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Abstract

We developed an iterative sequential random utility model to investigate the social and envi-
ronmental determinants of the spatiotemporal decision process of tuna purse-seine fishery
fishing effort in the eastern Pacific Ocean. Operations of the fishing gear mark checkpoints
in a continuous complex decision-making process. Individual fisher behavior is modeled by
identifying diversified choices over decision-space for an entire fishing trip, which allows
inclusion of prior and current vessel locations and conditions among the explanatory vari-
ables. Among these factors are vessel capacity; departure and arrival port; duration of the
fishing trip; daily and cumulative distance travelled, which provides a proxy for operation
costs; expected revenue; oceanographic conditions; and tons of fish on board. The model
uses a two-step decision process to capture the probability of a vessel choosing a specific
fishing region for the first set and the probability of switching to (or staying in) a specific
region to fish before returning to its landing port. The model provides a means to anticipate
the success of marine resource management, and it can be used to evaluate fleet diversity
in fisher behavior, the impact of climate variability, and the stability and resilience of com-
plex coupled human and natural systems.

Introduction

Space-based approaches provide key tools for marine resource management. Their use requires
anticipating fishers’ response to management action, including their decisions about fishing
location and effort to exert at a location. These are generally assumed due to the lack of suitable
models anticipating fishermen’s future actions, and the success of resource management rests
on the distance between assumption and realization. Methods to study stability and resilience
in complex coupled-human-and-natural systems are sorely needed in the domain of decision-
support tools for the management of marine fisheries resources. An abundance of methods
applied to analyses of social and ecological systems has resulted in well studied system-specific
dynamics and identified stability points, but the importance of variability and patchiness to
ecosystem stability is not well understood, and inherent characteristics of patchiness may have
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a profound influence on system stability. Patchiness in human activities (e.g. fishing or pollu-
tion) results from maximizing benefit-cost ratios, often by exploitation of specific ecosystem
patches (e.g. aggregations of spawning fish or discharging factory waste into a river). Mis-
matches in scales of patchiness of human activities have profound effects on the stability and
governance of these complex coupled human-and-natural systems and lead to significant fail-
ures of resource management generally and of fisheries management specifically [1-5].

The problem of spatial complexity is particularly acute in large-scale high-seas fisheries, like
those targeting tunas and tuna-like species, where an understanding of the spatiotemporal
dynamics of both human and natural systems is lacking. To fill in gaps on the social side, we
develop a method to model fleet dynamics in international fisheries and apply it to the purse-
seine fishery for tropical tunas in the eastern Pacific Ocean (EPO). The fishery is managed by
the Inter- American Tropical Tuna Commission (IATTC). Fishing occurs over an area of about
10° km? in the region from the coast of the Americas Mexico to Peru) to about 150°W [6]. This
area is larger than the land mass of the United States or China and about the same size as Can-
ada. Over 99 percent of the vessels in the tuna fishing fleet can carry more than 363 t of fish,
and most have capacities between 1,000 to 1,500 t. Vessels this large can, and often do, make
long fishing trips (median 45 days, maximum 172 days) and may travel from the coastal ports
to the outer reaches of the EPO and back in a single trip. In spite of their mobility, these fleets
face a tremendous challenge locating targeted species in such a vast area. In fact, costs of pro-
duction would be prohibitively high in the purse-seine fishery if not for fishers’ ability to
exploit knowledge of tuna behavior, their general distributions and habitat preferences, and
their associations with dolphins and with floating objects as described below.

Tuna Purse-Seine Fishery Fleet Dynamics in the eastern Pacific Ocean

Fleets target different species and sizes of tunas using gear tuned to the particulars of individual
vessel operations and fishing locations. Operations of these fishing fleets (Fig 1) are regulated
by the 25 member states and three cooperating non-members of the IATTC. Combined, the
regulatory control and the independent vessel operations result in a spatial patchwork of fish-
ing effort and catch that can have profound effects on the resilience of the fishery as a whole
[7-10]. Data documenting all activities related to fishing and vessel movements were compiled
by onboard scientific observers for all trips by vessels included in this study. Dolphin mortali-
ties occurring during fishing operations are strictly monitored and controlled. The IATTC
serves as the secretariat for the Agreement on the International Dolphin Conservation Pro-
gram, which ensures conservation of dolphin in the EPO by limiting annual dolphin mortali-
ties to levels approaching zero. Vessels may target tunas by making sets around pods of
dolphins with tunas swimming below (DEL, dolphin sets). In the early years of the fishery, this
dolphin-associated fishing practice generated high levels of dolphin mortality and considerable
political-economic conflict [11]. Today the dolphin conservation program places constraints
on gear design and operation, requires training of skippers and crew, and restricts a vessel’s
operations if it reaches or exceeds its assigned dolphin mortality limit (DML). If vessel opera-
tions result in dolphin mortalities greater than the limit, that vessel is prohibited from further
operations targeting tunas with dolphins for the remainder of the calendar year. Vessels with-
out a DML are allowed no incidental dolphin mortality and do not engage in dolphin-associ-
ated fishing.

Three métier, broadly distinguished by set type, exist in the purse-seine fishery. The length-
distributions and species compositions of the tunas taken by each métier, and the principal
regions of the EPO in which sets of each type are made, are different. The size of tunas taken in
a set is governed by fish length. The maximum swimming velocity of tunas is determined by
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Fig 1. Number of individual vessels by (a) country of departure and (b) carrying capacity (t) of fish by
year. (a) Country of departure is indicated by ISO-3166 International Standard Alpha-3 codes (http://www.
iso.org/iso/country_codes). (b) Only vessels with carrying capacity of fish > 363 t, which are required to carry
observers, were included in the analysis. About 95% of the catch is taken by these vessels.

doi:10.1371/journal.pone.0159626.g001

length, so though there may be a mix of species or cohorts in a school, the size of individuals
will be similar. The smallest tunas taken by the purse-seine fishery are in sets targeting tunas
associated with floating objects (OBJ) and are a mix of bigeye (BET; mean 53 cm, 8.2 kg),
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skipjack (SKJ; 45 cm, 1.8 kg) and yellowfin (YFT; 55 cm, 3.3 kg). Slightly larger SKJ (50 cm, 2.7
kg) and YFT (80 cm, 10.7 kg) are taken from free-swimming schools of tuna in non-associated
(NOA) sets. Only the largest YFT (110 cm, 28 kg) are capable of maintaining sustained swim-
ming speeds sufficient to keep up with and be taken in sets associated with pods of dolphin
(DEL).

Prior to 1993, OB]J sets generally were made on flotsam or naturally-occurring objects, such
as logs. Since 1993 OBJ sets have been made using man-made fish-aggregating devices (FADs)
that have been placed by purse-seine vessels specifically to attract tunas for subsequent capture
[12]. Large numbers of juvenile BET swim below schools of SK] associated with FADs, and
they are caught along with the SKJ, which are the target of these sets. Prior to the use of FADs,
BET tunas of any size were rarely taken in purse-seine fisheries, and their capture in FAD sets
was unexpected. The use of FADs was intended to reduce vessel search time and distance trav-
eled in pursuit of tuna once dolphin fishing was limited by the dolphin protection agreement.
By attracting schools of SK]J to the surface, this gear innovation allowed fishers to harvest SK]J
that were previously unavailable to the fishery. This new métier was highly successful and by
the early 1990s a fishery directed at exploiting the association of SKJ with floating objects had
developed; by 1994 it was well established. OBJ set landings are now almost double DEL set
landings. Technological improvements continue to make finding fish much easier. For
instance, FADs now carry GPS tracking systems, echo sounders and sonar, and other electron-
ics that can identify species composition and biomass of schools and fish size, which is trans-
mitted to vessels using encrypted communications when a FAD is queried using the correct
access codes.

