
therein that, in distribution function estimation, similar results can be obtained in practice
with both cross-validation and plug-in bandwidths. However, cross-validation has a clear
drawback in terms of computing time. The cross-validation algorithm is an O(n2) in terms of
asymptotic time complexity, while the plug-in method is only O(n); n being the sample size
(see also [6], for more insight in bandwidth selection in distribution function estimation in
hydrology). This concern is increased in the comparisons based on simulations, where the
whole number of calculations are repeated a large number of times. Therefore, given that both
bandwidth selection procedures (cross-validation and plug-in methods) seem to provide simi-
lar results in this framework, it is preferred to use the plug-in method of [31] in these experi-
ments. Note that this plug-in approach has employed previously in related works, with good
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results [34]. In the recent paper of [33], the interested reader can find more theoretical details
and an extended discussion on these two bandwidth selection methods for the nonparametric
distribution function. Additionally, a free package, named Kerdiest, using the R software
regarding these procedures was also developed.

The previous bandwidth selection methods provide global smoothing parameters. However,
in situations with observations coming from a long-tailed density, a possibility to improve the
behavior of nonparametric kernel estimators is to consider local bandwidths instead of a global
smoothing parameter. There are several approaches to deal with this problem. In the nonpara-
metric kernel density estimation framework, a solution is to use the so-called adaptive kernel
estimator. The idea of this procedure is to combine features of the kernel and the nearest neigh-
bor methods. It consists of constructing a kernel estimate with “bumps” or kernels located at
the observed data points, but with different bandwidths from one point to another [35]. Some
other authors have addressed the problem of estimating return levels or return periods for
extremely large events using nonparametric estimators of these quantities with local band-
widths. For example, in a hydrological context, [36] or [1] discussed the use of variable or local
bandwidths to address the extrapolation problem. A well-known drawback of the estimators
using this kind of bandwidths is the possible increase of its variance, leading to similar mean
squared errors to those obtained with global proposals. Additionally, local or adaptive band-
width selection approaches add an extra computing time to the whole process and, for this rea-
son, it was preferred not to use data-adaptive smoothing parameters in the present research.
However, a deeper study of this issue could be carried out in a future research.

Confidence intervals
In the previous section, different parametric and nonparametric estimators of some functions
of interest in this framework were described. As pointed out, the CDF of the variable under
study can be considered the key function for the rest of them, and it is reasonable to think that
the properties of the CDF estimates can be extended to other functional estimates (exceedance,
return levels, etc.). For this reason, the CDF is the main interest of this analysis. However,
results concerning the return level function have also been obtained. The procedure to con-
struct the CIs is basically the same for the CDF and the return level function. Hence, just the
process for the CDF, F, is described. A similar analysis was carried out for the return levels
given in Eq (3).

Given a point x0 of the F domain, F̂ðx0Þ denotes a general parametric or nonparametric esti-
mator of F(x0). In many situations, a point estimate does not provide enough information
about a value of interest (F(x0), in this case). A single number may not be as meaningful as an
interval within which it would expected to find the value of this variable. As it is well-known, a
(1 − α)-CI is a random interval, (L, U), containing the parameter of interest with a (high) prob-
ability 1 − α. For a specific sample realization (x1, . . ., xn), a numeric interval (l, u) is obtained,
called a 100(1 − α)% CI, in the sense that drawing infinity samples and constructing the corre-
sponding numeric intervals, the 100(1 − α)% of such intervals will contain the unknown
parameter.

Among the different existing methods to compute CIs, several bootstrap approaches were
employed in the present research. This resampling technique allows to obtain good approxi-
mate CIs in a relatively simple way. Next, the proposals used in this research are briefly
described. In a first stage, pointwise bootstrap CIs for F(x0) are presented. Then, the issue of
constructing simultaneous CIs is addressed, considering two algorithms trying to correct the
possible bad performance when the previous pointwise methods are applied to obtain confi-
dence bands.
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Pointwise confidence intervals. In this Section, the approaches compared in this analysis,
providing the (1 − α) pointwise bootstrap CIs for F(x0) are briefly described. In a practical situ-
ation, small values of α (α = 0.01 or 0.05, for instance) are usually employed. Readers are
referred to [24] and [20] for theoretical properties and discussion of empirical performance of
these methods.

The standard normal bootstrap CI. This is the simplest approach, but not necessarily the best.

Suppose that F̂ ðx0Þ is a parametric or nonparametric estimator of F(x0), and assume the stan-

dard error of the estimator is sðF̂ ðx0ÞÞ. Using the Central Limit Theorem and assuming that

F̂ ðx0Þ is an unbiased estimator of F(x0), an approximate (1 − α)-CI for F(x0) is

F̂ðx0Þ � za=2sðF̂ðx0ÞÞ; F̂ðx0Þ þ za=2sðF̂ðx0ÞÞ
h i

;

where zα/2 =F−1(1 − α/2), withF(�) the standard Gaussian CDF. This interval is easy to com-

pute, but there are several assumptions. In a practical situation sðF̂ðx0ÞÞ is estimated using a

bootstrap estimator of the standard error of F̂ðx0Þ. Drawing B bootstrap resamples,

X
�j
1 ;X

�j
2 ; . . . ;X

�j
n , j = 1, 2, . . ., B, from the original sample, X1, X2, . . ., Xn, and computing the

bootstrap (parametric or nonparametric) estimators, F̂�jðx0Þ, j = 1, 2, . . ., B, then sðF̂ðx0ÞÞ is
estimated by the standard deviation of the replicates, i.e., by:

ŝðF̂ �ðx0ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

XB
j¼1

F̂ �jðx0Þ � �̂F �ðx0Þ
� �vuut ;

where �̂F�ðx0Þ ¼ 1
B
PB

j¼1 F̂
�jðx0Þ.

The percentile bootstrap CI. Given an initial confidence level, 1 − α, and a point of the CDF

domain, x0, we start by approximating the sampling distribution of F̂ ðx0Þ. This is done
using its bootstrap distribution, from which it is easy to obtain a pointwise (1 − α)-CI, esti-
mating the corresponding quantiles. The process is the following:

1. Draw B bootstrap resamples, X �j
1 ;X �j

2 ; . . . ;X �j
n , j = 1, 2, . . ., B, from the original sample,

X1, X2, . . ., Xn.

2. Compute the bootstrap (parametric or nonparametric) estimators, F̂ �jðx0Þ, j = 1, 2, . . ., B,
using the bootstrap resamples.

3. Now, the a
2 and 1� a

2 quantiles of the bootstrap distribution are computed: F̂ � da2Beð Þðx0Þ
and F̂ � d 1�a

2ð ÞBeð Þðx0Þ (where dxe denotes the integer part of x).
4. The final (1 − α) (percentile) bootstrap CI for F(x0) is

F̂
�
l a
2
B
m� �

ðx0Þ; F̂
�
l

1�
a
2

� �
B

m� �
ðx0Þ

2
4

3
5:

The basic bootstrap CI. The basic bootstrap CI transforms the distribution of the replicates by
subtracting the observed statistic. The quantiles of the transformed sample are used to deter-
mine the confidence limits. The algorithm is the following:

1. Obtain a bootstrap sample, X �j
1 ;X �j

2 ; . . . ;X �j
n , from the original sample, X1, X2, . . ., Xn.
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2. With this bootstrap sample, compute an approximate bootstrap version of

Dnðx0Þ ¼ F̂ ðx0Þ � Fðx0Þ, using

D�
nðx0Þ ¼ F̂ �ðx0Þ � ~Fðx0Þ; ð7Þ

where ~Fðx0Þ is a pilot (parametric or nonparametric) estimator of F(x0).

3. Repeat steps 1 and 2 a large number of times B. Therefore, after this step, B values of the
bootstrap distribution D�

nðx0Þ are avaliable.

