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Abstract

As climate change continues to alter seawater temperature and chemistry on a global scale,

coral reefs show multiple signs of degradation. One natural process that could facilitate the

recovery of reef ecosystems is coral recruitment, which can be influenced by the benthic

organisms in a local habitat. We experimentally tested both a global stressor (increased

seawater temperature) and a local stressor (exposure to microcolin A, a natural product

from a common marine benthic cyanobacterium) to determine how these stressors

impacted coral larval sublethal stress, survival and settlement. Larvae of Porites astreoides

had the same survival and settlement as the controls after exposure to increased tempera-

ture alone, but elevated temperature did cause oxidative stress. When exposed to natural

concentrations of microcolin A, larval survival and settlement were significantly reduced.

When larvae were exposed to these two stressors sequentially there was no interactive

effect; but when exposed to both stressors simultaneously, there was a synergistic reduction

in larval survival and an increase in oxidative stress more than in either stressor treatment

alone. Increased seawater temperatures made larvae more susceptible to a concurrent

local stressor disrupting a key process of coral reef recovery and resilience. These results

highlight the importance of understanding how interactive stressors of varying spatial scales

can impact coral demographics.

Introduction

As global climate changes the world’s oceans, all marine organisms will face unprecedented

abiotic and biotic stressors, especially susceptible are the corals themselves that build tropical

reef habitats [1–3]. Recent reviews have focused on how global scale stressors such as elevated

seawater temperatures and ocean acidification will impact adult corals [4,5]. Some studies

have focused on how multiple stressors might interact to disrupt community dynamics [6,7],

and only recently have these studies tested supply side processes such as recruitment, showing

relatively few interactive effects of temperature and ocean acidification on coral recruitment

[8–10]. Many abiotic and biotic stressors can reduce coral recruitment at any of three critical

life-history stages: larval supply, larval settlement and post-settlement survival [11]. Even
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though inhibitors of coral recruitment such as some algal species have been identified we need

to know how these local scale stressors interact with global stressors to disrupt larval ecology.

While much research has studied coral mortality in response to stressors, novel techniques

have also been developed to measure sublethal stress. Changing seawater temperature is well

studied and is predicted to have huge impacts on coral reefs across the world [1, 2, 4].

Increased seawater temperature is known to induce bleaching and reactive oxygen species

(ROS) production in adult corals [12,13], as well as oxidative stress and mortality for some

coral larvae [14–17]. Cellular diagnostics have become an important tool to quantify the physi-

ological impacts of sublethal stressors in corals [18–20]. Oxidative stress is commonly mea-

sured since it is a ubiquitous stress response that is conserved across numerous taxa [12,21].

Damage to proteins and lipids can be assessed by quantifying levels of protein carbonylation

and lipid peroxidation, respectively [22,23]. In addition, the up-regulation of antioxidant enzy-

matic machinery (e.g., catalase, superoxide dismutase) in response to elevated ROS levels can

also indicate sub-lethal stress responses [21]. This fine scale measure of sublethal stress is

important in understanding the health of organisms but is rarely utilized in coral larvae

studies.

Many modern reefs are threatened by increased abundance of macroalgae [24–27], which

can stress adult corals [28,29], reduce juvenile coral growth rates [30] and lead to reduced

coral fecundity [31]. Live cyanobacteria are also known to inhibit coral larval settlement on set-

tlement substrata [32,33], but the mechanisms of inhibition are not known. Allelopathy

(chemically mediated competition among organisms [34]) has been found to drive competi-

tion among some sessile marine organisms, including sponge-sponge [35], sponge-coral [36],

and macroalgae-coral [29, 37, 38]. All of these studies have incorporated extracts or natural

products in an agar or Phytagel strip in comparison to a control strip without added com-

pounds to test allelopathy from isolated secondary metabolites. In the following experiments

the compound microcolin A (Fig 1), isolated from Okeania erythroflocculosa, previously

named Lyngbya sp. [39,40], was tested at natural concentrations to determine if its presence on

settlement substrata had an allelopathic effect on coral larvae. This method allowed us to test

an isolated lipophilic compound without confounding factors such as changes in oxygen con-

centration due to photosynthesis and respiration [41] release of dissolved organic matter [42],

or nutrient cycling [43,44], all of which would be present in experiments with whole cyanobac-

teria. Since benthic cyanobacteria are prolific producers of secondary metabolites [45,46], we

hypothesized that allelopathy is one potential mechanism of cyanobacterial competition with

coral larvae. We have chosen to test microcolin A because it is an example of a lipopeptide,

which are common in benthic cyanobacteria, it is the major metabolite in O. erythroflocculosa,

and this cyanobacterium can form extensive blooms on southern Florida reefs and is found in

the same local habitat as adult Porites astreoides [47,48]. Extracts of O. erythroflocculosa deter

feeding by reef fishes [49], likely facilitating cyanobacterial blooms on reefs because grazers

avoid consuming benthic cyanobacteria due to their chemical defenses [45–47].

Testing how stressors impact coral population recovery is critical for understanding the

processes that shape natural ecosystems in modern habitats. Even though the interactions of

multiple stressors can kill individual species, little is known about how multiple stressors inter-

act to disrupt natural ecosystem function [7,50]. This study tested combinations of two types

of stressors, a global scale stressor (increased seawater temperature) and a local stressor

(microcolin A) independently, sequentially and in combination. We chose to test two potential

scenarios since the duration and extent of exposure to elevated seawater temperatures could be

quite variable for planktonic larvae: a short term elevated temperature exposure before settle-

ment and a longer temperature exposure concurrent with settlement. After the treatments the

coral larvae were assessed for sublethal oxidative stress, survival and settlement. This local to
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Fig 1. An in situ photograph of Okeania erythroflocculosa collected from southern Florida reefs, with the

structure of microcolin A inset.

doi:10.1371/journal.pone.0166581.g001
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global scale approach to testing processes that drive reef resilience is designed to better under-

stand how different scenarios of future threats will impact modern reefs.

Results

When coral larvae of Porites astreoides were exposed to +3.5˚C seawater temperature for 4.5

hours there was an increased concentration of reactive oxygen species as detected by use of the

fluorogenic probe DCFH-DA (Fig 2), directly showing that larvae are exposed to ROS during

short term temperature stress. To measure the ecological consequences of temperature stress

coupled with a local stressor, two types of temperature stress exposures were tested: one that

preceded the local stressor of allelopathy and a temperature stress concurrent with allelopathy.