Oceanographic features, fish habitat preferences, fisher behavior, and the proliferation of
FADs have led to a spatial redistribution in operations of the purse-seine fleet. Regions of oper-
ation of vessels in each of the three métier overlap to a degree. Vessels that have DMLs tend to
focus most of their effort on dolphin-associated schools, which tend to be found further north
than schools associated with floating objects. There are areas where all three types of schools
can be found, and fishers targeting adult YFT in association with dolphins will also set on OBJ
and NOA schools when possible. Fishers without a DML do not have the option to shift to dol-
phin fishing, but they can switch targeting between object- and unassociated-schools. While
fishers’ choice of search area will depend heavily on their preferred métier, the choice of mak-
ing a set of a specific type depends on the size and composition of schools within the search
area as well as regulatory restrictions on dolphin mortality (http://www.iattc.org/IDCPENG.
htm) or restrictions for conservation of tunas (http://www.iattc.org/PDFFiles2/Resolutions/C-
13-01-Tuna-conservation-in-the-EPO-2014-2016.pdf)

More recently, economic pressures have driven fishers to search for new ways to increase
efficiency and reduce operating costs. The EPO is a very large area and some vessels shift
between regions to maintain high catch levels, so distance traveled—and the related fuel costs
—are important determinants of spatiotemporal decision-making in this fishery. Increasing
costs associated with rising fuel prices were magnified by the economic downturn in 2008, and
in spite of recent lower prices for fuel, fishers are still innovating to reduce fuel costs. In the
short run, they can purchase larger vessels, which provide for economies of scale (reducing the
price-per-ton to search for fish), and ships designed for more fuel efficient operations. Both
increase the effectiveness of fishing fleets, allowing them to exploit larger areas or travel to dis-
tant areas more often. At the same time, fishers who cannot afford to purchase new vessels
may make shorter but more frequent trips, increasing the intensity of effort in the coastal
region.

We investigate the past distributions of fishing effort and provide a means to anticipate
future changes in the distribution of fishing effort by purse-seine vessels in the EPO using a
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sequential random utility model. The process is sequential because a fisher’s choice to move
from one search area to another is dependent on their current location. In open-ended inter-
views, tuna vessel captains and owners all stressed that location decisions during a trip in the
EPO are hierarchical. Fishers make three first-tier decisions when they decide on the direction,
duration, and métier, before departing on a trip. They then select specific fishing grounds
based on real-time data on oceanographic conditions, current trip history, and information
from other fishers. The first location decision is substantively different from all others, because
fishers made the decision in port, rather than at sea, where current conditions for an area can
be directly observed and used to guide future fishing decisions. We found that more than any-
thing else, the location of the first set was a good indication of all three first-tier decisions.

This article is structured as follows. In the first section, we review the fleet dynamics litera-
ture and explain why methods used to date are not appropriate for large-scale fisheries. Next,
we describe the data and methods that we used in our model, provide details on the specifica-
tions, and then present the results. We move from measures of fit and a close look at the first
set models, and then examine the switching region choice model results. Finally, we relate
these fishery-specific observations to the larger problems of modeling fleet dynamics and a
broader understanding of patchiness in coupled human and natural systems.

Literature Review of Individual Location Choice Model

Discrete choice models, such as RUMs, have been widely applied, including several applica-
tions to fisheries. McFadden [13,14] developed the first discrete choice random utility models
in studies of urban travel and of investment in transportation infrastructure. Bockstael and
Opaluch [15] were the first to apply these methods to fisheries. Their empirical work on New
England fisheries focused on individual fisher choice to change fisheries, by switching species
targeted and/or gear used. A number of similar papers followed [16-18]. Eales and Wilen [19]
first applied RUMs to the spatial distribution of fishing effort. RUMs also have been used to
study trawl and gillnet fisheries [20-23].

Most of the spatial and métier studies have focused on fisheries where trips visit one location
in the fishing grounds and are of short (1-5 days) duration. Thus, the choice of location has
been temporally independent. Schnier and Felthoven [24] warn that, even in these models, spa-
tial autocorrelation in unobserved variables, such as habitat attributes, may violate the underly-
ing assumption of independence across location choice options. They advocate the use of
specific alternative constants to control for this missing variable bias. Smith [25] points out
that it can be difficult to determine whether or not variations observed in discrete choice mod-
els are due to individual differences (heterogeneity) or to differences in individual experience
(state dependence). He develops several models to distinguish between these often confounded
variables and applies them to data from the sea urchin fishery off California. Like Schnier and
Felthoven [24], Smith finds that state dependence is important and that autocorrelation
between choices of location should not be ignored. If fisher experience was not included in his
model, choices might otherwise appear independent. Swait et al. [26] reach similar conclusions
in their study of recreational fishing around Perth, Australia.

In the purse-seine fishery studied here, an individual trip lasts from a few weeks to several
months or longer. Over 20,000 sets are made annually by about 150 purse-seine vessels. This
all complicates capturing individual fisher’s behavior. Fishers serially choose from multiple
locations within a single trip, and it is unlikely that fishers can optimize over a trip lasting
weeks or months. Decisions leading to location choice are strongly dependent on experience at
previously visited and current locations. Curtis and Hicks [27] analyzed the economic impact
of time-area closures intended to protect sea turtles encountered by the Hawaiian longline
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fishery for tuna and swordfish. Fishing trips were of about 2—-4 weeks in this fishery. They
included the current location and the previous experiences during the current trip in a RUM of
location choice; however, their modeling approach assigned equal probability to all choices of
location.

Hicks and Schnier [28] analyzed fisher response in the EPO to the “dolphin-safe” labeling
campaign of the early 1990s. In their dynamic random utility model, fishermen chose their
cruise path based on expected revenue. Their model was not appropriate for this study, because
it is impossible for a fisher to know the optimal location and timing sequence of locations
before beginning a trip. In addition, their data were limited to only those from U.S. vessels and
from the period prior to 1993, which is a year before the development of the floating object
fishery and prior to other fleets adjusting to the introduction of DML restrictions. Davies et al.
[10] developed a binary choice model, but it was limited by using the aggregated fishing effort
observed in a location without considering the constraint of the track of individual vessels.
Their model was run on a monthly time scale. This was useful for tracking the seasonal move-
ments they described, but it does not capture the daily determinants of the location of fishing
effort presented in our analysis.

Random utility modeling requires the independence of alternative choices; however, this
assumption is violated by serial correlation of decisions on multi-week trips. In the sequential
model we addressed this violation by explicitly specifying prior and current vessel locations
and conditions among the explanatory variables.

Data and Methods
Model Specification

We developed the full sequential random utility model using two sub-models. A fishing trip
was divided into two parts based on the nature of a skipper’s decision process and inputs prior
to putting to sea, in comparison to decision processes and inputs when at sea. The First set
Model is applied for decisions made prior to vessel departure from port on a fishing trip. Once
at sea, the dynamics of vessel operation and fishing changes the nature of information on
which the skippers make decisions to change or maintain vessel activities and locations. The
switching region choice model is applied for daily decisions on vessel operations after a vessel
has left port. Although the definition of variables differs for each stage, the location-choice set
used in each model is the same. First, consider a panel data set consisting of N vessel trips,
where i is any individual trip that chooses region r among R alternative regions in time period
t. Let Uy, be the contemporaneous utility of choosing to set on a school of fish in location 7,
denoted as the rth element in the Rx1 vector Uj;, which represents the contemporaneous utility
of all alternatives expected by the fisherman. However, we, the researchers, only observe a con-
sistent unbiased estimate of vector U}, and we denote it as Vy, through a set of measurable
explanatory variables. The difference between U, and V; is captured by the random error com-
ponent g;; where Uj; = Vj; + €;; and g, is independently and identically distributed with an
extreme value distribution.

In general, the contemporaneous utility V;; across R alternatives is defined as follows,

Vit(Rxl) :f(Xitl (Rx1)» XitZ(Rxl)’ ce ’XitK(Rxl)’ Zitl(RxR)7 ZiIZ(RxR)’ te ’Zit](RxR);
ﬁl(lxl)’ ﬁ?(]x]) te ?ﬂk(lx])? Gl(Rxl)’ GQ(Rxl)’ T Oj(Rxl))

where there are two types of explanatory variables defined to explain the choice utility.
Let X (rx1) be the kth feature in each alternative region for the ith trip at time t, where
k=1,2,...,K, and B is the kth corresponding feature-specific parameter. The explanatory

PLOS ONE | DOI:10.1371/journal.pone.0159626 August 18,2016 6/28



@’PLOS ‘ ONE

Spatial Dynamics of Tuna Fleets

variables are assumed to be different values for the features of each alternative region. The
impact of the X, variable on the utility of choosing the r'" region is derived from the differ-
ences in values across the alternative regions.