4. Compute the a
2 and 1� a

2 quantiles of the bootstrap distribution: D
� da2Beð Þ
n ðx0Þ and

D
� d 1�a

2ð ÞBeð Þ
n ðx0Þ, and the corresponding percentile CI for D�

nðx0Þ:

D
�
l a
2
B
m� �

n ðx0Þ � F̂ðx0Þ � Fðx0Þ � D
�
l

1�
a
2

� �
B

m� �
n ðx0Þ:

5. The final bootstrap confidence interval for F(x0) is

F̂ðx0Þ � D
�
l

1�
a
2

� �
B

m� �
n ðx0Þ; F̂ðx0Þ � D

�
l a
2
B
m� �

n ðx0Þ
2
4

3
5

or, considering the expression Eq (7), equivalently,

F̂ðx0Þ þ ~Fðx0Þ � F̂
�
l

1�
a
2

� �
B

m� �
ðx0Þ; F̂ðx0Þ þ ~Fðx0Þ � F̂

�
l a
2
B
m� �

ðx0Þ
2
4

3
5;

where F̂
�
l

a
2
B
m� �

ðx0Þ and F̂
�
l
1�a

2

� �
B
m� �

ðx0Þ are the corresponding a2 and 1� a
2 quan-

tiles of the bootstrap distribution F̂�ðx0Þ.
The Bias Corrected and accelerated (BCa) CI. Some modifications of the previous methods

have been proposed to get CIs with better theoretical properties and better performance in
practice. The BCa approach is one of these techniques. The CIs constructed with this proce-
dure are a modified version of the percentile CIs. They are second-order accurate and trans-
forming respecting.

Drawing B bootstrap resamples, X �j
1 ;X �j

2 ; . . . ;X �j
n , j = 1, 2, . . ., B, from the original sample,

X1, X2, . . ., Xn, and computing the bootstrap (parametric or nonparametric) estimators

F̂ �jðx0Þ, j = 1, 2, . . ., B, the (1 − α) BCa CI is

½F̂ �ðda1BeÞðx0Þ; F̂ �ðda2BeÞðx0Þ�;

where

a1 ¼ F ẑ0 þ
ẑ0 þ za=2

1� âðẑ0 þ za=2Þ

 !
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and

a2 ¼ F ẑ0 þ
ẑ0 þ z1�a=2

1� âðẑ0 þ z1�a=2Þ

 !
;

with zα = F−1(α), and ẑ0 and â estimators of the bias correction and the acceleration adjust-

ment, respectively. The bias correction factor is in effect measuring the median bias of the

replicates F̂�ðx0Þ for F̂ðx0Þ. It is estimated by:

ẑ0 ¼ F�1 1

B

XB
j¼1

IðF̂ �jðx0Þ < F̂ðx0ÞÞ
 !

;

where I(�) is the indicator function. Note that ẑ0 ¼ 0 if F̂ðx0Þ is the median of the bootstrap

replicates. The acceleration constant refers to the rate of change of the standard error of

F̂ðx0Þ with respect to the actual value of the CDF. It can be estimated in various ways [20],

for instance, from the equation

â ¼
Pn

i¼1 ðF̂ðx0Þð�Þ � F̂ðx0ÞðiÞÞ3

6
Pn

i¼1 ðF̂ðx0Þð�Þ � F̂ðx0ÞðiÞÞ2
h i3=2 ;

where F̂ðx0ÞðiÞ denotes the i-th jackknife nonparametric estimate of the CDF, and F̂ðx0Þð�Þ
is the arithmetic mean of all jackknife estimates.

Simultaneous confidence intervals. In the previous section, different bootstrap
approaches to construct CIs for the CDF, F, evaluated in a specific point, x0, were described.
However, in many cases, the target is not the estimation of the single value F(x0), but the esti-
mation of the CDF, F. In these cases, the development of reliable methods to construct simulta-
neous CIs, i.e., confidence bands, are of great interest. A first approximation to construct a 1 −
α confidence band could be simply computing the 1 − α pointwise CIs in a grid of k selected
points using one of the previous techniques, and considering this set of pointwise CIs as the
corresponding band. No matter the method used to produce the individuals pointwise CIs, the
band obtained with this procedure can be named as uncorrected, because although individual
confidence intervals have approximately the nominal coverage probability (1 − α) when they
are considered separately (for a particular grid point), the probability that the whole curve is
included in the band depicted by the whole set of intervals is much smaller. This is known as
the multiple range testing problem [37] or the false discovery rate in high dimensional statisti-
cal problems [38].

A classical way to correct for multiple testing and to get multiple level which is much closer
to the desired α is the popular Bonferroni approach [25]. In a hypothesis testing context, the
idea behind this approach, when k hypotheses are simultaneously tested, is to consider a new
significance level, αBonf = α/k, and compute k individual tests using this new level. The resulting
multiple test has a multiple level which is much closer to the desired α. Obviously, once the
Bonferroni significance level is calculated, the corresponding CIs could be obtained using any
of the methods described in the previous section. For simplicity, just the basic and the BCa
techniques are used in the experiments. In general, no matter the method used, the generic
term Bonferroni band is used here.

However, the Bonferroni approach is usually a conservative procedure. In this context, this
means that the joint coverage probability of the confidence band would be larger than the
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desired 1 − α. Trying to solve this problem, an iterative method is proposed. Starting from the
conservative Bonferroni approach and the anticonservative individual testing approach (only
the basic method are used in these experiments), the following algorithm finds an approximate
(1 − α)-confidence interval, with a given approximation error δ (typically δ is small in compari-
son with the nominal α, for instance d ¼ a

10
):

1. Fix að0Þlow ¼ aBonf ¼ a
k and a

ð0Þ
high ¼ a. Fix the iteration number, i = 0.

2. Compute aðiÞmean ¼ aðiÞlowþaðiÞhigh
2 .

3. Use the bootstrap resamples to compute individual confidence intervals with 1� aðiÞlow,

1� aðiÞmean and 1� aðiÞhigh confidence levels.

4. Compute, with the same bootstrap resamples, the proportion of bootstrap curves that are

included in each of these confidence bands. These proportions satisfy pðiÞlow � pðiÞmean � pðiÞhigh,

pðiÞlow � 1� a � pðiÞhigh and p
ðiÞ
low > pðiÞhigh.

5. If pðiÞmean � 1� a, then define aðiþ1Þ
low ¼ aðiÞmean and a

ðiþ1Þ
high ¼ aðiÞhigh. Otherwise define a

ðiþ1Þ
low ¼ aðiÞlow

and aðiþ1Þ
high ¼ aðiÞmean.

6. Stop at step i if jpðiÞmean � ð1� aÞj < d. Otherwise increase i in one unit and repeat Steps 2–5.

The final approximate (1 − α) simultaneous CIs are those obtained for level 1� aðiÞ
mean in the

last iteration. The band produced is denoted by the terms corrected band.
This procedure to correct the Bonferroni method follows different ideas to other methods

proposed in the literature for this purpose (see [39], where five modified Bonferroni procedures
are compared). The technique used here takes advantage of the bootstrap resamples obtained
to construct the CIs to approximate the correct confidence level. This gives a simple and very
fast general method, correcting (at least partially) the error made if the individual CIs (com-
puted using BCa or basic bootstrap) were used as simultaneous CIs. The iterative process to
correct the confidence level follows the same principles as those used in the very simple bisec-
tion method to approximate a solution of a non-linear equation. The parameter δ represents
the error that the user is willing to assume (it was checked that the suggestion of δ = α/10 pro-
vides fast and good results). This approach produce CIs with levels in the continuum between
those used to construct uncorrected or Bonferroni CIs, being more or less closer to each one of
them depending on the number, k, of grid points.