In the first experiment, larvae of Porites astreoides were exposed to a short term temperature

stress (+5˚C) for 24 hours and subsequently given settlement substrata with and without the

cyanobacterial compound microcolin A for 6 days. In this first experiment, there was no effect

of the temperature treatment on the survival (Fig 3a, p = 0.416) or settlement (Fig 3b, p =

0.789) of larvae. Larvae that were exposed to 29˚C seawater compared to 24˚C (ambient seawa-

ter temperature) had a 2.7 times increase in superoxide dismutase (SOD) activity (Fig 3c,

p<0.001) but no change in catalase (CAT) activity (Fig 3d; S1 Table). Larvae of Porites
astreoides that were then exposed to natural concentrations of microcolin A embedded in agar

on settlement tiles after the temperature exposure had reduced survival (Fig 3a, p = 0.003) and

settlement (Fig 3b, p = 0.022). The allelopathic compound reduced total survival to less than

25% and total settlement to less than 10% of the larvae supplied in both temperature treat-

ments. After exposure to microcolin A the larvae had a 2.3 times upregulation of the stress

enzymes SOD (Fig 3c, p<0.001) and a 2.9 times increase of CAT (Fig 3d, p = 0.001) compared

to the controls. There was no significant interaction of the short-term temperature exposure

and microcolin A on any of these parameters (S1 Table).

In the second experiment coral larvae were exposed to + 3˚C and microcolin A simulta-

neously for 4 days. The larvae that were incubated in 30˚C seawater, had the same survival and

settlement as the control larvae incubated at 27˚C (ambient seawater temperature) (Fig 4a and

4b). The temperature treatment alone did not cause increased activities of either SOD or CAT

(Fig 4c and 4d). Four days of temperature exposure significantly increased the levels of lipid

hydroperoxide by 1.7 times (Fig 4e, p = 0.003) and protein carbonylation content by 1.3 times

(Fig 4f, p = 0.007) compared to the controls, indicating oxidative damage to cellular

Fig 2. ROS production in larvae of P. astreoides. ROS production is shown as green fluorescence in the

coral larvae. Left panel is a larva that was incubated in seawater at 30.5˚C and the right panel is a larva

incubated at 27˚C, both for 4.5 hours. The larvae are capable of muscular contraction, which enables them to

elongate and compress. The images represent two specimens imaged in the same orientation just under

different contraction phases, reflecting the plasticity of coral larval morphology. Inset in both panels is the red

chlorophyll autofluorescence of the symbiotic zooxanthellae. The two larvae displayed are typical of the

sampled groups (n = 15).

doi:10.1371/journal.pone.0166581.g002
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Fig 3. Experiment 1, larval exposure to sequential stressors, 24 hour exposure to elevated seawater temperatures followed by a

six day exposure to microcolin A. Bars are untransformed means and error bars are +1 SE, shared letters above the bars indicate

means that are not significantly different. (A) The percent of larval survival and (B) the percent of larval settlement after exposure to stress.

(C) The activity of superoxide dismutase (SOD) and (D) of catalase (CAT) in the swimming coral larvae at the end of the experiment.

doi:10.1371/journal.pone.0166581.g003
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Fig 4. Experiment 2, larval exposure to elevated seawater temperature and microcolin A concurrently. Bars are

untransformed means and error bars are +1 SE, shared letters above the bars indicate means that are not significantly different. (A)

The percent of larval survival and (B) the percent of larval settlement after a four days exposure to the treatments. (C) The activity of

superoxide dismutase (SOD) and (D) catalase (CAT) after four days of exposure. (E) Lipid hydroperoxide and (F) protein

carbonylation content following four days of exposure to the treatments.

doi:10.1371/journal.pone.0166581.g004
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components at higher seawater temperatures. A four-day exposure to agar strips containing

microcolin A during settlement significantly reduced larval survival by 43% (Fig 4a, p<0.001)

and settlement by 30% compared to the controls (Fig 4b, p<0.001). Microcolin A alone had no

effect on the oxidative stress response of these larvae (Fig 4c and 4d).

The four-day exposure to a combination of elevated seawater temperatures and microcolin

A caused a significant interaction, with more larval mortality than either stressor alone (Fig 4a,

p = 0.037). The combination of stressors reduced settlement to less than 5%, but there was no

significant interaction (p = 0.193). Both stressors combined caused a 2.1 times upregulation in

the concentration of SOD (Fig 4c, p = 0.023), but had no significant effect on the other bio-

markers measured (Fig 4; S2 Table).

Discussion

Coral recruitment is necessary for reef recovery, but to date there is limited evidence that alle-

lopathy from local benthic organisms can disrupt larval settlement and survival. Isolated com-

pounds have not been previously shown to drive competition in coral larval ecology, but this

study shows that microcolin A can reduce survival and inhibit the settlement of larvae of P.

astreoides. Allelopathy with this compound interacted with elevated seawater temperature to

reduce local coral recruitment to less than 5% of the larvae supplied (a reduction in settlement

of 87% compared to the controls). As climate change continues to impact coral reefs there will

be increased frequency of local and global stress events, and understanding interactions with

local stressors can provide critical information about fundamental processes such as coral

recruitment.

Oxidative stress as a result of thermal stress is well documented in corals [12]. In a prelimi-

nary experiment, coral larvae of Porites astreoides were exposed to +3.5˚C seawater tempera-

ture for 4.5 hours, causing increased levels of reactive oxygen species (ROS) when compared to

controls, as detected by laser scanning confocal microscopy (Fig 2). Oxidative stress response

is a general stress response to multiple types of stressors in adult corals [13], and ROS produc-

tion can cause extensive damage to cellular components such as membrane lipids [12,21,51]. A

short term exposure to elevated seawater temperature caused increased concentration of SOD

in the first experiment, and in the second experiment there was increased damage to cellular

proteins and lipids, probably due to a relatively long (4 days) exposure to temperature stress.