Environmental covariates, e.g. chlorophyll content and dissolved oxygen concentration,
may be correlated. To avoid this potential problem, we transformed environmental data prior
to including it in models (Table 1) as follows. Quantiles of the total number of 1° latitude by 1°
longitude areas (1x1 areas) were computed for DEL sets, which are widely distributed across
the region of the fishery, thus providing representative observations of environmental condi-
tions that are associated with fishing trips in the data set. Those with values higher than the
third quantile (or lower than the first quantile) of the distribution of each environmental vari-
able in the selected 1x1 areas were identified. This is a way to evaluate the suitability of the envi-
ronmental condition by region for DEL sets as a reference set to capture fishermen experience
in response to the combination of the environmental condition variables without losing the
dynamics of the environmental condition.

The other type of explanatory variable is uniform across regions during any given decision
but varies across vessels (all trip preference record variables) or only varies temporally (general
oceanographic conditions like the Multivariate El Nifio-Southern Oscillation Index). To cap-
ture the effect of these variables, let Z;,;z«r) represent the jth characteristics of individual trip i
forj=12,...,]. This is the jth RxR diagonal matrix in which the entries outside the diagonal
are all zero and the diagonal entries themselves are the same as the jth group of spatially
homogenous variable Z;,;. Therefore Z;,; ® I, defined as Zy; is the corresponding rth diagonal
element in the RxR matrix, where I is the RxR identity matrix with ones on the main diagonal
and zeros elsewhere. Columns in the RxR diagonal matrix Zi;z.r) are orthogonal, i.e. all ele-
ments are independent without possibility of collinearity.

Even though the variables Z;; are constant across regions, for each of the rth region modes
the impact of a unit change in Z;; to the utility across alternative regions can be assumed to be
different, because it captures a different state of the trip or the general oceanographic condi-
tions. For example, distance travelled since departure for ith trip at point of time t could be
alternative-specific, since distance travelled may not have the same impact on utility of choos-
ing Region m verse choosing Region n. The coefficients 0;zx1) = [0}, 0>, .., Or] represent an
Rx1 vector of regression coefficients that capture the effects of the Z;; variables on the utility of
choosing the corresponding rth alternative region. By setting the last element of coefficients to
null (that is, @iz = 0), the coefficients 6, represent the effects of the Z;; variables on the proba-
bility of choosing the rth alternative over the last alternative to avoid collinearity across various
Z;; variables.

By combining the features of each alternative region and the characteristics of the individual
vessel, the choice probabilities of choosing the rth alternative region, I1;; ,, are specified in the
mixed logit model that denotes the choice probabilities as follows,

exp(V,,)

M, = b @)
TS (V)

where > | TT
choice is always one and where the ith trip is assumed to select alternative region m whenever

= 1, ensuring that the sum of probabilities of all possible outcomes of any

it,r

V., in region m >V, in region n, i € R, Vk € R (3)

Each individual is allowed to choose one and only one of the possible alternatives. The vari-
able Decision takes value 1 when a specific alternative is chosen; otherwise it takes value 0. This
mixed logit model is similar to the conditional logit model [13,14] but allows for parameters
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Table 1. Variable Definition and Description.

Acronyms used in table: Arr arrival; BET bigeye tuna; Chloro chlorophyll A concentration; CPUE catch-
per-unit-effort (t/day); DEL dolphin; Dep departure; DF day fishing; DML dolphin mortality limit; MEI
Multivariate El Nifo-Southern Oscillation Index; MLD mixed layer depth; NOA unassociated; O2 dissolved
oxygen; OBJ floating object; RPUE revenue-per-unit-effort ($US/day); SKJ skipjack tuna; SSH sea surface
height; SST sea surface temperature (°C); YFT yellowfin tuna;

Variable Description and Formula Definition
Dependent Variable by DML and Vessel Size Groupings:
¢ Decision =1 if selected, else = 0:: For each individual trip, a set of choices to select one
fishing region from among the 12 regions.
* DML =1 with dolphin mortality limit, else = O:: Indicates if a vessel has a DML for a trip.

DMLs are assigned in January and July of each year and are valid for a period of
six months. However, if a vessel starts a trip with a DML, it will have a DML for
that trip.

*Vessel_Size =1 ifin range, else = 0:: fish carrying capacity in t: small = 363-700 t;
medium = 700-1,050; large = 1,050—1,250; extra-large = 1,250-1,800. (http://
www.iattc.org/PDFFiles2/FisheryStatusReports/FisheryStatusReport13-2.pdf).

Independent Variables: The natural logarithm of each variable is specified and prefixed with L in the table
of estimation results.

Group 1. Trip-specific region characteristics:

* X1_CPUE_1 =lag1(log((YFT + BET + SKJ)/(DF_ALL+0.0001)+0.0001)). The regional
average expectations of CPUE of YFT, SKJ and BET in the previous month.
These serve as the average expectations of the regional CPUE in the current
month.

*X2_RPUE_1 =lag1(log((YFT_all*YFTP+BET_ALL*(SKJP+100)+SKJ_ALL*SKJP)/(DF_ALL
+0.00001))). The regional average expectations of RPUE of YFT, SKJ and BET
in the previous month. These serve as the average expectations of the regional
RPUE in the current month. YFTP and SKJP are the monthly ex-vessel price by
species. It was assumed that the ex-vessel price for juvenile BET tuna was $100

greater than SKJP.

* X13_Dist_Exp The expected geodistance (km) from home port (or current region) to each of the
12 regions for the first (or next) set.

*X14_Dist_Arr The expected geodistance (km) from an arriving port after travelling to each the
12 regions.

Group 2. Environmental Condition Variables: Based on conditions observed on DEL sets (see text).
Suffixes _L and _H are used to indicate the environmental conditions at a set relative to the daily total
number of 1x1 squares in each region: _L = Environmental Condition (Observed) < first quartile
(Environmental Condition); _H = Environmental Condition (Observed) > third quartile (Environmental

Condition).
*X3_SST_DEL_L = total number of 1x1 squares with SST < 26.8
*X4_SST_DEL_H = total number of 1x1 squares with SST > =28.7
*X5_SSH_DEL_L = total number of 1x1 squares with SSH < 0.6
*X6_SSH_DEL_H = total number of 1x1 squares with SSH>=0.7
*X7_MLD_DEL_L = total number of 1x1 squares with MLD < 18.6 (lower than the first quartile of the
distribution of MLD from DEL sets).
* X8_MLD_DEL_H = total number of 1x1 squares with MLD > = 38.8 (greater than the third quartile
of the distribution of MLD from DEL sets).
*X11_0O2_DEL_L = total number of 1x1 squares with 02 < 0.4
eX12_02_DEL_H = total number of 1x1 squares with 02 >=1.0
Group (3). Trip Performance Record Variables: Each of the following variables is specified as a set of
orthogonal dummy variables and indicated with subscript _Z1, _Z2, ..., _Z11. A variable_Z12 is omitted to

avoid the multicollinearity issues. These are specified to capture the impacts on the probability of next
travelling to each of the 12 regions for the next set.

*Z1_Dist_Dep Geodistance (km) traveled since departure based on the track recorded in a
daily basis.
*Z2_DF_Dep Sum of hours (days) since departure

*Z3 DF_Travel_Dep | Sum of hours (days) recorded as travelling and drifting since departure.

(Continued)
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Table 1. (Continued)

*Z4_MEI Monthly value of MEI. These are specified to capture MEI impact on the
probability of travelling to each region for the next set in comparison to traveling
to the base region, Region 12.

¢ Z5_DF_Search_Dep | Sum of hours (days) spent on searching since departure.

*76_SKJ_Dep Total catch (t) of SKJ tuna since departure.

*Z7_YFT_Dep Total catch (t) of bigeye tuna since departure.

78 BET_Dep Total catch (t) of bigeye tuna since departure.

* 79 _DF_Travel_Last | Sum of hours (days) recorded as travelling and drifting in the last fished region

. Sum of hours (days) recorded as search time in the last fished region
Z10_DF_Search_Last

*Z11_DEL _Last Number of DEL sets fished in the last fished region

*Z12_OBJ_Last Number of OBJ sets fished in the last fished region

*Z13_NOA_Last Number of NOA sets fished in the last fished region

*Z14_SKJ_ Last Total catch (t) of SKJ tuna since departure.

*Z15_YFT_ Last Total catch (t) of YFT tuna since departure.