Simulation study
In this section, the pointwise and simultaneous bootstrap CIs described in the previous section
are compared, via a simulation study, using synthetic data. Specific code to carry out the
numerical analysis shown in this section and the following (focus on real data applications)
was developed using the free statistical software R [40]. In these programs, some existing R
libraries (cited below) to generate and fit the different parametric and nonparametric models
used in our research were also employed. Initially, the main interest is the CDF. From Eqs (1)–
(3), it is clear that once the CDF is estimated, other important functions can be immediately
approximated, with the goodness of these estimates being directly determined by the quality of
CDF estimation. To check this fact empirically, in the second part of the study, the same kind
of analysis for the return level function is repeated.
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Starting with the analysis of the CDF and using a parametric methodology, the Gamma,
Log-normal, Gumbel and Weibull distributions (all of them with two unknown parameters)
were considered as parametric families to which the unknown CDF could belong. These
parametric distributions are traditionally used to fit annual instantaneous peak discharges of a
river [41]. Without loss of generality, this study could be performed for any other distribution.
The parametric models were fitted and the corresponding unknown parameters estimated
using the R library nsRFA [42]. Regarding the nonparametric approach, the kernel estimator
given in Eq (6) was used, with a smoothing parameter selected by the plug-in method described
in [31]. The R library Kerdiest [33] was used to fit the nonparametric estimator. On the
other hand, in the first part of the study, the Gamma distribution was considered as the parent
distribution, generating the synthetic data from this variable. This is a distribution commonly
employed in this context. Specifically, a Gamma distribution with probability density function
f ðxÞ ¼ 1

ykGðkÞ x
k�1e�

x
y, with shape parameter k = 10 and scale parameter θ = 2.6, was used. The

values of these parameters were chosen consistently with those estimated from the discharge
data of the next section [10].

In the simulation experiments, CIs for the CDF evaluated at specific quantiles, correspond-
ing to more or less extreme values of the variable, were computed. Observing Eq (3), it is easy
to see that return-level estimation is equivalent to quantile estimation. Taking this into
account, the procedure employed has the following steps. First, a sample of size n from a
Gamma distribution, X1, X2, . . ., Xn, is generated. Second, a grid of j particular periods of time
(years) T = T1, T2, . . ., Tj are considered, and the values 1 − (1/T) calculated. Then, using the
sample data, the j sample quantiles corresponding to the probabilities 1� 1

T1
; . . . ; 1� 1

Tj
are

computed. Denoting these quantiles by q1, . . ., qj, the values F(qj) are estimated by means of

F̂ðqjÞ, where F̂ð�Þ can be a parametric or a nonparametric estimator. Finally, the different CIs

are constructed.
Three different sets of T values (denoted by T(1), T(2) and T(3), respectively) were considered,

obtaining thus the corresponding different sets of return periods. The periods of time (in
years) in these sets are, respectively, T(1) = {4, 5, 6, 7, 8, 20, 50, 100, 200}, T(2) = {2, 4, 5, 10, 20,
25, 50, 100, 200} and T(3) = {4, 6, 8, 10, 12, 14, 16, 18, 20}. The different values of T allow to con-
trol the number of extreme values where the CDF is estimated. For example, the last values for
T in T(1) and T(2) are 50,100 and 200. These high return-periods correspond to extreme quan-
tiles of probabilities 0.98,0.99 and 0.995, respectively. Nevertheless, the set of values included in
T(3) produce not so large quantiles. In this way, the performance of the different methods to
construct CIs in different situations can be checked.

Different sample sizes, n, have been considered, obtaining similar conclusions for all of
them. For the sake of brevity, only the case of n = 100 is presented here. On the other hand, fol-
lowing [24], the number of bootstrap replicas was B = 40n (i.e., 4,000 for the case of n = 100).
Each simulated setting was repeated 1,000 times.

For each simulation replica, the j bootstrap CIs (in each of the j grid points) were computed
using the methods standard normal bootstrap, percentile bootstrap, basic bootstrap and BCa.
These techniques are designed to obtain pointwise CIs, although they can also be used in a
simultaneous way to produce confidence bands. However, and with the aim of producing more
accurate simultaneous CIs, the Bonferroni approach was also applied to the CIs obtained by
the basic bootstrap and the BCa methods. Moreover, the iterative algorithm indicated in the
previous section to correct the Bonferroni technique was also employed. This iterative process
was just applied starting from the CIs obtained by the basic method in the simulations,
although other alternative methods could also be used. Therefore, seven methods to construct
CIs were tested, four of them (standard normal bootstrap, percentile bootstrap, basic bootstrap

Comparing Confidence Intervals with Applications in Hydrology

PLOS ONE | DOI:10.1371/journal.pone.0147505 February 1, 2016 11 / 28



and BCa methods) designed to obtain pointwise CIs (in what follows, denoted by Stand, Perc,
Basic and BCa, respectively), and three based on modifications of some of the previous ones
(Bonferroni applied to the basic and BCa intervals, and the iterative process starting from the
basic CIs), to be used when the interest is to obtain simultaneous CIs (they are denoted by
Bon-Basic, Bon-BCa and Corr-Bon, respectively).

Once the pointwise or simultaneous CIs were computed, the corresponding pointwise and
simultaneous coverage probabilities of the CIs constructed with the different procedures were
estimated. For this, it was checked if the real value of the CDF at the corresponding grid point
is or not inside the interval. After the 1,000 repetitions, the pointwise coverage probabilities
can be estimated. Following a similar process, it was also computed the simultaneous coverage
probabilities, checking if all the values of the theoretical CDF at the grid points were inside the
corresponding intervals.

Table 1 shows the results of these simulations with α = 0.05 and n = 100. For each model,
the left column (denoted with the letter ‘P.’) shows the estimated pointwise coverage percent-
age (interval coverage), and the right column (denoted with the letter ‘S.’), the simultaneous
coverage percentage (band coverage).

Table 1. Pointwise (columns denoted with the letter ‘P.’) and simultaneous (columns denoted with the letter ‘S.’) coverage percentage of the differ-
ent methods used to construct CIs.

Nonparam. Gamma Fit Log-Norm Gumbel Weibull

T method P. S. P. S. P. S. P. S. P. S.

T(1) Stand 83.20 54.10 84.35 77.10 83.70 70.00 78.40 53.90 71.40 32.00

Perc 88.87 62.50 94.03 89.40 89.81 73.30 79.07 38.90 78.92 41.80

Basic 86.77 57.90 90.03 78.50 93.81 87.00 87.27 68.10 66.83 12.80

BCa 89.53 63.70 95.02 91.00 87.25 65.80 74.81 26.90 82.34 51.40

Bon-Basic 89.54 61.70 94.47 84.80 99.04 98.50 98.65 96.70 74.93 22.10

Bon-BCa 92.75 72.00 96.96 94.50 91.04 74.30 78.70 34.90 87.32 62.10

Corr-Bon 89.03 61.10 91.90 81.60 96.28 92.30 91.08 77.80 70.01 16.10

T(2) Stand 85.10 52.90 85.90 74.80 86.56 68.80 79.23 52.40 71.40 32.00

Perc 88.63 59.20 93.85 86.60 89.77 69.60 77.10 35.00 78.40 39.90

Basic 86.28 54.80 89.16 75.90 93.67 82.80 85.97 64.30 66.65 14.80

BCa 89.38 59.80 95.14 88.30 85.83 61.70 70.82 22.00 82.60 49.30

Bon-Basic 88.72 61.10 93.75 84.60 98.95 96.90 98.61 95.70 73.20 25.30

Bon-BCa 93.21 71.70 97.96 94.60 91.52 73.20 77.92 36.50 89.22 65.20

Corr-Bon 88.37 60.30 91.68 81.20 97.04 91.10 92.57 79.80 70.20 19.50

T(3) Stand 89.94 72.70 85.89 76.30 86.60 72.50 84.10 66.70 82.10 57.80

Perc 94.92 83.80 94.20 87.90 94.40 84.20 90.50 72.50 89.80 68.00

Basic 94.13 81.20 92.27 85.20 94.00 85.00 91.40 78.10 85.40 55.90

BCa 95.04 83.70 95.50 89.70 92.50 77.20 86.60 64.40 91.40 73.90

Bon-Basic 97.70 91.80 97.03 93.50 98.80 97.10 98.90 97.20 92.80 75.20

Bon-BCa 98.74 94.90 98.07 95.10 96.50 88.40 91.10 73.00 95.70 86.20

Corr-Bon 96.94 89.60 94.80 89.50 96.60 91.10 95.20 86.20 88.90 64.80

Data are simulated from a Gamma(10,2.6) distribution, and fitted using a nonparametric fit and parametric fits assuming a Gamma, Log-normal, Gumbel

and Weibull distributions. The percentages are rounded using two significant figures.