These experiments show different biomarkers were activated through temperature stress,

probably due to different durations of thermal exposure. Since the control temperatures were

different between the years (due to different ambient seawater temperatures in the Florida

Keys), it is difficult to directly compare the oxidative stress of an experimental treatment of

+5˚C in 2008 to +3˚C in 2009. The extent and duration of thermal stress probably has a great

influence on the amount of cellular damage in coral larvae. Larvae of Acropora intermedia also

upregulated SOD in addition to showing elevated levels of lipid hydroperoxide content after

exposure to a +6˚C increase in seawater temperature for three days [14]. This type of oxidative

stress in larvae might cause latent effects that impact coral survival as a juvenile [23]. Multiple

studies show that elevated seawater temperatures caused stress in coral larvae, but we are still

learning the nuances of how the extent of stress varies with exposure among coral species and

how this stress might impact fundamental processes of coral biology.

Other studies have shown that small elevations in seawater temperature (+2–5˚C) consis-

tently had no effect on the larval survival and settlement of P. astreoides [23,52]. Consistently

in our temperature treatments there was no effect on larval survival and settlement, but there

was a sublethal effect. Both experiments show that elevated temperatures can cause oxidative

damage, but corals do have antioxidant mechanisms allowing them to cope with this stressor

Stressors Interact to Inhibit Coral Recruitment
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[12,13]. Prior differences in the concentration of enzymes might also be responsible for the

variation in stress response [9], unfortunately the history of these coral colonies or whether

maternal effects are influencing stress susceptibility is not known. Dinoflagellates living symbi-

otically with corals might be an important source of ROS during temperature stress [14,17],

and since larvae of P. astreoides contain these symbionts they may be more susceptible to heat

stress than aposymbiotic larvae found in other coral species.

As climate change promises to increase seawater temperatures, many reefs are concurrently

experiencing phase shifts from coral to algal dominated communities [24–27]. With increased

frequency and cover of macroalgae and cyanobacteria natural processes such as coral recruit-

ment could be impacted. Some studies have found that macroalgae and cyanobacteria can dis-

rupt coral recruitment [32,33,38,52,53,54]. However, the mechanisms of this disruption are

multifaceted, and most experiments do not distinguish among different mechanisms of action

including space occupation [55], microbial shifts [41,42] and secondary metabolites

[38,52,53]. Many studies have focused on marine microbes as indicators of appropriate settle-

ment habitat [56,57,58], but the negative impact of individual microbes on coral settlement is

rarely studied. Some natural products and DOM can disrupt natural microbial communities

[37,59,60], and it may be that microcolin A can disrupt natural biofilms that would increase

settlement. While the experiments in this manuscript do not distinguish this potential mecha-

nism of settlement inhibition, the reduction in larval survival suggests that microcolin A is

toxic to coral larvae. Even though a few studies have shown that crude extracts can impact lar-

val recruitment, this is the first study to have tested an isolated secondary metabolite. Previous

work with larvae of P. astreoides showed increased mortality after exposure to crude extracts of

brown macroalgae in the genus Dictyota incorporated into agar strips and placed on settlement

tiles [38]. A 20-hour exposure of P. astreoides larvae to the brevetoxins in K. brevis caused

decreased larval respiration and increased concentrations of both CAT and lipid hydroperox-

ides [22]. Water soluble cues from Padina sp. reduced the settlement of Acropora millepora by

30% [53]. In both of our experiments an isolated compound had a significant effect on larval

survival and settlement. We covered approximately 20% of the available settlement substrata

with the agar that had microcolin A embedded at natural concentration, which is similar to

estimated cyanobacteria coverage during a bloom in Florida [47], and is within the range of

cyanobacterial abundance found in an experimental manipulation of turf mats in climate

change conditions [61]. Cyanobacteria contain many different types of compounds, but

microcolin A is a lipopeptide that typically would not be released into seawater. These agar

strips are ecologically relevant by holding microcolin A on the benthos where coral larvae

probably contact it during their exploration of the benthos while searching for appropriate set-

tlement habitat. Increased potential for allelopathy due to increasing cyanobacterial abundance

on reefs could be an important negative consequence of a phase shift from a coral to algal

dominated reef, especially at the vulnerable early life history stages of corals.

Even though there was a strong allelopathic effect of microcolin A on larval survival and set-

tlement, this species of cyanobacteria also contains microcolin B and desacetylmicrocolin B

[39], suggesting that our experiments are a conservative estimate of the ecological effect this

cyanobacterial species can have on coral larvae. Importantly, our experiments clearly show

that allelopathy can kill coral larvae regardless of other features of live cyanobacteria. The mag-

nitude of the effect of microcolin A varied between experiments and this could be due to dif-

ferent exposure durations. In one of our experiments there was an upregulation of SOD in

response to microcolin A suggesting this compound also causes oxidative stress. Lipopeptides

have been previously shown to induce ROS formation (and concomitant apoptosis) in mam-

malian cell lines [62,63]. It is probable that similar damage may be occurring in coral larvae

when exposed to microcolin A [64]. If blooms of cyanobacteria increase in size and frequency

Stressors Interact to Inhibit Coral Recruitment
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with increased ocean temperatures as predicted [61,65,66], they could greatly increase suble-

thal stress and larval mortality during coral recruitment.

A combination of stressors has been studied in diverse habitats [6] and is known to be

important for coral reefs [7]. But there are relatively few studies that have quantified sublethal

stress to better understand the cellular pathways that are impacted by stress. Temperature and

ocean acidification combined are known to impact larval corals, and some studies are testing

other combinations of stressors. An experiment with Diploria strigosa showed that the larvae

had decreased survival and settlement in response to increased temperature and the addition

of ammonium, but these stressors had an additive not synergistic effect [16]. No synergistic

interactions were detected when larvae of P. astreoides were exposed to temperature and the

brown macroalga Dictyota menstrualis [52], illustrating that significant interactions of multiple

stressors depend on the species tested. Nutrients and temperature impacted the early life his-

tory of Acropora tenuis, and the type of interaction (additive, synergistic, antagonistic) of these

two stressors was dependent on the life history stage of the coral [67]. Synergistic effects have

been documented in both marine and terrestrial environments [6,7], and our data provide an

example for the potential impact of interactive effects. The corals and larvae in these experi-

ments were maintained at relatively low light levels, however high light is a known stressor for

corals and higher levels could also interact with these other stressors to impact recruitment. As

marine organisms are increasingly exposed to multiple stressors, a better understanding of

sublethal stress and the ensuing susceptibility to other stressors is needed to conserve natural

communities.