*Z16_BET_ Last Total catch (t) of bigeye tuna since departure.

doi:10.1371/journal.pone.0159626.1001

that are randomly distributed and therefore captures variations in the preferences of individual
decision makers.

As noted above, there is a general condition of independence of alternatives when using
RUMs. Our model deals with this problem in two ways. First, we model the choice of first set
separately, as this is most indicative of the fisher’s broader trip strategy (IT,"""). We then embed
trip experiences in a sequentially applied model of switching choice to estimate parameters for
ovieh). Thus, the Rx1 vector of utility of fishing at the rth region loca-

tion for the first set can be specified as

subsequent decisions (IT

irs| irs irs Fir: Fir. K irs Fir J irsi irs!

VIR, 20 L 07 = S X B Y 2 e ()
where the X ) = [X1; Xy, - - - » Xiy] is an RxK matrix that contains all region-specific vari-
ables, including trip-specific region characteristics and oceanographic region characteristics
during their first set, and ﬁF’”t(le) =[Bs Bo. . ., Bkl and ®F"St(]RX1) = [01,6,,. . .0)]" is the RJx1
vector of parameter estimates corresponding to the group of spatially homogenous variable
ZF™* during their first set. From this the probability of choosing the rth region for the first set
can be specified and estimated using a mixed logit regression:

e exp (Vfirst ( Xfirst, Zﬁirst; ﬁFirst7 @Firsr))

it,r it

™ = , . _ 5
it,r Zf:lexp(vf:‘ft (XS'N, Zﬁim; ﬁFzrst’ @Ftrst)) ( )

Similarly, the Rx1 vector of utility of switching region to fish in a different region can be
specified as
ViStwitch (XiStwitch, Z;Stwitch; SWifCh, G)SWiffh)

o K Switch Switch J Switch Switch
= Zk:lXirk " Pk + Zj:lZ' QL - 0]’ :

itj

(6)

The probability of choosing the rth region for the first set and subsequent sets in a different
region can also be specified and estimated using a mixed logit regression. When predicting ves-
sel choices, we expect them to select the region with the highest probability from the mixed
logit model. Note that all regions are considered in the selection (switching) functions. It is
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possible that the region in which the vessel currently is located is preferred, in which case the
vessel would be expected to remain in that region until a change in parameter values increases
the probability of selecting an alternative region. Predictions are calculated sequentially starting
with the first set model and thereafter iteratively applying the switching model until a vessel
trip terminates due to exogenous restrictions on the home port and total distance (or days)

that can be traveled by vessels of given size.

We estimated the two stages of the sequential model using the multinomial discrete choice
procedure in Statistical Analysis Software Version 9.3 (http://www.sas.com/en_sg/software/
analytics/stat.html). Because observations of the dependent variable, Decision, are broken
down by whether or not a vessel has a dolphin mortality limit DML and by four vessel size clas-
ses (Vessel_Size), each stage in the model produces eight sets of results. Independent variables
are the same for all DML and vessel size groups, though estimated parameters differ.

Measures of goodness of fit were obtained from the Aldrich-Nelson Index and the McFad-
den LRI. Measures of 0.6 or greater from the Aldrich-Nelson can be interpreted as an excellent
fit, and the McFadden LRI on the range of 0.2-0.4 can be considered an indicator of excellent
fit. We evaluate the predictive capacity of the model by calculating the percentage of location
choices that are perfectly predicted.

Data and Variable Definition

Model estimation was completed using the IATTC’s vessel log book and observer data, which
is one of the most detailed fisheries datasets available. We incorporate satellite-based oceano-
graphic data and outputs from general circulation models. The fishery dataset included over
1.4 million event-based, temporally sequenced records with 238 variables. In total, the dataset
contains detailed information on 7,572 trips with 335,987 sets by three set types that travelled a
cumulative 77 million km and spent a total of 194,678 days in fishing, searching and travelling
to catch a total of 6.4 million tons of tunas. The set-by-set data were collected by scientific
observers. The IATTC requires 100% observer coverage for all trips of large (capacity > 363 t)
purse-seine vessels fishing on tuna in the EPO. Data were aggregated to 1° latitude by 1° longi-
tude by day by trip to ensure confidentiality. During this period the annual average area (km”?)
in which fishing effort occurred was only 68 percent (range 63 to 73 percent) of the 10° km?
EPO region over which the fishery operates.

Given that the total area fished is vast, spatial location choice data were categorized by
region to ensure sufficient data in each region to preserve model predictive capacity. Based on
observed fishing patterns, we divided the EPO fishing area into twelve regions (Figs 2 and 3)
that were intended to align with oceanography and with métier and fleet operations such that
the number of observations of trips in each region during 1997-2012 was sufficient to provide
a reasonable expectation of selection.

Our dependent variable is coded as the decision to set in one of the twelve regions shown in
Fig 2, and is represented by the region code (see Table 1). This provides 16 models, eight for
the first set decision and eight for the switching decision. Multiple models are necessary
because vessels with a DML are essentially using a different métier than vessels without a DML,
although some DML seiners that mostly fish on dolphin-associated sets will catch SKJ and BET
tuna when they set on either OB]J or unassociated sets (NOA). Behavior is also expected to dif-
fer substantially by vessel size, as the maximum trip length, fuel costs, and other factors vary by
the size of the fishing vessel. In general, smaller vessels are confined to shorter trips (duration)
and so, even though they can certainly travel to the outskirts of the EPO in a single two-week
trip, they would then have to return to port before heading out again, so their calculus is quite
different from larger vessels that stay out for months at a time.
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Fig 2. Twelve EPO regions used in the study and the number of days fishing by region, 1997-2012.

doi:10.1371/journal.pone.0159626.9002

Because costs cannot be measured directly, we use distance as a proxy. This is reasonable
because fuel is about 50% of the operating cost for vessels in the purse-seine fleet. We calculate
two distance variables, one from the vessel’s current position to the mid-point of each region
(Distant_Expected) and the second from the mid-point of each region to the vessel’s arrival
port, where they will unload their catch (Distant-Arrive). Only Distant_Expected is included in
the first set model, but both are included in the switching model because they capture two dif-
ferent costs. Both distance variables should be negatively correlated with the probability of
location choice, unless there is some interaction with expected revenues. As a proxy for
expected revenue we calculated a one month lagged catch-per-unit-effort (CPUE, tons/day
fished), and weighted that by the species-specific price of tuna in that month to obtain the
lagged revenue-per-unit-effort (RPUE) in each region. Monthly ex-vessel price data for can-
nery grade tuna were compiled for each species via personal communications from representa-
tives of the canneries in Ecuador and in Thailand and used to define RPUE. Both CPUE and
RPUE variables should be positively correlated with region choice unless there is an interaction
with Distance. Thus our expectations for the sign of CPUE and RPUE will be somewhat
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Fig 3. Number of purse-seine sets by EPO region, 1997-2012.

doi:10.1371/journal.pone.0159626.g003

unpredictable if there are high-revenue regions that are also high-distance regions and vice
versa. This is sub-optimal, but we felt that a simpler representation of expected profits would
be better in the first run of this already complex model.

Environmental condition variables are both general and region-specific. General oceano-
graphic conditions include the Multivariate El Nifio-Southern Oscillation Index (MEI) [29]
and a dummy variable for the period from October to March in a given year. Both indicators
are proxies for changes in weather and patterns of ocean properties that affect the distribution
of effort because of increased safety concerns and technical constraints in stormy periods. MEI
correlates with the direction and velocity of currents, and with the depth of the thermocline-
oxygen barrier to tuna movement (see below). It is expected to correlate with changes in distri-
butions of fishing vessels that are responding to spatial shifts in their operating environment
and in the tuna resource. Oceanographic data compiled by region included chlorophyll con-
tent, sea surface height, mixed layer depth and sea surface temperature. Tunas have high oxy-
gen requirements compared to other fishes, and the low oxygen concentration and low
temperatures below the thermocline act in concert to create a boundary that limits the depth to
which tuna dive [29-32]. For tractability, we chose to represent this thermocline-oxygen
boundary by the dissolved oxygen concentration at a depth of 150 meters [33].