doi:10.1371/journal.pone.0147505.t001
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Some conclusions can be deduced from the results included in Table 1. Ideally, the point-
wise methods (Stand, Perc, Basic and BCa) should achieve a pointwise coverage percentage of
(or close to) 95% (column ‘P.’), while the simultaneous coverage percentage (column ‘S.’) of
the simultaneous procedures (Bon-Basic, Bon-BCa and Corr-Bon) should be close to 95%. On
the other hand, due to the multiple range testing, it is expected that the simultaneous coverage
of the approaches Stand, Perc, Basic and BCa should be smaller than their nominal value (95%,
in this case). Note that the methods Bon-Basic, Bon-BCa and Corr-Bon are designed to try to
overcome this issue. Taking these arguments into account, it is clear that the best results for all
the approaches were obtained when the set of return-periods T(3) was considered. Note that
this set of values does not contain large values, while T(1) and T(2) include the values 50, 100
and 200, producing extreme quantiles, where it is much more difficult to obtain reliable distri-
bution estimations. Additionally, the best performance of the different methods was obtained
when the data were fitted with a Gamma distribution. This is quite natural because the data
were generated from this kind of variable. Nevertheless, using other parametric fits led to
worse results, especially if the shape of the fitted distribution differs from a Gamma variable (a
Weibull, for instance). In this sense, the nonparametric approach represents a valid alternative.
The results obtained with this methodology were better than those using a parametric model
different to the one employed to generate the data (Gamma), but they were still close to the
best percentages obtained under a Gamma fit. Therefore, the nonparametric approach appears
reasonably robust to model misspecification.

Regarding the different methods, when the aim is to construct pointwise CIs, all the point-
wise approaches seem to be, in general, anticonservative. In this framework, the BCa approach
(BCa) produced the best results. It can be easily observed that the pointwise coverage percent-
ages of the BCa technique are the closest to their nominal value (95%) among the different
pointwise methods. This is specially remarkable in the case of considering T(3), using a non-
parametric fit or the reference Gamma distribution (with percentages of 95.04% and 95.50%,
respectively). The anticonservative nature of the pointwise methods made the simultaneous
approaches (Bon-Basic, Bon-BCa and Corr-Bon) to give, in general, better results than the
pointwise methods when they are considered pointwisely. However, this could be an artificial
effect, consequence of the poor performance of pointwise methods in some scenarios (specially
using T(1) or T(2), and assuming a Gumbel or a Weibull distribution). As for the simultaneous
coverage percentages, it is clear that the designed methods for constructing confidence bands
worked better than the pointwise approaches. The band coverage (simultaneous) percentages
for Bon-Basic, Bon-BCa and Corr-Bon were closer to their nominal values (95%) than those
computed with the approaches denoted by Stand, Perc, Basic and BCa, although, in general, all
of them tended to be anticonservative. In this simultaneous context, the best performance was
achieved by Bon-BCa (Bonferroni applied to BCa intervals), especially when T(3) is considered
and a nonparametric fit or the reference Gamma distribution was used (band coverage percent-
ages of 94.90% and 95.10%, respectively). The approach Bon-Basic (Bonferroni applied to the
basic intervals) gave simultaneous coverage probabilities over and above the nominal value,
depending on the scenario; while the method Corr-Bon (designed to correct the conservative
feature of the Bonferroni approach) seems to be, in general, anticonservative.

In the second part of the simulation study, the interest were the return levels, defined in Eq
(3). A similar process to that previously described for the CDF was performed. The different
pointwise and simultaneous CIs were computed, and their corresponding pointwise and simul-
taneous coverages calculated. The general procedure follows the same steps as before, but with
the obvious changes in the estimation process when the target is the return level function
instead of the CDF. Here, a heavy-tailed distribution as the parent distribution was used,
because this type of models are widely employed in extreme value problems in hydrology.
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Specifically, a GEV distribution Eq (5), with location parameter μ = 1555.73, scale parameter σ
= 613.57, and shape parameter γ = 0.10, was employed to generate the artificial data. This dis-
tribution corresponds to the one fitted to the real data set of annual peak instantaneous flows
of the Spanish river analyzed in the next section. Note that, in the nonparametric case, return
level estimation is obtained by means of a numerical approximation to the root of the equation

p� F̂ hðxpÞ ¼ 0, with 0< p< 1. This process always implies some extra computing time that

may be high when, additionally, one has to select a smoothing parameter and bootstrap meth-
ods are being used. Also note that the comparisons based on simulations require repeating the
whole number of calculations a large number of times (1,000 in this case). Taking this into
account, in this part of the study, just the previous scenarios T(2) and T(3) were considered.
Moreover, to fit the data, the nonparametric estimator of the return levels obtained from Eq
(6), and the parametric estimator, given in Eq (4), assuming that the data follow a (correct)
GEV distribution and also a (misspecified) Gumbel model were considered. Table 2 contains
the same type of information as that presented in Table 1, but for the return levels.

As expected, very similar conclusions to those pointed out in the case of the CDF can be
reproduced here for the different procedures used to construct the CIs. However, some differ-
ences are observed in the results obtained with the nonparametric estimator, when the interest
is to construct simultaneous CIs and the set T(2) (containing some high return-periods) is con-
sidered. In that case, the modifications of the pointwise procedures (Bon-Basic, Bon-BCa and
Corr-Bon) seem to be too much anticonservative, with band coverage percentages far from the
ideal 95%. This fact may be due, among other factors, to the error made by the numerical
method used to approximate the corresponding quantiles. More efficient techniques could be
used for this task, but with a higher computing time. In any case, it can be observed that even
assuming a Gumbel distribution (which is not very similar to the parent GEV distribution) to

Table 2. Pointwise (columns denoted with the letter ‘P.’) and simultaneous (columns denoted with the letter ‘S.’) coverage percentage of the differ-
ent methods used to construct CIs.

Nonparam. Fit GEV Gumbel

T method P. S. P. S. P. S.

T(2) Stand 87.10 52.80 89.46 75.90 81.74 47.60

Perc 84.46 35.00 93.88 85.80 85.40 44.40

Basic 80.06 24.10 93.54 83.80 83.23 38.50

Bca 84.12 33.40 94.20 86.10 83.90 40.90

Bon-Basic 86.07 33.20 97.84 94.60 95.50 79.90

Bon-BCa 87.18 39.30 97.01 93.20 89.90 57.90

Corr-Bon 84.59 30.30 96.48 91.40 88.84 54.60

T(3) Stand 88.10 77.30 86.59 78.20 84.52 73.10

Perc 94.70 88.50 94.27 90.00 94.13 85.90

Basic 90.60 79.60 94.58 89.70 93.63 84.90

Bca 94.66 88.40 94.80 90.80 94.34 87.30

Bon-Basic 97.22 92.70 98.42 97.30 98.57 97.00

Bon-BCa 97.92 94.40 96.62 94.00 96.10 91.80

Corr-Bon 94.36 86.40 96.49 93.40 95.20 88.60

Data are simulated from a GEV(1555.73,613.57,0.10) distribution, and fitted using a nonparametric fit and parametric fits assuming a GEV and a Gumbel

distributions. The percentages are rounded using two significant figures.

doi:10.1371/journal.pone.0147505.t002
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fit the data, this effect is at least partially corrected. Hence, in situations when the parametric
model cannot be exactly specified, instead of using a nonparametric approach (as suggested in
the CDF case), here, a clear improvement is obtained if a proper parametric model (selected by
means of goodness-of-fit tests) is considered to be fitted to the data.

Therefore, to sum up, in the case of the CDF, if the interest is to compute individual CIs, the
suggestion is to use the BCa approach (BCa), but if the concern is to compute simultaneous
CIs, the pointwise methods are far from achieving the nominal value, while the technique
denoted by Bon-BCa (Bonferroni applied to BCa intervals) corrects (at least partially) this bias
in a simple and fast way, and this is the recommendation. On the other hand, when it is not fea-
sible to know the distribution of the data under study, the proposal is to use a nonparametric
model to estimate the CDF and obtain the corresponding pointwise or simultaneous CIs. In
the case of the return levels, the same conclusions hold, except that to construct simultaneous
CIs when the distribution of the data is not known, it is suggested to fit a proper parametric
model, using a goodness-of-fit test, instead of applying nonparametric approaches as in CDF
case.