Coral recruitment is one critical process of reef recovery and resilience that is susceptible to

a combination of local and global stressors. Under bloom conditions, cyanobacteria have the

potential to create a major demographic bottleneck in coral recruitment through allelopathic

effects. This is also true for other species of macroalgae interacting with corals, suggesting that

allelopathy is a common driver of competition on reefs [29,38]. The mechanisms of competi-

tion between corals and benthic cyanobacteria could also be driven by microbial shifts [42],

space occupation [55], a change in local nutrient concentrations due to nutrient cycling

[43,44], or shifts in fine scale oxygen concentrations [41], but we show that an isolated second-

ary metabolite can drive competition regardless of other cyanobacterial features. In addition,

sublethal stress caused by elevated seawater temperatures exacerbated the effects of microcolin

A on coral larval survival. For increased coral reef resilience it is important that management

strategies control local competitive benthic organisms such as macroalgae and cyanobacteria

to maximize coral resistance to global threats.

Materials and Methods

Collection of Porites astreoides larvae

This work was conducted under the permit FKNMS-2008-018 from the Florida Keys National

Marine Sanctuary. Each year in May 2007, 2008 and 2009, forty adult colonies of P. astreoides
were collected from the seawall at the base of the Spanish Channel bridge in the lower Florida

Keys (GPS N 24˚ 38.9’ W 81˚ 19.8’), and transported to Mote’s Tropical Research Laboratory

(Summerland Key, FL) where they were maintained in running seawater. Adult colonies were

haphazardly collected from a depth of 3–6 meters, and were different colonies each year. To

obtain larvae, each colony was placed in an individual 3 L Rubbermaid Grip’s Mix bowl1 sup-

plied with continuously running seawater. During the night the larvae spilled over the handles

of the bowls into plastic tri-pour beakers with 180 μm mesh bottoms. The water level was held

at 15 cm so the larvae remained in the tri-pour beakers until sunrise the next morning when

they were counted into the experiments. All larvae were pooled from multiple parents (>25

Stressors Interact to Inhibit Coral Recruitment

PLOS ONE | DOI:10.1371/journal.pone.0166581 December 7, 2016 9 / 16



colonies) to better understand coral recruitment at a population scale and were added to the

experimental treatments the same day they were released. Adult colonies were later returned

to the collection site and reattached with Z-Spar Splash Zone Compound1 underwater epoxy

[33].

Detection of Reactive Oxygen Species (ROS)

A separate set of 50 larvae was collected on May 28, 2007 to examine the effect of thermal stress

on the production of reactive oxygen species (ROS). Live larvae were returned to the Smithso-

nian Marine Station at Fort Pierce and at an age of 2 days and were incubated at 27˚C (n = 15)

or 30.5˚C (n = 15) for 4.5 hours. Larvae were subsequently placed in 15 ml polystyrene conical

tubes containing 10 ml of seawater and 10 μl of dichlorodihydrofluorescein diacetate (DCFH-

DA; 5 μM final concentration; Invitrogen, Carlsbad, California, USA) following previous

methods [68]. DCFH-DA is a non-fluorescing compound, and when it reacts with cellular

esterases the diacetate group is cleaved to yield 2’7’-dichloro-dihydrofluorescein (DCFH). Sub-

sequent oxidation of DCFH by ROS yields the fluorescent product 2’,7’-dichlorofluorescein.

Samples were mixed on a rotary shaker in the dark for 15 min, and then washed in filtered sea-

water to remove any unbound probe. Laser scanning confocal microscopy was employed to

visualize the induced production of ROS. A Nikon Eclipse E800 compound microscope

(Nikon Instruments, Kanagawa, Japan) outfitted with a Bio-Rad Radiance 2000 laser system

(Biorad, Hercules, CA., USA) was used at 20% laser power. Excitation was 488 nm and emis-

sion was 525 nm (detection of fluorescein probe) or 580 nm (detection of chlorophyll).

Experiment 1-Sequential treatment of Porites astreoides larvae

Larvae for the first experiment were collected the morning of May 6, 2008 (new moon: May 5).

The experiments were set up inside the laboratory in 5 L aquaria that served as water baths.

Seven replicate aquaria served as water baths of either ambient temperature (23.5˚C ± 0.179

SE) or elevated temperature (29.3˚C ± 0.733 SE) with individual ViaAqua™ aquarium heaters

to increase the seawater bath temperature. Each aquarium contained two 400 ml plastic tri-

pour beakers with 220 ml of standing seawater and 200 larvae of P. astreoides. One replicate

(from the treatment with ambient temperature and microcolin A) was lost because all of the

larvae had already metamorphosed after the 24 hour temperature incubation. After 24 hours

of exposure to the temperature treatments 100 swimming larvae were removed from each rep-

licate and placed in larval containers. Larval containers were made of 800 ml plastic tri-pour

beakers that had their bottoms replaced with 180 μm nitex mesh. These larval containers were

placed in outdoor flow-through seawater tables and elevated 3 cm off the table to ensure water

exchange through the nitex mesh. Each larval container had 4.5 x 4.5 cm terracotta tile that

had been pre-conditioned on a patch reef where P. astreoides was common at a depth of 6

meters for 5 weeks. At the initiation of the experiment a 2 x 3.5 cm agar strip (0.3 cm thick)

was attached with a cable tie to the top of the tile covering 50% of the top of the tile (approxi-

mately 20% of the potential settlement surface including the top, bottom and sides of tile). All

of the larval containers were shaded to reduce ambient light to a maximum daily irradiance of

85 μmol m-2s-1. This light level was consistent among treatments and controls and was used to

ensure the health of the corals and larvae in the shallow seawater tables. Each larval container

from an aquarium was randomly assigned either an agar control, or an agar strip that con-

tained microcolin A. The agar strips occupied the same amount of space on the tile, controlling

for simple space competition, and only differed in the presence or absence of microcolin A.