Data on the trip performance record provides basic information of the status of the vessel at
a given set-choice. Here again, distance serves as a proxy for costs, although fishers must also
keep track of distance traveled since departure (Distant_SinceDep) to ensure that they can
return to port given limited supplies on board. Search time and travel time are also important
decision factors, as there is a difference between a fisher who travels far in expectation of a high
catch and a fisher who has spent considerable time searching between sets or before their first
set. We include travel since departure (travel_sinceDep) and search since departure (search_-
sinceDep) in both models, and add travel since last set-region (travel_LastRegion) and search
since last set-region (search_LastRegion) to the switching model. Similarly, fishers explained

PLOS ONE | DOI:10.1371/journal.pone.0159626 August 18,2016 12/28



@’PLOS ‘ ONE

Spatial Dynamics of Tuna Fleets

that their success on a given trip may influence their set choice. This is a complicated part of
the decision process that we represented in this analysis by calculating the sum of the catch
since departure and the sum of the catch in the last region fished by species. These variables are
only included in the switching model and all variables are described in Table 1.

Results
Fit and Prediction

We fitted both the first set model and the switching region choice model using set-by-set data
from 1997-2011, and we then simulated the probability of location choices in each region for
trips in 2012 to test the out-of-sample prediction capacity by comparing predicted location
choices to observations for the year 2012. We started the model in 1997 because there were
constraints on the availability of satellite imagery (e.g. chlorophyll estimates) and because the
fleet composition was relatively stable by this time following the influx of FAD-oriented vessels
in the early 1990s. There were 200-225 vessels using each métier throughout the period. For
random utility models, fit and predictive capacity are based on a range of goodness of fit mea-
sures. We looked first for consistency of fit, then at the actual level of fit, which was good to
excellent for all models. The Estrella measure was 0.9525 for the first set model and 0.8199 for
the switching region choice model. These measures indicate that the first set and the switching
region choice models explain more than 80% of the variation in fisher choice of the location.
The number of observations is relatively high for all sub-models (min = 408). Variation in
goodness of fit seems to depend on the homogeneity of fishing strategies within a group rather
than the number of observations. Specifically, for both DML and non-DML vessels, goodness
of fit measures are generally higher for smaller vessels, which tend to have fewer operational
options and therefore more homogenous fishing strategies. See Table A in S1 Appendix and
Table B in S2 Appendix for a complete list of estimation result and goodness of fit indicators
for the first set and switching region models, respectively.

The out-of-sample predictive capacity is also quite good for both first set and switch-region
models. For first sets (Table 2) the average probability of showing a perfect prediction of region
choice was 52% (32% to 100% across all departure countries, DML, and Vessel_size combina-
tions). For the switching region choice model (Table 3) the fit was not as good as for the first
set model, which was expected based on the greater potential variation. The average probability
of obtaining a perfect prediction of switch in regions across all 92 region/DML/size combina-
tions is 30%. These measures are confirmed visually in the plots of observed vs. predicted num-
ber of trips in each region by period, DML, and vessel size profiles for 2012 (Fig A in S3
Appendix and Fig B in S4 Appendix). In some regions, there are seemingly large differences
between predicted and observed trips per region; however, the distribution across region is
consistently predicted.

The tendency of smaller vessels to fish nearer to the coast and for larger vessels to travel far-
ther more frequently is clearly shown in the discrete response profile for each group of activi-
ties. Fig 4 and Fig 5 show the predicted probability of the region of the first set on a fishing trip,
and Fig 6 and Fig 7 show the predicted probability of the region of the second and subsequent
sets by days since departure, country of departure, possession of a DML, and vessel size. Vessels
with a DML have increased options for set type and therefore have the opportunity to incorpo-
rate different fishing strategies than do vessels without a DML. As expected based on our inter-
views with fishermen, vessels without a DML tend to make their first set either in equatorial or
southern regions, reflecting two first set strategies. All vessels with a DML use these two strate-
gies, but larger vessels travel farther west before placing their first set more often than do
smaller vessels. For vessels with a DML, most first sets occur in regions near the coast, but
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Table 2. Percentage of Perfectly Predicted Choices for First Set Regions.

Period DML Vessel Size Observed (A) Perfect Fit (B) B/A (percent)
1997-2011 0 1_Small (363-700t) 1,927 911 47
2_Median (700-1,050t) 985 383 39
3_Large (1,050-1,250t) 408 160 39
4_XLarge (1,250-1,800t) 590 268 45
1 1_Small (363-700t) 539 372 69
2_Median (700-1,050t) 1,555 928 60
3_Large (1,050-1,250t) 2,240 1,380 62
4_Xlarge (1,250-1,800t) 640 321 50
Total in 1997-2011 8,884 4,723 53
2012 0 1_Small (363-700t) 173 82 47
2_Median (700-1,050t) 77 34 44
3_Large (1,050—-1,250t) 24 6 25
4_XLarge (1,250-1,800t) 38 10 26
1 1_Small (363-700t) 45 38 84
2_Median (700-1,050t) 99 66 67
3_Large (1,050-1,250t) 212 135 64
4_Xlarge (1,250-1,800t) 24 10 42
Total in 2012 692 381 55

doi:10.1371/journal.pone.0159626.t002

Table 3. Percentage of Perfectly Predicted Choices for Switching Regions.

there is some varijation between northern and equatorial search patterns, probably based on
starting port location. Most fishers targeting tuna in association with dolphin operate from

Mexican ports.

As pointed out above, weather and ocean conditions influence location and timing of purse-
seine fishing and fishing effort through the course of a year. Fig 8 and Fig 9 illustrate this point

Period DML Vessel Size Observed (A) Perfect Fit (B) B/A (percent)
1997-2011 0 1_Small (363-700t) 4,755 1,447 30
2_Median (700-1,050t) 3,733 973 26
3_Large (1,050—-1,250t) 1,574 364 23
4_XLarge (1,250-1,800t) 2,266 586 26
1 1_Small (363-700t) 855 332 39
2_Median (700-1,050t) 5,332 1,409 26
3_Large (1,050-1,250t) 8,616 2,198 26
4_XLarge (1,250-1,800t) 2,385 612 26
Total in 1997-2011 29,516 7,921 27
2012 0 1_Small (363-700t) 537 165 31
2_Median (700-1,050t) 323 99 31
3_Large (1,050-1,250t) 82 17 21
4_Xlarge (1,250-1,800t) 148 31 21
1 1_Small (363-700t) 60 20 33
2_Median (700-1,050t) 259 77 30
3_Large (1,050—1,250t) 767 187 24
4_XLarge (1,250-1,800t) 91 21 23
Total in 2012 2,267 617 27
Within-sample simulation period = 1997-2011; Out-of-sample prediction period = 2012
doi:10.1371/journal.pone.0159626.1003
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Fig 4. P(region of first set | days since departing port) [Upper panel] and its spatial distribution [Lower panel]. Vessels
were categorized by carrying capacity, departure country, and vessel dolphin mortality limit: (a) 363-700 t, USA or MEX, Yes;
and (b) 1,050-1,250t, USA or MEX, Yes

doi:10.1371/journal.pone.0159626.9004

by showing fisher preference for a first set region and the regions to which they switch during
various months and by cumulative distance travelled since departing port.

Given that modeled choices depend on both variation between fishing strategies and varia-
tions within trips, it is not surprising that while n is higher for each sub-result in the switching
model (min = 1,574), the goodness of fit measures are consistently lower than in the first set
model. Comparing the goodness of fit by DML/vessel-size grouping, most measures are lower
by 0.1-0.2 points for vessels without DMLs and 0.2-0.3 points for vessels with DMLs. This is
not because fit is poor for vessels with DMLs in the switching model, but rather because fit was
so much better for vessels with DMLs in the first set model. It appears that vessels with DMLs
are more homogeneous in first set strategies than they are in subsequent set decisions. Looking
at all appropriately calibrated measures, the switching model still explains about 60% of the
variation in the within-sample simulation for all DML/vessel size groups and frequently
explains from 70% and up to 100% of variation in switching. The discrete response profile for
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Fig 5. P(region of first set | days since departing port) [Upper panel] and its spatial distribution [Lower panel]. Vessels were
categorized by carrying capacity, departure country, and vessel dolphin mortality limit: (c) 1,050-1,250 t, PAN, COL, or VEN, Yes;
and (d) 1,250-1,800t, ECU, No.

doi:10.1371/journal.pone.0159626.9005

the switching region behavior clearly shows that fishers spread out much more after their first
set. The clustering of observations around coastal regions near ports is much less pronounced
and sets are distributed more evenly across regions. Nevertheless, the patterns extrapolated
from the first set results are reinforced by the switching analysis. Vessels without DMLs still
tend to move west and south from coastal regions and vessels with DMLs largely fish either in
northern or west-central regions. Smaller vessels tend to stay in coastal regions and larger ves-
sels are more likely to fish in regions farther from the coast.