Applications
In this section, several data sets of annual maximum peak discharges are used to show the prac-
tical application of the different CI estimation procedures. Specifically, four series from the US
Geological Survey (USGS), measured in cfs (cubic feet per second), and a data set of a Spanish
river (Ebro river), measured in cumecs (cubic meters per second), have been selected.

US river data
As a first case study, the different methods previously described have been applied to construct
pointwise and simultaneous CIs for the CDF to four USGS series extracted from a larger collec-
tion studied and described in [41] and in [10]. In [10], the authors applied several goodness-of-
fit tests to obtain the best theoretical parametric distribution fitting each series. Here, four par-
ticular series fitted by a different parametric model in that work, with identification (USGS
notation) 02055000 (Roanoke River, VA), 01463500 (Delaware River, NJ), 03011020 (Alle-
gheny River, NY) and 11152000 (Arroyo River, CA) (see table 2 of [10] for a detailed descrip-
tion), have been chosen. The best distributions to fit these series (selected by means of the
Akaike Information Criterion (AIC), [43]) are, respectively, the Gamma, the Log-normal, the
Gumbel and the Weibull distributions (see table 3 of [10]).

In this application, the process followed to construct the CIs is similar to that described in
the previous simulation section (obviously, now, only one sample data is available for each
river). The set of return periods considered here was T = {5, 10, 20, 100, 200, 500, 1000}. This
means that, applying Eq (3), the corresponding CIs were computed in the quantiles of proba-
bilities 0.8, 0.9, 0.95, 0.99, 0.995, 0.998 and 0.999, respectively. Tables 3–6 show the CIs con-
structed with the different methods (Stand, Perc, Basic and BCa, designed to obtain pointwise
CIs; and Bon-Basic, Bon-BCa and Corr-Bon, designed to obtain simultaneous CIs) for each
one of the rivers considered. These tables have two parts. In the top part of each table, the CIs
obtained in the seven extreme quantiles when the corresponding parametric model that best fit
the data of each river is assumed are presented, while the bottom parts show the CIs con-
structed using a nonparametric model.

It can be observed in Tables 3–6 that the CIs computed in the different quantiles contain the
corresponding theoretical probabilities, and this happens not only for the parametric models
(where the best parametric fits were used), but also considering nonparametric estimations. In
general, the parametric CIs are narrower than the nonparametric CIs, especially in the largest

Comparing Confidence Intervals with Applications in Hydrology

PLOS ONE | DOI:10.1371/journal.pone.0147505 February 1, 2016 15 / 28



quantiles. This is a known drawback of nonparametric estimation when very extreme quantiles
are estimated using global bandwidths (as in this paper). This problem could be partially
avoided with the use of local bandwidths. Obviously, this approximation would require an
extra computing time and, for the sake of brevity, it is not included in the present research. A
good feature of the nonparametric CIs is that, in the lower quantiles, their lower and upper lim-
its are very similar to those obtained with the best parametric fits. This is an interesting point if
one was interested in performing a similar study with a new data set. When using a parametric
approach in practice, a usual first step is model selection. This means to choose the parametric
model (e.g., Gamma, Log-normal, Weibull, etc.) that better fits the data, within a reasonable
class of models. The model selected may change from one setup to the other. Nonparametric
methods do not need of such a “model selection” step, since they are automatically adapted to
the data generation process.

As for the different methods to construct CIs, in general, the results obtained with real data
sets follow the same lines to those described in the previous simulation section.

From a hydrological point of view, although a general checking of Tables 3–6 could give the
impression that the results obtained for the different approaches are very similar, some inter-
esting conclusions can still be deduced. First, in Tables 4 and 5, corresponding to Delaware and
Allegheny rivers, respectively, it is observed that, for large values of T (mainly 500 and 1000
years) and using the corresponding parametric fits, the upper and lower limits of some inter-
vals are equal to one. This would mean that the current maximum flow level could not be
exceeded in future for those values of T. This is quite unlikely from a real point of view. These
kind of results never appear in the case of CIs constructed using nonparametric fits. From this
perspective, nonparametric fits adapt better to the data and can avoid some of these

Table 3. Lower and upper limits of pointwise (Stand, Perc, Basic and BCa) and simultaneous (Bon-Basic, Bon-BCa and Corr-Bon) CIs for the CDF
at quantiles with return periods T = {5, 10, 20, 100, 200, 500, 1000}, using a Gamma parametric model (top part) and a nonparametric model (bottom
part). Roanoke River (ID = 02055000).

T (years) Stand Perc Basic BCa Bon-Basic Bon-BCa Corr-Bon

Low Up Low Up Low Up Low Up Low Up Low Up Low Up

Parametric fit (Gamma)

5 0.68 0.82 0.71 0.84 0.70 0.84 0.71 0.84 0.68 0.86 0.70 0.85 0.70 0.84

10 0.79 0.91 0.81 0.92 0.81 0.92 0.81 0.92 0.79 0.94 0.80 0.92 0.80 0.92

20 0.93 0.99 0.94 0.99 0.94 0.99 0.93 0.99 0.94 1.00 0.93 0.99 0.94 1.00

100 0.96 1.00 0.97 1.00 0.97 1.00 0.96 0.99 0.97 1.00 0.96 1.00 0.97 1.00

200 0.98 1.00 0.98 1.00 0.99 1.00 0.98 1.00 0.99 1.00 0.98 1.00 0.99 1.00

500 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.98 1.00 0.99 1.00

1000 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00

Nonparametric fit

5 0.71 0.89 0.72 0.87 0.72 0.87 0.72 0.87 0.70 0.90 0.70 0.88 0.71 0.89

10 0.81 0.95 0.83 0.94 0.83 0.94 0.83 0.94 0.82 0.97 0.81 0.95 0.82 0.96

20 0.88 0.98 0.90 0.98 0.91 0.99 0.90 0.98 0.90 1.00 0.89 0.99 0.91 1.00

100 0.96 1.00 0.96 1.00 0.97 1.00 0.96 1.00 0.97 1.00 0.94 1.00 0.97 1.00

200 0.97 1.00 0.97 1.00 0.98 1.00 0.96 1.00 0.98 1.00 0.96 1.00 0.98 1.00

500 0.97 1.00 0.97 1.00 0.98 1.00 0.95 1.00 0.98 1.00 0.95 1.00 0.98 1.00

1000 0.97 1.00 0.98 1.00 0.98 1.00 0.95 1.00 0.98 1.00 0.95 1.00 0.98 1.00

Numbers are rounded using two significant figures.

doi:10.1371/journal.pone.0147505.t003
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Table 4. Lower and upper limits of pointwise (Stand, Perc, Basic and BCa) and simultaneous (Bon-Basic, Bon-BCa and Corr-Bon) CIs for the CDF
at quantiles with return periods T = {5, 10, 20, 100, 200, 500, 1000}, using a Log-normal parametric model (top part) and a nonparametric model (bot-
tom part). Delaware River (ID = 01463500).