The control agar strips were composed of 0.625 g agar and 0.625 g carrageenan mixed with 35

ml of distilled water and 5 ml of 95% ethanol. Microcolin A was previously isolated [39], and
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then dissolved in 5 ml of 95% ethanol and added to the treatment strips at a concentration of

0.03% wet weight (300μg/g wet weight), which is the natural concentration found in the cyano-

bacterium. Microcolin A does not readily dissolve in seawater and the agar and carrageenan

gel was designed to retain the compound as much as possible. We were not testing the diffu-

sion of microcolin A from the agar strip, instead we were testing the presence of allelopathy on

the benthos. We confirmed that microcolin A was still present in the agar strips by re-extract-

ing the treatment agar after the experiment and extraction of standing water with agar strips

soaking in it for 4 days followed by proton nuclear magnetic resonance (NMR) spectroscopy

to detect the presence/absence of microcolin A. Microcolin A was still detected in the agar

strips at the end of the experiment and was not detected in the water. After 6 days the larvae

were counted for percent survival (swimmers plus settlers) and settlement (larvae that had

attached and metamorphosed onto all sides of the tile, the agar strip or the chamber itself).

Mortality was calculated by subtracting the total number of larvae that survived from the initial

number of larvae because there is no visible remnant of dead coral larvae. All of the swimming

larvae were frozen in liquid nitrogen and stored at -80˚C for oxidative stress assays. Data were

either arc sine square-root or rank transformed to ensure normal distribution and homoge-

nous variances and analyzed with a two-way ANOVA (S1 Table).

Experiment 2-Concurrent treatment of Porites astreoides larvae

Larvae were collected the morning of May 23, 2009 (new moon: May 24). Larval chambers

were 10 cm sections of clear acrylic tube (5.5 cm diameter) with 180 μm mesh covering each

end. Each larval chamber contained two hundred larvae and a pre-conditioned (at a depth of 6

meters for 6 weeks) 4.5 x 4.5 cm terracotta tile with a 2 x 3.5 cm agar strip attached, as

described for experiment 1. Microcolin A was again incorporated at a 0.03% concentration

and was still present in the agar strips after the experiment, as determined by proton NMR as

described for experiment 1. One larval chamber was placed in one of forty 7 L aquaria that

were either the same temperature as the outside flow-through seawater bath (27.15˚C ± 0.082

SE) or were heated (30.3˚C ± 0.087 SE) using individual ViaAqua™ aquarium heaters. All of

the control and treatment aquaria were shaded as is described in experiment 1. Each aquarium

was randomly assigned a treatment (n = 10). After 4 days the larvae were counted for percent

survival and settlement as described above. All of the swimming larvae were frozen in liquid

nitrogen and stored at -80˚C for oxidative stress assays. Data were either arc sine square-root

or rank transformed to assure normal distribution and homogenous variances and analyzed

by two-way ANOVA (S2 Table). If there was a significant interaction term each factor was ana-

lyzed with a one-way ANOVA [69]. For the response variables with significant interaction

terms, the means were confirmed to be different using a Tukey’s post-hoc test.

Oxidative Stress Assays

In the first experiment, there were enough swimming larvae to conduct oxidative stress assays

for catalase and superoxide dismutase on each replicate. In the second experiment, due to low

biomass of coral larvae, two random samples from the same treatment were pooled (n = 5).

Within one month of each experiment frozen samples of multiple larvae (~ 1 g wet weight)

were thawed to room temperature and each extracted in 2.5 ml of buffer (50 mM potassium

phosphate buffer (pH 7.0) containing 10% (w/v) polyvinylpolypyrrolidone (PVP)-40, 0.25%

Triton X-100). Samples were homogenized with mortar and pestle and centrifuged at 16,000 x

g for 15 minutes. The resulting supernatants were quantified for protein content and assayed

for CAT and SOD. Total soluble protein (TSP) was quantified with the Quick Start™ Bradford

Protein Assay Kit (Bio-Rad, Hercules, California, USA). CAT activity was assayed with a
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BIOXYTECH1 Catalase-520™ kit (Oxis International Inc., Foster City, California, USA), and

SOD activity was monitored with a BIOXYTECH1 SOD-525™ kit (Oxis International Inc.)

according to the manufacturers’ instructions. Enzyme activity was normalized to protein con-

tent and units were expressed as U mg protein-1. The samples from the second experiment

were also analyzed for the presence of protein carbonylation and lipid peroxidation using a

Protein Carbonyl Assay Kit and Lipid Hydroperoxide Assay Kit, respectively (Cayman Chemi-

cal, Anne Arbor, MI, USA). Data were either arc sine square-root or rank transformed to

assure normal distribution and homogenous variances and were analyzed with a two-way

ANOVA (S1 and S2 Tables).
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S1 Data. The raw data generated during the experiments and subsequent analysis.

(XLS)
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were not significant after further analysis.

(DOCX)

Acknowledgments

We thank B. Bullington, S. Gunasekera, E. Hoover, J. Kwan, T. Meickle, R. Nicolaides, V. Pitt-

man, L. Salvador and A. Virgilio who assisted with compound isolation and the experiments,

and E. Bartels and other staff at the Mote Tropical Research Laboratory. Thanks to Dr. Hollie

Putnam and Dr. Julie Olsen for their helpful comments on this manuscript. This is contribu-

tion # 1045 from the Smithsonian Marine Station at Fort Pierce.

Author Contributions

Conceptualization: RRW CR VJP.

Data curation: RRW.

Formal analysis: RRW.

Funding acquisition: RRW CR VJP.

Investigation: RRW CR VJP.

Methodology: RRW CR VJP.

Project administration: RRW CR VJP.

Resources: RRW CR VJP.

Software: RRW CR VJP.

Supervision: RRW CR VJP.

Validation: RRW CR VJP.

Stressors Interact to Inhibit Coral Recruitment

PLOS ONE | DOI:10.1371/journal.pone.0166581 December 7, 2016 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166581.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166581.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166581.s003


Visualization: RRW CR VJP.

Writing – original draft: RRW.

Writing – review & editing: RRW CR VJP.

References
1. Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar

Freshwater Res. 1999; 50:839–866.

2. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, et al. Global trajectories of the

long-term decline of coral reef ecosystems. Science. 2003; 301:955–958. doi: 10.1126/science.