First Set Location Choice Model

While goodness of fit and predictive capacity measures suggest that the sequential random util-
ity model approach is quite promising, examination of parameter estimates reveals several
areas for improvement and provides some insight into individual fisher behavior. Details of
first set estimation results are given in Table A in S1 Appendix. While it is not possible to show
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Vessels were categorized by carrying capacity and vessel dolphin mortality limit: (a) 363-700t, Yes; and (b) 1,050-1,2501t, Yes.

doi:10.1371/journal.pone.0159626.9006

and discuss herein each parameter estimate, several important elements stand out. First, dis-
tance is clearly important in decisions. Distant_Expected is strongly negative (< -2) and signif-
icant in all DML/vessel-size groupings, and it is of higher magnitude for the two smaller vessel
size groups than the two larger. This reinforces the importance of expected distance to a region
and supports the tendency of smaller vessels to set first in coastal regions. Similarly, in all

DML /vessel-size groupings the estimates of zonal coefficients for distance traveled since depar-
ture (Distant_sinceDep) are statistically significant and strongly negative for all regions except
those farthest from port locations (regions 1 and 2). Region 1 (far NW) also has a statistically
significant negative coefficient for extra-large vessels fishing with a DML and the region 2 (far
W) coefficient is significant and strongly negative for vessels fishing without a DML. Within
the set of significant coefficients for DML vessels, those for regions closest to ports (r = 6, 8,
and 9) are least likely to be the location of the first set when distance traveled is high. This
makes considerable sense because these regions are most proximate to port locations (Fig 5).
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Fig 7. P(choice of subsequent region | days since departing port) [Upper panel] and its spatial distribution [Lower panel].
Vessels were categorized by carrying capacity and vessel dolphin mortality limit: (c) 1,050-1,2501t, Yes; and (d) 1,250—-1,800 t, No.

doi:10.1371/journal.pone.0159626.9007

On the other hand, the variables travel_sinceDep and search_sinceDep are much less con-
sistent and also of lower magnitude generally (< 1). Medium size vessels with DMLs are more
likely to go to regions 2, 4, 6, 7, 8 and 10 when they spend more time traveling, and extra-large
vessels with DMLs are more likely to place their first set in regions 2 and 4 as travel time
increases. Large vessels are less likely to place their first set in regions 5,7, 9 and 11 as travel
time increases. Hypothetically, this indicates that larger vessels sometimes travel a distance
from port before making a set. This is consistent with what we know of medium to extra-large
purse- seine vessels, which sometimes travel out to well-known fishing regions, forgoing sets
on smaller schools encountered on the way.

There is general support for the strategy of searching regions near shore first and then mov-
ing to more distant regions. Given that these two strategies, travel far and return vs. search
close and move out, are somewhat contradictory, they may cancel each other out in some seg-
ments of the data, creating the inconsistent results observed here. It is also possible that the

PLOS ONE | DOI:10.1371/journal.pone.0159626  August 18,2016 18/28



@‘PLOS | ONE

Spatial Dynamics of Tuna Fleets

Probability

(@)

(b)

1.0

0.8 -

0.6

0.4

0.2 -

0.0 -
Jan

Apr Jul Oct Jan Apr Jul Oct

1.0 ]

0.8

0.6 1

0.4

0.2

0.0 -
Jan

EEEEENEEEEN
O©CoO~NOOODWN-

Apr Jul Oct Jan Apr Jul Oct

Fig 8. P(region of first set | month) [Upper panel] and P(choice of subsequent region | month). Upper panels: Vessels
categorized by carrying capacity, departure country, and vessel dolphin mortality limit: (a) 363—700 t, USA or MEX, Yes; and (b)
1,050-1,250t, USA or MEX, Yes. Lower panels: Vessels were categorized by carrying capacity and vessel dolphin mortality limit: (c)
1,050-1,2501t, Yes; and (d) 1,250—-1,800t, No.

doi:10.1371/journal.pone.0159626.9008

Distant_sinceDep variable is crowding out these two variables, although the correlation coeffi-
cients between the three are low (the highest is less than 0.2).

There may also be some interaction between distance measures and proxies for the expected
benefits of each region. CPUE with and without DMLs are both significant for small vessels,
but while RPUE is positively correlated with the decision to place a first set in a given region,
CPUE has a negative sign. Reasons for this are unclear, but may include a tradeoff between
school size and species composition or some aspect of the geographic distribution of school
size, particularly location of smaller schools in coastal regions.

Oceanographic variables are also consistent with some of our expectations even though
some variables are insignificant for one group of observations but are significant for the other
group of observations. In general, winter conditions (Oct-Mar) are more significant for vessels
carrying DMLs, which avoid northeast regions in the winter and are more likely to fish in
southeastern waters during this season. However, regions are not consistently significant across
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Fig 9. P(region of first set | month) [Upper panel] and P(choice of subsequent region | month). Upper panels: Vessels
categorized by carrying capacity, departure country, and vessel dolphin mortality limit: (c) 1,050-1,250 t, PAN, COL, or VEN, Yes;
and (d) 1,250-1,800 t, ECU, No. Lower panels: Vessels were categorized by carrying capacity and vessel dolphin mortality limit: (c)
1,050-1,2501t, Yes; and (d) 1,250-1,800t, No.

doi:10.1371/journal.pone.0159626.9009

size groups, and there are no significant regions for small vessels, which stay near shore most
of the time regardless of the season. For non-DML vessels, the coefficient for Oct_Mar is only
significant in a handful of regions, but for several the sign was opposite our expectation. The
MEI follows a similar pattern, though it seems to generally reduce the likelihood of placing a
set in most regions for small, medium, and large vessels with DMLs, and it significantly
decreases the probability of placing a first set in western regions for extra-large vessels with
DMLs. The oxygen minimum layer parameters (O2_DOL_L and O2_DOL_H) are the region-
specific oceanographic variables that are most consistently significant and are negative and of
larger magnitude than other such parameters. However, balancing spatial scale with data
requirements for these models makes linking spatially-explicit oceanographic conditions to
fisher decisions very difficult.
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Switching Region Choice Model

Details of the switching region choice model and variables are laid out in Table B in S2 Appen-
dix. This model includes trip-level variables and is more difficult to interpret than the first-step
model, because it covers a much wider array of decisions, i.e. all set choices after the first set.
Trip-level variables help to capture several decision factors, including the tendency to move
closer to final port locations when catch on board is high; and the tendency to switch to a new
region if no fish are found after expending high levels of search effort or if large schools are
found but heavily fished (high catch since last region). Estimated parameters vary widely across
the DML/size groups. Only Distance_Expected (how far the region is from port of landing)
and Distance_Arrive (how far the fisher would need to travel to reach the new region) are con-
sistently significant and of the expected sign for all results.

In contrast, for vessels fishing with a DML, a longer distance traveled almost uniformly
results in a reduced probability of switching among regions. Results for this variable are not sig-
nificant for small vessels, which suggests a uniform strategy of fishing close to port, while most
region estimates are significant for other size classes. Here again, extra-large vessels diverge
from the pattern in that there is a positive and significant probability that they will switch to
region 1 (the far northwest) with longer distance traveled. It is possible that this is also caused
by the influence of departures from ports in the western-central Pacific.

The variable search_sinceDep also shows that there are different strategies depending on
vessel size and DML. For vessels without DMLs, longer search times result in a strong probabil-
ity of switching to regions adjacent to the Ecuadorian port of Guayaquil (regions 9, 10, and 11),
where major SKJ processing facilities are located. Large vessels with trips starting from ports in
the western-central Pacific are also less likely to set in the far western equatorial region and
extra-large vessels are more likely to set in central equatorial regions or in region 1, again
reflecting the influence of departures from ports in the western-central Pacific. For vessels fish-
ing with DMLs, increases in total search time result in a higher probability of switching into
any region, although regions near ports (3, 6, 9 and 10) are clearly preferred. For medium and
large-sized vessels the results are significant for all regions except 1 and 2, those regions farthest
from continental ports of unloading. For small vessels with DMLs, none of the region coeffi-
cients are significant and signs are reversed for a few regions. Again, this is likely due to their
strategy of fishing close to their home port locations.