T (years) Stand Perc Basic BCa Bon-Basic Bon-BCa Corr-Bon

Low Up Low Up Low Up Low Up Low Up Low Up Low Up

Parametric fit (Log-normal)

5 0.79 0.94 0.71 0.85 0.71 0.85 0.71 0.85 0.69 0.87 0.70 0.86 0.70 0.85

10 0.87 1.00 0.80 0.92 0.80 0.92 0.80 0.92 0.79 0.94 0.80 0.92 0.80 0.93

20 0.96 1.00 0.94 0.99 0.95 1.00 0.93 0.99 0.94 1.00 0.93 0.99 0.95 1.00

100 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.98 1.00 0.99 1.00

200 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00

500 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00

1000 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Nonparametric fit

5 0.78 0.94 0.73 0.86 0.73 0.87 0.73 0.87 0.71 0.90 0.72 0.88 0.72 0.88

10 0.89 1.00 0.83 0.94 0.84 0.95 0.83 0.94 0.82 0.97 0.82 0.95 0.83 0.96

20 0.94 1.00 0.90 0.98 0.91 0.99 0.90 0.98 0.90 1.00 0.89 0.99 0.90 1.00

100 0.97 1.00 0.96 1.00 0.97 1.00 0.95 1.00 0.97 1.00 0.95 1.00 0.97 1.00

200 0.98 1.00 0.97 1.00 0.98 1.00 0.95 1.00 0.98 1.00 0.94 1.00 0.98 1.00

500 0.98 1.00 0.98 1.00 0.99 1.00 0.96 1.00 0.99 1.00 0.95 1.00 0.99 1.00

1000 0.99 1.00 0.98 1.00 0.99 1.00 0.97 1.00 0.99 1.00 0.96 1.00 0.99 1.00

Numbers are rounded using two significant figures.

doi:10.1371/journal.pone.0147505.t004

Table 5. Lower and upper limits of pointwise (Stand, Perc, Basic and BCa) and simultaneous (Bon-Basic, Bon-BCa and Corr-Bon) CIs for the CDF
at quantiles with return periods T = {5, 10, 20, 100, 200, 500, 1000}, using a Gumbel parametric model (top part) and a nonparametric model (bottom
part). Allegheny River (ID = 03011020).

T (years) Stand Perc Basic BCa Bon-Basic Bon-BCa Corr-Bon

Low Up Low Up Low Up Low Up Low Up Low Up Low Up

Parametric fit (Gumbel)

5 0.73 0.86 0.75 0.88 0.76 0.89 0.75 0.88 0.73 0.92 0.75 0.88 0.75 0.89

10 0.86 0.95 0.87 0.95 0.88 0.96 0.87 0.95 0.87 0.99 0.86 0.95 0.88 0.96

20 0.90 0.97 0.91 0.97 0.92 0.98 0.90 0.97 0.91 1.00 0.90 0.97 0.91 0.98

100 0.97 1.00 0.97 1.00 0.98 1.00 0.97 0.99 0.98 1.00 0.97 0.99 0.98 1.00

200 0.99 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00

500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Nonparametric fit

5 0.68 0.85 0.72 0.86 0.73 0.87 0.72 0.86 0.70 0.90 0.71 0.88 0.72 0.88

10 0.87 1.00 0.85 0.95 0.85 0.95 0.84 0.95 0.83 0.98 0.83 0.96 0.84 0.97

20 0.92 1.00 0.90 0.98 0.91 0.99 0.89 0.98 0.90 1.00 0.88 0.98 0.90 1.00

100 0.96 1.00 0.96 1.00 0.97 1.00 0.96 1.00 0.97 1.00 0.95 1.00 0.97 1.00

200 0.96 1.00 0.97 1.00 0.98 1.00 0.95 1.00 0.98 1.00 0.94 1.00 0.98 1.00

500 0.96 1.00 0.97 1.00 0.98 1.00 0.94 1.00 0.98 1.00 0.94 1.00 0.98 1.00

1000 0.96 1.00 0.97 1.00 0.98 1.00 0.95 1.00 0.98 1.00 0.95 1.00 0.98 1.00

Numbers are rounded using two significant figures.

doi:10.1371/journal.pone.0147505.t005
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undesirable effects derived from the use of parametric fits. On the other hand, similarly to the
results obtained in the simulation study, in general, shorter CIs are constructed using the BCa
and Bon-BCa approaches and parametric fits. This means that given a confidence level, these
CIs would be more precise. Practitioners can use this result to know, with a larger precision,
the time (in years) necessary to reach the possible larger values for the maximum flow of the
corresponding rivers. In any case, although a larger precision could be obtained using a
parametric fit, the advise is to perform also a nonparametric study, because it is observed that
this can help to filter and refine the final conclusions in a practical study.

A Spanish river case
As a second case study, a similar analysis to that presented in the previous section for the
USGS series, but now using a data set from a Spanish river, was performed. The series analyzed
consisted of 66 annual peak instantaneous flows (measured in cumecs) corresponding to the
Ebro river (gaging station at Zaragoza city), recorded from 1946 to 2001 (included). This series
is shown in Fig 1, while Table 7 presents some descriptive values of this series.

This data set has been obtained from the web page of the Ebro Hydrographic Confederation
(Spanish Ministry of Agriculture, Food and Environment). The size of this series is one of the
largest that can be obtained for the study of annual maximum flows in a Spanish river, because
gradual recording and data file storage from rivers was held in Spain after the Second World
War.

Before proceeding with the comparison of the CIs constructed with the different proposals,
an exploratory analysis of the data under consideration was performed and, in order to identify
significant data features, parametric and nonparametric density estimates were computed.

Table 6. Lower and upper limits of pointwise (Stand, Perc, Basic and BCa) and simultaneous (Bon-Basic, Bon-BCa and Corr-Bon) CIs for the CDF
at quantiles with return periods T = {5, 10, 20, 100, 200, 500, 1000}, using aWeibull parametric model (top part) and a nonparametric model (bottom
part). Arroyo River (ID = 11152000).

T (years) Stand Perc Basic BCa Bon-Basic Bon-BCa Corr-Bon

Low Up Low Up Low Up Low Up Low Up Low Up Low Up

Parametric fit (Weibull)

5 0.75 0.87 0.76 0.87 0.76 0.87 0.76 0.87 0.74 0.90 0.75 0.88 0.76 0.88

10 0.87 0.95 0.88 0.95 0.88 0.95 0.87 0.95 0.87 0.97 0.87 0.95 0.87 0.96

20 0.92 0.98 0.93 0.98 0.93 0.98 0.92 0.98 0.92 0.99 0.92 0.98 0.93 0.99

100 0.96 0.99 0.96 0.99 0.97 1.00 0.96 0.99 0.96 1.00 0.96 0.99 0.97 1.00

200 0.96 1.00 0.96 0.99 0.97 1.00 0.96 0.99 0.96 1.00 0.96 0.99 0.97 1.00

500 0.96 1.00 0.96 0.99 0.97 1.00 0.96 0.99 0.97 1.00 0.96 0.99 0.97 1.00

1000 0.96 1.00 0.96 0.99 0.97 1.00 0.96 0.99 0.97 1.00 0.96 0.99 0.97 1.00

Nonparametric fit

5 0.71 0.88 0.73 0.87 0.73 0.87 0.73 0.87 0.71 0.9 0.71 0.88 0.72 0.89

10 0.82 0.96 0.84 0.95 0.85 0.95 0.84 0.95 0.83 0.98 0.83 0.96 0.84 0.97

20 0.90 1.00 0.90 0.98 0.91 0.99 0.89 0.98 0.90 1.00 0.88 0.98 0.90 1.00

100 0.96 1.00 0.96 1.00 0.96 1.00 0.95 1.00 0.96 1.00 0.95 1.00 0.96 1.00

200 0.97 1.00 0.97 1.00 0.97 1.00 0.96 1.00 0.97 1.00 0.96 1.00 0.97 1.00

500 0.97 1.00 0.97 1.00 0.97 1.00 0.97 1.00 0.97 1.00 0.96 1.00 0.97 1.00

1000 0.97 1.00 0.97 1.00 0.98 1.00 0.97 1.00 0.97 1.00 0.96 1.00 0.97 1.00

Numbers are rounded using two significant figures.

doi:10.1371/journal.pone.0147505.t006
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Fig 1. Time series of annual peak flows of Ebro river. Time series of annual peak flows (measured in cumecs) of Ebro river (gaging station at Zaragoza
city, Spain).

doi:10.1371/journal.pone.0147505.g001

Table 7. Descriptive study of the 66 annual peak instantaneous flows (measured in cumecs) corresponding to the Ebro river (gaging station at
Zaragoza city, Spain).

Min. 1st Quartile Median Mean 3rd Quartile Max.

578.8 1402 1746 1853 2277 4130

doi:10.1371/journal.pone.0147505.t007
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Specific details of this analysis are given in the Supporting Information (S1 Text). The paramet-
ric and nonparametric density estimates of these data are included in Fig 2. The red solid line
represents the parametric density estimate assuming a GEV distribution with the parameters
indicated above, while the blue dashed line the corresponding nonparametric estimate.