1085706 PMID: 12920296

3. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, et al. A global map of human

impact on marine ecosystems. Science 2008; 319:948–952. doi: 10.1126/science.1149345 PMID:

18276889

4. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, et al. Coral reefs

under rapid climate change and ocean acidification. Science. 2007; 318:1737–1742. doi: 10.1126/

science.1152509 PMID: 18079392

5. Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, et al. The coral reef

crisis: The critical importance of < 350 ppm CO2. Mar Pollut Bull. 2009; 58:1428–1436. doi: 10.1016/j.

marpolbul.2009.09.009 PMID: 19782832

6. Darling ES, Cote IM. Quantifying the evidence for ecological synergies. Ecol Lett. 2008; 11:1278–1286.

doi: 10.1111/j.1461-0248.2008.01243.x PMID: 18785986

7. Ban SS, Graham NAJ, Connolly SR. Evidence for multiple stressor interactions and effects on coral

reefs. Global Change Biol. 2014; 20:681–697.

8. Chua CM, Leggat W, Moya A, Baird AH. Temperature affects the early life history stages of corals more

than near future ocean acidification. Mar Ecol Prog Ser. 2013; 475:85–92.

9. Cumbo VR, Edmunds PJ, Wall CB, Fan T-Y. Brooded coral larvae differ in their response to high tem-

perature and elevated pCO2 depending on the day of release. Mar Biol. 2013; 160:2903–2917.

10. Cumbo VR, Fan T-Y, Edmunds PJ. Effects of exposure duration on the response of Pocillopora dami-

cornis larvae to elevated temperature and high pCO2. J Exp Mar Biol Ecol. 2013; 439:100–107.

11. Ritson-Williams R, Arnold SN, Fogarty ND, Steneck RS, Vermeij MJA, Paul VJ. New perspectives on

ecological mechanisms affecting coral recruitment on reefs. Smith Cont Mar Sci. 2009; 38:437–457.

12. Lesser MP. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu

Rev Physiol. 2006; 68:253–278. doi: 10.1146/annurev.physiol.68.040104.110001 PMID: 16460273

13. Baird AH, Bhagooli R, Ralph PJ, Takahashi S. Coral bleaching: the role of the host. Trends Ecol Evol.

2009; 24:16–20. doi: 10.1016/j.tree.2008.09.005 PMID: 19022522

14. Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M. Algal symbionts increase

oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser. 2009; 378:105–

112.

15. Edmunds PJ, Gates RD, Gleason DF. The biology of larvae from the reef coral Porites astreoides, and

their response to temperature disturbances. Mar Biol. 2001; 139:981–989.

16. Bassim KM, Sammarco PW. Effects of temperature and ammonium on larval development and survi-

vorship in a scleractinian coral (Diploria strigosa). Mar Biol. 2003; 142:241–252.

17. Baird AH, Gilmour JP, Kamiki TM, Nonaka M, Pratchett MS, Yamamoto HH, et al. Temperature toler-

ance of symbiotic and non-symbiotic coral larvae. Proc Tenth Int Coral Reef Symp Okinawa Japan.

2006; 1:38–42.

18. Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM. A molecular biomarker system for assessing

the health of coral (Montastraea faveolata) during heat stress. Mar Biotech. 2000; 2:533–544.

19. Downs CA, Woodley CM, Richmond RH, Lanning LL, Owen R. Shifting the paradigm of coral-reef

’health’ assessment. Mar Pollut Bull. 2005; 51:486–494. doi: 10.1016/j.marpolbul.2005.06.028 PMID:

16054653

20. Morgan MB, Vogelien DL, Snell TW. Assessing coral stress responses using molecular biomarkers of

gene transcription. Environ Toxicol Chem. 2001; 20:537–543. PMID: 11349854

Stressors Interact to Inhibit Coral Recruitment

PLOS ONE | DOI:10.1371/journal.pone.0166581 December 7, 2016 13 / 16

http://dx.doi.org/10.1126/science.1085706
http://dx.doi.org/10.1126/science.1085706
http://www.ncbi.nlm.nih.gov/pubmed/12920296
http://dx.doi.org/10.1126/science.1149345
http://www.ncbi.nlm.nih.gov/pubmed/18276889
http://dx.doi.org/10.1126/science.1152509
http://dx.doi.org/10.1126/science.1152509
http://www.ncbi.nlm.nih.gov/pubmed/18079392
http://dx.doi.org/10.1016/j.marpolbul.2009.09.009
http://dx.doi.org/10.1016/j.marpolbul.2009.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19782832
http://dx.doi.org/10.1111/j.1461-0248.2008.01243.x
http://www.ncbi.nlm.nih.gov/pubmed/18785986
http://dx.doi.org/10.1146/annurev.physiol.68.040104.110001
http://www.ncbi.nlm.nih.gov/pubmed/16460273
http://dx.doi.org/10.1016/j.tree.2008.09.005
http://www.ncbi.nlm.nih.gov/pubmed/19022522
http://dx.doi.org/10.1016/j.marpolbul.2005.06.028
http://www.ncbi.nlm.nih.gov/pubmed/16054653
http://www.ncbi.nlm.nih.gov/pubmed/11349854


21. Monaghan P, Metcalfe NB, Torres R. Oxidative stress as a mediator of life history trade-offs: mecha-

nisms, measurements and interpretation. Ecol Lett. 2009; 12:75–92. doi: 10.1111/j.1461-0248.2008.

01258.x PMID: 19016828

22. Ross C, Ritson-Williams R, Pierce R, Bullington JB, Henry M, Paul VJ. Effects of the Florida red tide

dinoflagellate, Karenia brevis, on oxidative stress and metamorphosis of larvae of the coral Porites

astreoides. Harmful Algae. 2010; 9:173–179.

23. Ross C, Ritson-Williams R, Olsen K, Paul VJ. Short-term and latent post-settlement effects associated

with elevated temperature and oxidative stress on larvae from the coral Porites astreoides. Coral Reefs.

2013; 32:71–79.

24. Done T. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia. 1992;

247:121–132.

25. Hughes TP. Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral reef. Sci-

ence. 1994; 265:1547–1551. doi: 10.1126/science.265.5178.1547 PMID: 17801530

26. Bruno JF, Selig ER. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional

comparisons. PLoS One. 2007; 8:e711.

27. Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean

corals. Science. 2003; 301:958–960. doi: 10.1126/science.1086050 PMID: 12869698

28. Titlyanov EA, Yakovleva IM, Titlyanova TV. Interaction between benthic algae (Lyngbya bouillonii, Dic-

tyota dichotoma) and scleractinian coral Porites lutea in direct contact. J Exp Mar Biol Ecol. 2007;

342:282–291.