The effect of travel_sinceDep is generally much smaller than search_sinceDep (most coeffi-
cients are <1). Small vessels without DMLs that spend more accumulated trip time traveling
are less likely to set in western equatorial regions but more likely to set in region 3, which is the
northern central region. This is well outside the usual fishing grounds for FADs and closer to
the Mexican ports of Mazatlan and Manzanillo, where much of the YFT is landed and pro-
cessed. Since vessels without a DML sometimes land large amounts of YFT taken while target-
ing SKJ, they may be willing to travel to these ports to get a better price. Similarly, larger vessels
that travel more are more likely to set in region 6, the northeastern region, which is also near
Mexican ports (Manzanillo is right on the border between the regions). However, medium-
sized vessels are more likely to set in regions 9 and 10 near Guayaquil, Ecuador, and extra-large
vessels are less likely to set in regions 2 or 8, again reflecting the presence of a western Pacific
port for this group.

For vessels with DMLs, travel_sinceDep is much more difficult to interpret. No region coef-
ficients are significant for small vessels (though all are positive), most are significant for
medium-sized vessels, most are negative and some are significant for large vessels, and most
are positive for extra-large vessels, but only significant for regions 4 and 7 in the north-central
equatorial region. The results for small vessels fits their coastal strategy but the results for larger
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size classes can only be explained by the composition of the fleets, as the medium and extra-
large categories tend to be dominated by vessels targeting SKJ on FADs but harvesting YFT
incidentally, while the larger category is dominated by Mexican vessels explicitly targeting YFT
in association with dolphin.

CPUE and RPUE indicators vary considerably between groups. These variables are only sig-
nificant for small and extra-large vessels without DMLs and extra-large vessels with DMLs.
CPUE is also significant for large vessels with DMLs. We expect that both are positive proxies
for expected fishing success in a region; however, in all groups where the variable is significant,
CPUE is positive and RPUE is negative. This lends support for the idea that fishers may be
more likely to make switching decisions based on expected catch than on expected revenue,
which would be reasonable given that prices are notoriously volatile in the fishery.

The overlap between fleets using the different métiers shows up in the effects of accumu-
lated catch by species. Given the location of the statistically significant zones, it is possible that
SKJ_sinceDep variable is picking up schools encountered on return to port, along with specific
decisions to switch from one region to another.

YFT is targeted in the dolphin fishery but is bycatch in the FAD fishery, so results for accu-
mulated YFT catches (YFT_sinceDep) are expected to be less clear for the non-DML fleet than
results for the fleet with DMLs. For small vessels without DMLs, results suggest that fishers
may change strategies if they happen upon a large school of YFT—either unassociated or in
association with floating objects—to search for more YFT in coastal regions. However, large
vessels without DMLs are more likely to switch to the far west equatorial region, so not all
groups fit the pattern. Vessels with DMLs show similar behaviors to the SKJ_sinceDep results.
For small, large, and extra-large vessels, most estimates (except region 11) are positive. Most
estimates are not significant for small (all except 1) and extra-large size classes (all except 6 and
9). For large vessels, estimates are significant in northern regions, northern equatorial regions,
and coastal regions except for the southern region.

Accumulated bigeye tuna catch (BET_sinceDep) is somewhat hit or miss for vessels with a
DML, but for all size classes, higher amounts of bigeye onboard are associated with a higher
probability of switching to western regions and a lower probability of switching to coastal
regions. Since most bigeye is harvested as bycatch in the FAD fishery, it is possible that this
reflects a higher degree of mixing in western schools vs. coastal schools, rather than any specific
fishing strategy. This pattern holds for small vessels with DMLs but the coefficient on the variable
is uniformly negative and significant except for region 5 for all other size classes with DMLs.

Estimates for trip-specific variables from the last region visited can also be important short-
run determinants of set location choice. For vessels without a DML, parameters for the variable
search_LastRegion generally point to an increased probability of switching to central equatorial
or southern coastal regions and a reduced probability of switching to northern regions.

The number of sets by set-type in the last region should also be understood in the context of
targeting, with the expectation that most non-DML vessels are primarily interested in schools
associated with floating objects like FADs (OBJ_Last), and DML vessels should primarily be
interested in schools associated with dolphins (DEL_Last). With these variables, as well as the
catch since last region variables described below, one might expect that fishers are more likely
to stay in a region where they have been successful, but it is important to remember that once
large schools are harvested, fishers are likely to move on. Furthermore, high numbers of sets
may indicate that schools in a region are small, and therefore less desirable, particularly for
larger vessels. In addition, it is likely that these variables will behave differently by vessel size, as
smaller vessels fill up more quickly than larger vessels and therefore return to port more often.

With the above in mind, for small and medium size vessels without a DML, most coeffi-
cients are exceptionally large (5-13), positive, and statistically significant. For large and extra-
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large vessels, most are still positive, but they are smaller in magnitude (< 0.3) and fewer are sig-
nificant. Larger and extra-large vessels evince an increased probability (> 4) of placing their
next set in central or equatorial regions. This result is surprising given that vessels without
DMLs are prohibited to make sets on dolphins. The result may reflect a problem in aligning
DML/non-DML with trips. DMLs are authorized for six month periods, and if a vessel exhausts
its DML before the end of a period, then the probabilities of deploying to regions and other set
types changes.

Results from trips by vessels with DMLs are more consistent. For example, coefficients for
DEL_Last are uniformly positive and most are significant for medium, large, and extra-large
size classes. None are significant for small vessels, which again may be due to a tendency to stay
in coastal regions. Coefficients for OBJ_Last are not significant except for medium-size vessels.
Here most are significant but negative, suggesting a reduced probability of switching, as might
be expected for this group which is dominated by vessels fishing on FADs. Lastly, almost all
coefficients for NOA_Last are positive, but few are significant except those for large vessels,
which show an increased probability of moving into regions near port locations.

Similarly, results for catch by species since last region are more straightforward for vessels
with DMLs than vessels without DMLs. For small vessels without DMLs, larger harvests of
YFT in previous regions (variable YFT_Last) are correlated with an increased probability of
fishing in the northern-central region and reduced probability of fishing in equatorial regions.
Medium and large vessels evince an increased probability of fishing in coastal and southern
regions, while extra-large vessels are less likely to switch to any region. That said, few of these
coefficients are significant and most are quite small (> 0.1). The one exception is small vessels’
increased probability of fishing in region 3, which is adjacent to ports with YFT-processing
plants in Mexico. Results for BET_Last are similar in terms of magnitude and significance but
reversed spatially, in that higher landings of bigeye in the last region increases the likelihood
that a vessel will switch into western equatorial regions and reduces likelihood of switching
into coastal regions. Coefficients for SKJ_Last show that small vessels without DMLs are more
likely to switch to central equatorial and southern coastal regions with higher recent catches of
SK]J. The variable is not significant for medium-sized vessels but is associated with a reduced
probability of switching to coastal and southern regions for large vessels and an increased prob-
ability if fishing in far west, central equatorial, and far southern regions for extra-large vessels.
Like other variables in this category, however, magnitudes are small and few variables are
significant.

For vessels with DMLs, higher catches of YFT in the last region fished are positively corre-
lated (0.2 < 6 < 0.8) with moves to far west and western central regions (such as moving from
Region 6 to Region 3 indicated in Fig 2). For larger size vessels, all coefficients are negative and
most are significant, suggesting a reduced probability of switching regions of operation in gen-
eral. Within the results, central equatorial and southern regions are still preferred, although
this may be a process of elimination (that is, large catches are harvested in typical dolphin-rich
regions in the north and so fishers then explore other regions in order to fill capacity). Bigeye
harvested in the last region fished (BET_Last) is not significant for small or extra-large vessels
but is associated with an increased probability of switching to far western and central equatorial
regions for medium and large vessels. Coefficients for SKJ_Last are not significant for large or
extra-large vessels but for small vessels there is a relatively strong (< -0.39) reduction in the
likelihood of switching to north-east and central coastal regions with higher recent catches of
SKJ and for medium vessels coefficients for all regions are positive and significant, with far
northern and central/coastal equatorial regions preferred (> 0.07).