Fig 2 reveals some interesting points. First, the good fit of the GEV distribution to these data
set can be confirmed, with the parametric and nonparametric absolute mode estimates of the
data being very close. Moreover, the nonparametric estimate presents a relative mode at the
right of the figure (extreme values). This fact could be a signal that the fit performed with a
GEV variable, perhaps, could be improved using another distribution with heavier tails. This

Fig 2. Density estimates of the annual peak instantaneous flows of Ebro river.Density estimates of the annual peak instantaneous flows (measured in
cumecs), corresponding to the Ebro river (gaging station at Zaragoza city, Spain). The red solid line represents the parametric density estimate assuming a
GEV distribution, the blue dashed line the corresponding nonparametric estimate.

doi:10.1371/journal.pone.0147505.g002

Comparing Confidence Intervals with Applications in Hydrology

PLOS ONE | DOI:10.1371/journal.pone.0147505 February 1, 2016 20 / 28



effect could also be an overestimation of the nonparametric estimate (the well-known bound-
ary effect, see e.g. [29]). In this case, the small sample size is a serious drawback for correctly
checking the differences between the parametric and nonparametric approaches. However, this
plot gives an example on how nonparametric estimation could reveal singularities that the
parametric estimation is unable to detect.

In the case of the USGS series, only the different CIs constructed for the CDF were com-
pared. Now, the case of the return level function was also considered. To carry out this analysis,
in a first step, the CDF and the return level function were estimated using parametric and non-
parametric methodologies. These estimations are subsequently needed to obtain the different
pointwise and simultaneous CIs for these two functions. The nonparametric estimation of the
CDF and the return level function was performed using the R package Kerdiest [33]. In
both cases, the plug-in bandwidth of Polansky and Baker [31] was used. Fig 3 contains the
plots of the CDF estimates, and Fig 4 the corresponding return level function estimates.

The shape of the CDF estimates shown in Fig 3 is very similar. Specific differences can be
only observed with a careful examination of small intervals and particular points of interest.
Conversely, in the case of the return level estimates (Fig 4), important dissimilitudes can be
observed in the curves obtained with the parametric and nonparametric models. The differ-
ences in the high values correspond to the above remarked discrepancies observed in Fig 2. In
this example, it is important to note that the small sample size of the series can severely affect
the obtained nonparametric return level estimations, as indicated in the previous section, by a
numerical approximation. This effect is avoided by the parametric techniques, using a direct
form obtained through the distribution function to estimate the return levels, in the case of the
GEV variable. In this sense, if nonparametric estimates were used to predict the maximum
flows, it would turn out that extreme levels would be reached within a shorter period of time
than that indicated by the parametric estimates.

Finally, the different procedures to construct the pointwise and simultaneous CIs for the
CDF and the return level function were applied using this data set. The same set T = {5, 10, 20,
100, 200, 500, 1000} of return periods as that used in the USGS series was employed here, and a
similar analysis was performed. Note that now, the parametric estimates were computed
assuming a GEV distribution. Tables 8 and 9 show the CIs constructed with the different meth-
ods, presenting a similar information to that in Tables 3–6.

Figures included in the Supporting Information (S1)–(S4) Figs show, in a visual way, the
information provided in Table 9.

From a hydrological point of view, interesting findings can be deduced from Tables 8 and 9,
and from Figures included in the Supporting Information (S1)–(S4) Figs. From Table 8 similar
conclusions to those previously described for the USGS series can be obtained. On the other
hand, observing the top part of Table 9 (parametric fit), it can be noted that, according to the
general conclusions extracted from the simulation study, the best results are obtained, in gen-
eral, in the columns BCa and Bon-BCa. The CIs corresponding to these columns are slightly
wider than those in the other columns. While this might seem a handicap in a first moment, it
must be taken into account that the sample size is relatively small. Then, a wider CI could give
more reliability to obtain a return level within that interval, for a very long time prediction
period (200, 500 or 1000 years). Note that the larger observed value for this series was 4130.
This seems to indicate that this value could be exceeded in a relatively large magnitude (assum-
ing that the fit to a GEV distribution is correct), given the increasing shape of the return level
function (Fig 4).

Regarding the nonparametric approach, and taking into account the quite small sample
size, the best results are obtained with the Basic, Bon-Basic and Corr-Bon methods. Effectively,
by looking again at high values for long-term prediction (200, 500 and 1000 years), it is

Comparing Confidence Intervals with Applications in Hydrology

PLOS ONE | DOI:10.1371/journal.pone.0147505 February 1, 2016 21 / 28



observed that the intervals in the mentioned columns range between 4130 and 5320. As previ-
ously pointed out, the maximum observed value in this series was just 4130, so it is likely that
this value will be exceeded. The nonparametric approach estimates, however, a maximum
value of 5320 (with a 95% of confidence), possibly more realistic than 6941, that is the maxi-
mum value predicted using a parametric fit.

Conclusions
CDF estimation has been revealed as a powerful tool to treat several real questions related with
hydrological problems. In this setting, computation of concerning quantities such as the return

Fig 3. CDF estimates of the annual peak instantaneous flows of Ebro river.CDF estimates of the annual peak instantaneous flows (measured in
cumecs), corresponding to the Ebro river (gaging station at Zaragoza city, Spain). The red solid line represents the parametric density estimate assuming a
GEV distribution, the blue dashed line the corresponding nonparametric estimate.

doi:10.1371/journal.pone.0147505.g003
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levels or mean return periods are valuable allied in the study of the natural hazards. The esti-
mation of these functions can be complemented with the construction of CIs, providing infor-
mation about the reliability of the inference process. This can be carried out computing
simultaneous CIs (confidence bands) containing the function of interest with a prescribed high
probability. Note that using simultaneous CIs instead pointwise intervals has some practical
implications in hydrological applications, because simultaneous CIs include information on
model reliability. Hence, they are much more informative than pointwise CIs to assess the

Fig 4. Return level function estimates for different periods of time of Ebro river.Return level function estimates for different periods of time,
corresponding to the Ebro river (gaging station at Zaragoza city, Spain). The red solid line represents the parametric density estimate assuming a GEV
distribution, the blue dashed line the corresponding nonparametric estimate.

doi:10.1371/journal.pone.0147505.g004
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Table 8. Lower and upper limits of pointwise (Stand, Perc, Basic and BCa) and simultaneous (Bon-Basic, Bon-BCa and Corr-Bon) CIs for the CDF
at quantiles with return periods T = {5, 10, 20, 100, 200, 500, 1000}, using a GEV parametric model (top part) and a nonparametric model (bottom
part). Ebro river (gaging station at Zaragoza city).

T (years) Stand Perc Basic BCa Bon-Basic Bon-BCa Corr-Bon

Low Up Low Up Low Up Low Up Low Up Low Up Low Up

Parametric fit (GEV)

5 0.77 0.95 0.71 0.88 0.72 0.88 0.71 0.87 0.69 0.91 0.69 0.89 0.71 0.89

10 0.86 1.00 0.84 0.95 0.84 0.95 0.83 0.95 0.82 0.98 0.82 0.96 0.83 0.97

20 0.92 1.00 0.90 0.99 0.91 0.99 0.89 0.98 0.90 1.00 0.88 0.99 0.90 1.00

100 0.96 1.00 0.95 1.00 0.96 1.00 0.95 1.00 0.96 1.00 0.94 1.00 0.96 1.00

200 0.97 1.00 0.97 1.00 0.98 1.00 0.96 1.00 0.98 1.00 0.96 1.00 0.98 1.00

500 0.98 1.00 0.98 1.00 0.99 1.00 0.97 1.00 0.99 1.00 0.97 1.00 0.99 1.00

1000 0.98 1.00 0.98 1.00 0.99 1.00 0.97 1.00 0.99 1.00 0.97 1.00 0.99 1.00

Nonparametric fit

5 0.68 0.91 0.69 0.88 0.70 0.89 0.70 0.89 0.67 0.93 0.68 0.90 0.69 0.91

10 0.82 0.99 0.82 0.96 0.83 0.97 0.82 0.96 0.81 1.00 0.80 0.97 0.82 0.99

20 0.90 1.00 0.89 0.99 0.90 1.00 0.88 0.99 0.89 1.00 0.86 0.99 0.89 1.00

100 0.96 1.00 0.95 1.00 0.97 1.00 0.94 1.00 0.97 1.00 0.92 1.00 0.97 1.00

200 0.96 1.00 0.95 1.00 0.97 1.00 0.92 1.00 0.97 1.00 0.92 1.00 0.97 1.00

500 0.97 1.00 0.96 1.00 0.97 1.00 0.93 1.00 0.97 1.00 0.93 1.00 0.97 1.00

1000 0.97 1.00 0.96 1.00 0.98 1.00 0.94 1.00 0.98 1.00 0.94 1.00 0.98 1.00

Numbers are rounded using two significant figures.