29. Rasher D, Stout EP, Engel S, Kubanek J, Hay M. Macroalgal terpenes function as allelopathic agents

against reef corals. Proc Nat Acad Sci USA. 2011; 108:17726–17731. doi: 10.1073/pnas.1108628108

PMID: 22006333

30. Box SJ, Mumby PJ. Effect of macroalgal competition on growth and survival of juvenile Caribbean cor-

als. Mar Ecol Prog Ser. 2007; 342:139–149.

31. Foster NL, Box SJ, Mumby PJ. Competitive effects of macroalgae on the fecundity of the reef-building

coral Montastraea annularis. Mar Ecol Prog Ser. 2008; 367:143–152.

32. Kuffner IB, Paul VJ. Effects of the benthic cyanobacterium Lyngbya majuscula on the larval settlement

of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs. 2004; 23:455–458.

33. Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach KS. Inhibition of coral recruit-

ment by macroalgae and cyanobacteria. Mar Ecol Prog Ser. 2006; 323:107–117.

34. Jackson JBC, Buss L. Allelopathy and spatial competition among coral reef invertebrates. Proc Nat

Acad Sci USA. 1975; 72:5160–5163. PMID: 16592298

35. Thacker RW, Becerro MA, Lumbang WA, Paul VJ. Allelopathic interactions between sponges on a trop-

ical reef. Ecology. 1998; 79:1740–1750.

36. Pawlik JR, Steindler L, Henkel TP, Beer S, Ilan M. Chemical warfare on coral reefs: Sponge metabolites

differentially affect coral symbiosis in situ. Limnol Oceanogr. 2007; 52:907–911.

37. Morrow K, Ritson-Williams R, Ross C, Liles MR, Paul VJ. Macroalgal extracts induce bacterial assem-

blage shifts and sublethal tissue stress in Caribbean corals. PLOS One. 2012; 7:e44859. doi: 10.1371/

journal.pone.0044859 PMID: 23028648

38. Paul VJ, Kuffner IB, Walters LJ, Ritson-Williams R, Beach KS, Becerro MA. Chemically mediated inter-

actions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites

astreoides. Mar Ecol Prog Ser. 2011; 426:161–170.

39. Meickle T, Matthew S, Ross C, Luesch H, Paul VJ. Bioassay-guided isolation and identification of desa-

cetylmicrocolin B from Lyngbya cf. polychroa. Planta Med. 2009; 75:1427–1430. doi: 10.1055/s-0029-

1185675 PMID: 19431099

40. Engene N, Paul VJ, Byrum T, Gerwick WH, Thor A, Ellisman MH. Five chemically rich species of tropi-

cal marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanoprokaryota). J Phycol.

2013; 49:1095–1106. doi: 10.1111/jpy.12115 PMID: 27007630

41. Barott KL, Rodriguez-Mueller B, Youle M, Marhaver KL, Vermeij MJA, Smith JE, et al. Microbial to reef

scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc R Soc

B. 2012; 279:1655–1664. doi: 10.1098/rspb.2011.2155 PMID: 22090385

42. Smith J, Shaw M, Edwards RA, Obura D, Pantos O, Sala E, et al. Indirect effects of algae on coral:

algae-mediated, microbe-induced coral mortality. Ecology Letters. 2006; 9:835–845. doi: 10.1111/j.

1461-0248.2006.00937.x PMID: 16796574

43. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD, et al. Nutrient enrichment can

increase the susceptibility of reef corals to bleaching. Nat Clim Change. 2012; 3:160–164.

Stressors Interact to Inhibit Coral Recruitment

PLOS ONE | DOI:10.1371/journal.pone.0166581 December 7, 2016 14 / 16

http://dx.doi.org/10.1111/j.1461-0248.2008.01258.x
http://dx.doi.org/10.1111/j.1461-0248.2008.01258.x
http://www.ncbi.nlm.nih.gov/pubmed/19016828
http://dx.doi.org/10.1126/science.265.5178.1547
http://www.ncbi.nlm.nih.gov/pubmed/17801530
http://dx.doi.org/10.1126/science.1086050
http://www.ncbi.nlm.nih.gov/pubmed/12869698
http://dx.doi.org/10.1073/pnas.1108628108
http://www.ncbi.nlm.nih.gov/pubmed/22006333
http://www.ncbi.nlm.nih.gov/pubmed/16592298
http://dx.doi.org/10.1371/journal.pone.0044859
http://dx.doi.org/10.1371/journal.pone.0044859
http://www.ncbi.nlm.nih.gov/pubmed/23028648
http://dx.doi.org/10.1055/s-0029-1185675
http://dx.doi.org/10.1055/s-0029-1185675
http://www.ncbi.nlm.nih.gov/pubmed/19431099
http://dx.doi.org/10.1111/jpy.12115
http://www.ncbi.nlm.nih.gov/pubmed/27007630
http://dx.doi.org/10.1098/rspb.2011.2155
http://www.ncbi.nlm.nih.gov/pubmed/22090385
http://dx.doi.org/10.1111/j.1461-0248.2006.00937.x
http://dx.doi.org/10.1111/j.1461-0248.2006.00937.x
http://www.ncbi.nlm.nih.gov/pubmed/16796574


44. Radecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to

understanding holobiont functioning? Trends Microbiol. 2015; 23:490–497. doi: 10.1016/j.tim.2015.03.

008 PMID: 25868684

45. Paul VJ, Cruz-Rivera E, Thacker R. Chemical mediation of macroalgal-herbivore interactions: Ecologi-

cal and evolutionary perspectives. In: McClintock J, Baker B, editors. Marine Chemical Ecology. Boca

Raton: CRC Press; 2001. p. 227–265.

46. Paul VJ, Arthur KE, Ritson-Williams R, Ross C, Sharp K. Chemical defenses: From compounds to com-

munities. Biol Bull. 2007; 213:226–251. doi: 10.2307/25066642 PMID: 18083964

47. Paul VJ, Thacker RW, Banks K, Golubic S. Benthic cyanobacterial bloom impacts the reefs of South

Florida (Broward County, USA). Coral Reefs. 2005; 24:693–697.

48. Sharp K, Arthur KE, Gu L, Ross C, Harrison G, Gunasekera SP, et al. Phylogenetic and chemical diver-

sity of three chemotypes of bloom-forming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs

of southeastern Florida. Appl Env Microbiol. 2009; 75:2879–2888.