Oceanographic variables appear to be more important (most are statistically significant) for
switching region decisions than are first set decisions, but like the first set model results, aside
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from the oxygen minimum layer (O2), most region-specific coefficients are very small

(< 0.01). Coefficients for O2 (low or 1" quartile and high or 4™ quartile) are consistently sig-
nificant and negative for vessels fishing without DMLs and extra-large vessels with DMLs
(-0.0205 to -1.1263). Only O2_H is significant for small, medium, and large vessels with
DMLs, and while the coefficient is still negative, as expected, the values are smaller (> 0.1).

For variables with much smaller magnitudes, the count of 1** quartile squares for sea surface
temperature (SST_DEL_L) is significant for small, medium, and extra-large vessels without
DMLs and is positive for small and medium vessels but negative for extra-large vessels. Coeffi-
cients for the count of 4™ quartile squares for SST (SST_DEL_H) are significant and negative
for small and medium vessels without DMLs and for small, medium, and large vessels with
DMLs. For sea surface height, SSH_DEL_L is negative and significant for all vessel size classes
except small vessels with DMLs, where it is negative but not significant. Coefficients for
SSH_DEL_H are consistently positive and significant across all DML/size groups. Both the
upper and lower bounds on mixed layer depth are negative for all vessels without DMLs but
are not statistically significant for medium-sized vessels and MLD_DEL_L is not significant for
large vessels. MLD_DEL _L is positive for all vessels with DMLs, but only significant for the
medium size class. Chlorophyll is less in line with expectations. CHLORO_DEL_L is positive
and significant for all vessels without DMLs and for large vessels with DMLs, but is otherwise
insignificant. CHLORO_DEL_H is significant but positive for large vessels without DMLs and
significant and negative for medium vessels with DML.

MEI is generally associated with reduced probability of moving into far western equatorial
regions and increased probability of staying in coastal regions, though less than half of the
region coefficients are statistically significant for any of the non-DML results. Effects are
greater than other oceanographic indicators (|0.3-1.28|). For small vessels with a DML, there is
a reduced probability of moving to northern central and central equatorial regions, while for
larger size classes, most coefficients are negative and significant, suggesting a general reduced
probability of switching regions.

Discussion

In general, goodness of fit measures show that the sequential random utility model explains
much of the observed variation for decisions made prior to vessel departure from port and for
decisions made daily on vessel operations. The predictive capacity is very good. It is generally
known that there has been no reliable means to predict fisherman behavior in response to
changes in environment or management or the changing conditions aboard a vessel at sea, but
the model we have developed was able at levels over 30% to correctly predict skipper decisions
and vessel movements. There were however some difficulties in the interpretation of the esti-
mated coefficients that suggest that refinement of the model may be possible.

Our results show that the sequential random utility model can be a useful tool for under-
standing and predicting spatial decision processes in large-scale commercial fisheries, where
alternative choices for set location are not temporally independent. This is a novel approach,
and based on our results, we see considerable opportunity for further work and development.
Although we selected each variable in the model to carefully reflect a different aspect of fisher
choices, it is possible that the model is over-specified and that tests of alternate models could
be undertaken to find the minimum necessary set of independent variables. With fewer vari-
ables we may also be able to delineate smaller choice regions. In particular, all variables that do
not vary relatively widely across regions take up R degrees of freedom, so minimizing the num-
ber of such variables would provide considerable advantage in terms of fit vs. resolution. This
issue will be discussed further below.
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The model also captured the primary trip strategies used by purse-seiners in the EPO. These
include 1) the tendency of small vessels to stay in coastal regions regardless of DML status—
even though they have the capacity to travel longer distances, 2) the central equatorial and
southern search patterns evinced by larger vessels without a DML, and 3) the northern search
pattern used by medium, large, and extra-large vessels fishing with DMLs. On the other hand,
there was some confounding of results based on the overlap of fisher strategies. This was seen
for some vessels with DMLs targeting fish in association with FADs, resulting in a behavior dif-
fering from most vessels with a DML that primarily target YFT in association with dolphin. In
future work, it would be useful to group fishers by flag state (or country of origin) as well as
DML, because targeting behavior appears to be strongly associated with flag. Breaking down
the dependent variable by flag groups would also help to tease out differences between fishers
based on port of origin and could be useful for looking at response to future political and eco-
nomic behavior of tuna commissions resulting from changes in fuel prices, regulations, and
climate.

The results also clearly show that distance is a good proxy for costs and is one of the most
important factors in fisher decision processes. Both expected distance and distance traveled
since leaving port are strongly significant and of the expected sign. Other variables based on
search and travel data are less clear indicators, possibly due to interactions with distance. A full
analysis is outside the scope of this paper, but initial tests of the model without the Distant_sin-
ceDep variable show that there is not much reduction in goodness of fit and that travel and
search indicators have higher levels of significance and fit expectations more often. This indi-
cates that there is a level of confounding, even though the variables are not strongly correlated.
It is likely that the inclusion of both variables catch-by-species and number of sets-by-set type
is similarly confounding the effects of these variables.

Increasing the number of regions, and thereby reducing region size, would increase the spa-
tial resolution of the model and may improve the estimates for oceanographic conditions in
particular. In spite of the fact that fishers often use satellite imagery to plan their trips and
determine search locations, region-specific oceanographic measures were the least well-
behaved and had the smallest magnitude of impact in the model. This was not surprising
because vessel operational response is to the local environment. Although we attempted to
compensate for the large size of the regions by using the lower and upper bounds of the pre-
ferred fishing conditions as proxies, this clearly was not sufficient to capture the effect of ocean-
ographic conditions. In addition to smaller regions, a central measure such as the percent of
squares within one standard deviation from the mean would reduce the total number of vari-
ables and provide a clearer indication of fishers’ preferred oceanographic conditions. It would
also be helpful to examine the usefulness of each indicator, as some, like the oxygen minimum
layer and mixed layer depth, tend to be correlated. Indeed, O2 was the only variable that was
fairly consistent with expectations within this group of explanatory variables. Furthermore, it is
possible that some variables, like SST, are positively correlated with location, so this is another
region where testing of specification is needed.

With this first version of the sequential random utility model completed, it would be useful
to develop versions that are not as data-dependent. Although use of on-board observers and
vessel monitoring systems is increasing the availability of high resolution spatial data, the
IATTC dataset used here is highly detailed, and variables like “search” and “travel” time are
not likely to be available to most fisheries management organizations. Indeed, many agencies
may only have access to effort at weekly or monthly time-scales, so the daily modeling
described here would not be feasible. Given these limits, the results presented here suggest that
distance can serve as a good proxy for travel and search and that a middle-range in terms of
temporal and spatial scale might be desirable.

PLOS ONE | DOI:10.1371/journal.pone.0159626 August 18,2016 25/28



@’PLOS ‘ ONE

Spatial Dynamics of Tuna Fleets

Ironically, another region of major concern is actually the lack of data points. Although this
dataset is highly detailed, the fleet is quite small relative to the region fished, and a higher reso-
lution model is likely to return a large number of empty sets. Aggregation over time rather
than space has been used to solve this problem [10], but this has costs in terms of information
lost through aggregation. It also presents problems in situations where time crosses signifi-
cantly different environmental conditions [34]. One alternative is to use a combination of sta-
tistical models to calibrate and test agent-based models of fishing behavior that include
adaptive decision processes. Such models tend to be highly complex and difficult to interpret
but may be necessary when predicting future expectations with models such as the sequential
random utility model.

In spite of the potential issues described herein, we believe that this model is the first step to
a better understanding of spatial dynamics in large-scale fisheries and may have uses in appli-
cations other than marine resource management. Our work provides clear evidence of spa-
tially-explicit patterns of exploitation that could be refined to provide better understanding of
human decision processes that can have profound effects on ecosystems. While studying
small-scale systems is more tractable, in larger systems, collective decisions such as where to
fish, hunt, mine, or pollute can have much broader impacts. Furthermore, in these contexts,
space-based management is increasingly important. Most correctly believe that the success of
this approach to resource management depends heavily on the responses of individuals as they
change their resource use strategies to accommodate new regulations, but spatial decisions also
come into play much earlier in the process, as political and economic issues shape the place-
ment of time-area closures, marine protected regions, and related space-based management
measures. These are but a few of the reasons that there is a need to continue to develop and
improve modeling techniques like the sequential random utility model.
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