doi:10.1371/journal.pone.0147505.t008

Table 9. Lower and upper limits of pointwise (Stand, Perc, Basic and BCa) and simultaneous (Bon-Basic, Bon-BCa and Corr-Bon) CIs for the return
levels at quantiles with return periods T = {5, 10, 20, 100, 200, 500, 1000}, using a GEV parametric model (top part) and a nonparametric model (bot-
tom part). Ebro river (gaging station at Zaragoza city).

T (years) Stand Perc Basic BCa Bon-Basic Bon-BCa Corr-Bon

Low Up Low Up Low Up Low Up Low Up Low Up Low Up

Parametric fit (GEV)

5 2130 2694 2170 2639 2179 2647 2194 2665 2075 2727 2152 2740 2138 2693

10 2366 3076 2479 3075 2502 3098 2533 3133 2378 3191 2483 3232 2447 3145

20 2506 3445 2725 3519 2734 3528 2798 3588 2618 3659 2737 3674 2666 3600

100 2534 4321 3121 4590 3020 4490 3197 4711 2737 4707 3057 4810 2839 4607

200 2447 4710 3231 5087 3037 4893 3298 5248 2613 5139 3152 5379 2797 5015

500 2258 5236 3350 5805 2943 5398 3419 5976 2274 5689 3239 6241 2584 5528

1000 2065 5644 3416 6351 2831 5766 3486 6549 1937 6081 3301 6941 2289 5904

Nonparametric fit

5 2177 2761 2203 2700 2210 2708 2232 2741 2097 2793 2192 2812 2160 2745

10 2398 3144 2499 3133 2517 3151 2534 3174 2409 3250 2485 3242 2469 3198

20 2498 3533 2741 3660 2622 3541 2804 3906 2344 3681 2735 3953 2376 3617

100 2176 4132 3150 4130 3912 4892 2939 4130 3912 5110 2832 4130 3912 5102

200 2119 4189 3154 4130 4130 5106 2832 4130 4130 5320 2744 4130 4130 5320

500 2119 4189 3154 4130 4130 5106 2832 4130 4130 5320 2744 4130 4130 5320

1000 2119 4189 3154 4130 4130 5106 2832 4130 4130 5320 2744 4130 4130 5320

doi:10.1371/journal.pone.0147505.t009
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goodness of a complete (parametric or nonparametric) model that, subsequently, can be used
to make inference or predictions.

The usual process to obtain the confidence bands is based on constructing pointwise CIs in
a grid of selected points. However, this procedure can give biased results due to the well-known
multiple range testing problem. In the present paper, different approaches to construct point-
wise and simultaneous CIs for the CDF (mainly evaluated in large quantiles) and also for the
return level function have been compared. Specifically, four methods usually applied to obtain
pointwise CIs (standard normal bootstrap, percentile bootstrap, basic bootstrap and BCa meth-
ods), and three approaches designed to compute simultaneous CIs (Bonferroni applied to the
basic and BCa intervals, and an iterative process combining the Bonferroni and the basic CIs)
have been used. These techniques employ bootstrap algorithms. Additionally, parametric and
nonparametric methodologies to estimate the functions of interest were applied to calculate the
CIs by the different approaches. This research was also devoted to study the behavior of the
pointwise methods when they are used to obtain pointwise CIs and simultaneous CIs, and vice
versa. The study was completed with the analysis of real river flow data using the previous
methods.

In general, it was observed that the BCa method had the best performance among the point-
wise procedures considered, while the Bonferroni correction applied to the BCa intervals gave
the best results for the simultaneous approaches. On the other hand, it was observed that if a
pointwise method is applied to obtain confidence bands, the simultaneous coverage probabili-
ties are far from the nominal value considered. In this sense, modifications of these techniques,
using a simple Bonferroni correction has provided better results when the interest is to con-
struct confidence bands. Additionally, nonparametric methods have given better results than
misspecified parametric models when the interest function is the CDF and, in this sense, the
recommendation is the use of this methodology as a robust procedure very helpful when the
real distribution of the data is unknown. However, for return levels it has been found that a
nonparametric model led to worse results than a parametric model, and thus for this case we
propose using a parametric model selected by means of goodness-of-fit tests.

We have mainly focused on the CDF, because this is the basic function of interest used in
the analysis of extreme values in hydrology. However, we have also obtained some results
regarding the return levels. The same kind of study could be carried out with other functionals
such as the return period, for instance.

Supporting Information
S1 Text. Specific details about parametric and nonparametric density estimations for the
Ebro river series. In order to identify significant data features, parametric and nonparametric
density estimates were computed. Assuming a parametric model, a GEV distribution was fitted
by means of the nsRFA R package [42]. The estimated parameters, using the Lmoments func-
tion of the mentioned R package were 1555.73, 613.57 and 0.10 for the location, scale and
shape parameters, respectively. Next, by means of the gofGEVtest function of the same
package, the Anderson-Darling test (e.g. [26]) was applied to check the goodness-of-fit of these
data to a GEV distribution, obtaining p-values around 0.2 (depending on the Monte-Carlo rep-
lications). Therefore, the assumption of the data following a GEV distribution can not be
rejected. Next, the density was nonparametrically estimated, calculating the bandwidth by the
plug-in method, directly obtained with the density function of the base R package.
(PDF)
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S1 Data. Roanoke River database. Annual maximum peak discharges series, measured in cfs,
of Roanoke River, VA.
(XLSX)

S2 Data. Delaware River database. Annual maximum peak discharges series, measured in cfs,
of Delaware River, NJ.
(XLSX)

S3 Data. Allegheny River database. Annual maximum peak discharges series, measured in
cfs, of Allegheny River, NY.
(XLSX)

S4 Data. Arroyo River database. Annual maximum peak discharges series, measured in cfs, of
Arroyo River, CA.
(XLSX)

S5 Data. Ebro River database. Annual maximum peak discharges series, measured in cumecs,
of Ebro River (gaging station at Zaragoza city, Spain).
(XLSX)

S1 Fig. Pointwise CIs for the return levels using a GEV parametric model for Ebro river.
Pointwise CIs (Stand, Perc, Basic and BCa) for the return levels at quantiles with return periods
T = {5, 10, 20, 100, 200, 500, 1000} using a GEV parametric model. Ebro river (gaging station at
Zaragoza city).
(EPS)

S2 Fig. Simultaneous CIs for the return levels using a GEV parametric model for Ebro
river. Simultaneous CIs (Stand, Perc, Basic and BCa) for the return levels at quantiles with
return periods T = {5, 10, 20, 100, 200, 500, 1000} using a GEV parametric model. Ebro river
(gaging station at Zaragoza city).
(EPS)

S3 Fig. Pointwise CIs for the return levels using a nonparametric model for Ebro river.
Pointwise CIs (Stand, Perc, Basic and BCa) for the return levels at quantiles with return periods
T = {5, 10, 20, 100, 200, 500, 1000} using a nonparametric model. Ebro river (gaging station at
Zaragoza city).
(EPS)

S4 Fig. Simultaneous CIs for the return levels using a nonparametric model for Ebro river.
Simultaneous CIs (Stand, Perc, Basic and BCa) for the return levels at quantiles with return
periods T = {5, 10, 20, 100, 200, 500, 1000} using a nonparametric model. Ebro river (gaging
station at Zaragoza city).
(EPS)
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