49. Capper A, Erickson AA, Ritson-Williams R, Becerro MA, Arthur KA, Paul VJ. Palatability and chemical

defences of benthic cyanobacteria to a suite of herbivores. J Exp Mar Biol Ecol. 2016; 474:100–108.

50. Dunne RP. Synergy or antagonism-interactions between stressors on coral reefs. Coral Reefs. 2010;

29:145–152.

51. Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, et al. Membrane lipids

of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Nat Acad Sci USA.

2004; 101:13531–13535. doi: 10.1073/pnas.0402907101 PMID: 15340154

52. Olsen K, Ritson-Williams R, Paul VJ, Ross C. Combined effects of macroalgal presence and elevated

temperature on the early life-history stages of a common Caribbean coral. Mar Ecol Prog Ser. 2014;

509:181–191.

53. Birrell CL, McCook LJ, Willis BL, Harrington L. Chemical effects of macroalgae on larval settlement of

the broadcast spawning coral Acropora millepora. Mar Ecol Prog Ser. 2008; 362:129–137.

54. Diaz-Pulido G, Harii S, McCook LJ, Hoegh-Guldberg O. The impact of benthic algae on the settlement

of a reef-building coral. Coral Reefs. 2010; 29:203–208.

55. McCook LJ, Jompa J, Diaz-Pudilo G. Competition between corals and algae on coral reefs: a review of

evidence and mechanisms. Coral Reefs. 2001; 19:400–417.

56. Negri A, Webster NS, Hill RT, Heyward AJ. Metamorphosis of broadcast spawning corals in response

to bacteria isolated from crustose algae. Mar Ecol Prog Ser. 2001; 223:121–131.

57. Webster N, Smith LD, Heyward AJ, Watts JEM, Webb RI, Blackall LL, et al. Metamorphosis of a scler-

actinian coral in response to microbial biofilms. Appl Env Microbiol. 2004; 70:1213–1221.

58. Hadfield M. Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose

settlement sites. Ann Rev Mar Sci. 2011; 3:453–470. doi: 10.1146/annurev-marine-120709-142753

PMID: 21329213

59. Vega Thurber R, Burkepile DE, Correa AMS, Thurber AR, Shantz AA, Welsh R, et al. Macroalgae

decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides.

PLoS ONE. 2012; 7:e44246. doi: 10.1371/journal.pone.0044246 PMID: 22957055

60. Nelson CE, Goldberg SJ, Kelly LW, Haas AF, Smith JE, Rohwer F, et al. Coral and macroalgal exudates

vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 2013;

7:962–979. doi: 10.1038/ismej.2012.161 PMID: 23303369

61. Bender D, Diaz-Pulido G, Dove S. Warming and acidification promote cyanobacterial dominance in turf

algal assemblages. Mar Ecol Prog Ser. 2014; 517:271–284.

62. Hajare SN, Subramanian M, Gautam S, Sharma A. Induction of apoptosis in human cancer cells by a

Bacillus lipopeptide bacillomycin D. Biochimie. 2013; 95:1722–1731. doi: 10.1016/j.biochi.2013.05.015

PMID: 23770444

63. Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F, et al. Fengycin inhibits the growth of the human lung cancer

cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anti-

cancer drugs. 2013; 24:587–598 PMID: 23552471

64. Krueger T, Hawkins TD, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O. et al. Differential coral

bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under

thermal stress. Comp Biochem Phys A. 2015; 190:15–25.

65. Paul VJ. Global warming and cyanobacterial harmful algal blooms. In: Hudnell HK, editor. Cyanobacter-

ial harmful algal blooms: State of the science and research needs. Advances in experimental medicine

and biology Vol 619, New York: Springer; 2008. p. 239–257.

66. Paerl H, Paul VJ. Climate change: Links to global expansion of harmful cyanobacteria. Water Research.

2012; 46:1349–1363. doi: 10.1016/j.watres.2011.08.002 PMID: 21893330

Stressors Interact to Inhibit Coral Recruitment

PLOS ONE | DOI:10.1371/journal.pone.0166581 December 7, 2016 15 / 16

http://dx.doi.org/10.1016/j.tim.2015.03.008
http://dx.doi.org/10.1016/j.tim.2015.03.008
http://www.ncbi.nlm.nih.gov/pubmed/25868684
http://dx.doi.org/10.2307/25066642
http://www.ncbi.nlm.nih.gov/pubmed/18083964
http://dx.doi.org/10.1073/pnas.0402907101
http://www.ncbi.nlm.nih.gov/pubmed/15340154
http://dx.doi.org/10.1146/annurev-marine-120709-142753
http://www.ncbi.nlm.nih.gov/pubmed/21329213
http://dx.doi.org/10.1371/journal.pone.0044246
http://www.ncbi.nlm.nih.gov/pubmed/22957055
http://dx.doi.org/10.1038/ismej.2012.161
http://www.ncbi.nlm.nih.gov/pubmed/23303369
http://dx.doi.org/10.1016/j.biochi.2013.05.015
http://www.ncbi.nlm.nih.gov/pubmed/23770444
http://www.ncbi.nlm.nih.gov/pubmed/23552471
http://dx.doi.org/10.1016/j.watres.2011.08.002
http://www.ncbi.nlm.nih.gov/pubmed/21893330


67. Humanes A, Noonan SHC, Willis BL, Fabricius KE, Negri AP. Cumulative effects of nutrient enrichment

and elevated temperature compromise the early life history stages of the coral Acropora tenuis. PLoS

ONE. 2016; 11:e0161616. doi: 10.1371/journal.pone.0161616 PMID: 27575699

68. Ross C, Van Alstyne K. Intraspecific variation in stress-induced hydrogen peroxide scavenging by the

ulvoid macroalga Ulva lactuca. J Phycol. 2007; 43:466–474.

69. Underwood A. Experiments in ecology. Cambridge: Cambridge University Press; 1997.

Stressors Interact to Inhibit Coral Recruitment

PLOS ONE | DOI:10.1371/journal.pone.0166581 December 7, 2016 16 / 16

http://dx.doi.org/10.1371/journal.pone.0161616
http://www.ncbi.nlm.nih.gov/pubmed/27575699

