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Abstract
The sustainability of future water resources is of paramount importance and is affected by

many factors, including population, wealth and climate. Inherent in current methods to esti-

mate these factors in the future is the uncertainty of their prediction. In this study, we inte-

grate a large ensemble of scenarios—internally consistent across economics, emissions,

climate, and population—to develop a risk portfolio of water stress over a large portion of

Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained

emissions. We isolate the effects of socioeconomic growth from the effects of climate

change in order to identify the primary drivers of stress on water resources. We find that

water needs related to socioeconomic changes, which are currently small, are likely to

increase considerably in the future, often overshadowing the effect of climate change on

levels of water stress. As a result, there is a high risk of severe water stress in densely popu-

lated watersheds by 2050, compared to recent history. There is strong evidence to suggest

that, in the absence of autonomous adaptation or societal response, a much larger portion

of the region’s population will live in water-stressed regions in the near future. Tools and

studies such as these can effectively investigate large-scale system sensitivities and can

be useful in engaging and informing decision makers.

1. Introduction
There is rising concern about the impact of climate change and socioeconomic growth on the
future of our water resources, e.g., [1,2]. The global climate system and population as well as
the local and global economy determine regional and local water supplies and demands–and
these forces can result in complex interactions that require deeper understanding in order to
provide actionable information to decision makers for strategic planning in a changing and
growing world. An emerging need is evident for modeling tools to capture these complex link-
ages–especially global-to-local hydro-climatic relationships, managed water systems, and pop-
ulation and economic growth.
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Previous literature has included many assessments of the impacts of climatic changes and
socioeconomic drivers on water supply and demand ([3,4,5,6,7]; among others). These studies
have focused on a limited number of future scenarios, providing valuable insights on the poten-
tial changes that may arise from a few plausible futures; however, there is no ability to assess
where these courses of events and the subsequent water impacts may lie in terms of a distribu-
tion of outcomes–i.e. a risk-based lens to the analyses. Given the complexity of the system, crit-
ical questions remain such as:

• For any scenario of future climate, population and economy, can we identify a central ten-
dency as well as the “extreme” outliers (i.e. 5th and 95th percentile)?

• Does any scenario result cluster around a central tendency or mode, and therefore indicate
that the outcome is more robust?

Without quantified likelihoods of future outcomes, it is difficult to determine which scenar-
ios should be seriously considered when planning new investments. Here we develop and test
an approach to provide regional projections of changes in water supply and demand, and the
potential for changes in water stress.

We draw on probabilistic projections of global population, economic growth, emissions and
climate developed using an Integrated Global Systems Model (IGSM) developed at MIT [8,9].
Advantages of this approach are (1) likelihoods are explicitly quantified; (2) scenarios are self-
consistent, in that a climate scenario drawn from these projections was produced from an
emissions scenario driven by an associated population and economic growth scenario (recover-
able for our projection of water demands and resource uncertainty); (3) underlying uncertain-
ties in drivers of both economic and earth system response are sampled; (4) cascading
uncertainties, as pertaining to climate and economic projections, are properly addressed, while
additional uncertain variables increase uncertainty in final outcomes, unless the underlying
parametric uncertainties are highly correlated (in which case they have a strong tendency to
offset one another).

To test the approach we focus on a portion of Asia that includes China, India and Mainland
Southeast Asia (Fig 1). This region covers emerging economies constituting almost half of
today’s global population, as well as diverse climates that create varied water resource issues
involving both surface and ground water. Previous studies in this region have found moderate
effects of climate change, some positive and some negative, but raise serious concerns about
socioeconomic effects on water-intensive economic sectors [10,11,12,13]. These regional stud-
ies, like the previously mentioned global studies, are constrained to a limited number of cli-
matic and socioeconomic scenarios provided by Climate Model Intercomparison Projects
(CMIPs) and the Intergovernmental Panel on Climate Change (IPCC).

Our method, in brief, is to apply a Water Resource System (WRS) model developed to work
with the IGSM framework [14]. We use 400-member ensembles of climate projections previ-
ously developed with the IGSM [8,9] complemented with the pattern-scaling approach of [15]
to develop a new 6,800-member ensemble of climate change projections, including variations
in the regional pattern of climate change as represented by General Circulation Models
(GCMs). The climate projections drive changes in surface water supply through changes in
runoff and irrigation demand, and the IGSM economic ensemble projections provide the nec-
essary parameters to estimate changes in water demands for industry and municipal use. A
water management module within the WRS allocates, stores and releases water over each year,
regulated by a management decision scheme that sets priorities among uses. This allows a dis-
tribution of water stress, indicating risks for river basins and sub-basins within our target
region of Asia. We project water stress out to 2050. We could apply this same method out to
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2100, as other studies have done, when changes in water stress, especially through climate
change, are likely to be more substantial; however, for the usefulness of the this study, 2050 will
serve as a more applicable planning horizon.

Tools and studies such as these can effectively investigate large-scale system sensitivities and
can be useful in engaging and informing decision makers. In addition to demonstrating what
results may be derived with a tool such as this, we also hope to highlight the large-scale sensitiv-
ities in this specific region—which contains several heavily populated areas already water
stressed—with the hope of directing more detailed, project-scale studies within the region.

In Section 2 of this paper, the models and methods are described; in Section 3, the changes
in water supply and demand are shown in detail, as well as the resulting water stress risk port-
folios; and in Section 4, the main conclusions from this work are presented.

2. Models and Methods

2.1 The IGSM-WRS and Study Region
Our analysis focuses on the impact of socioeconomic growth and climate changes on the future
availability and management of water resources resolved over large watersheds—Assessment
Study Regions (ASRs)—across South, Southeast, and East Asia (Fig 1). The basic structure of
the WRS as applied here is illustrated in Fig 2, with greater detail provided in [14].

The WRS is driven by economic and climatic projections from the Massachusetts Institute
of Technology (MIT) Integrated Global System Model (IGSM) described in [16]. Economic
projections are driven by the MIT Economic Projection and Policy Analysis (EPPA) model, a
regionally resolved general equilibrium model of world economies (described in [17]), which

Fig 1. Southeast Asia study region. Black contours delineate Assessment Sub Regions (ASRs) defined for
theWater Resource System (WRS) within the IGSM-WRS framework. The color shading indicates the
economic regions that are resolved in the Emissions Prediction and Policy Analysis (EPPA) model.

doi:10.1371/journal.pone.0150633.g001
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provides inputs for econometrically estimated relationships of industrial and municipal water
requirements based on changes in population and gross domestic product (GDP) [14].

The same EPPA scenarios provide greenhouse gas and other pollutant emissions to the MIT
Earth System Model (MESM), which produces latitudinally-resolved climate projections; the
IGSM sub-model of atmospheric dynamics and chemistry is 2-dimensional (altitude and lati-
tude) and is coupled to a mixed layer ocean component. As discussed in [9], an ensemble of
futures is produced using a Monte-Carlo type framework as well as a Latin Hypercube, which
is used to reduce the sample size to 400 members for each ensemble (discussed in more detail
in Section 2.2). The parameters sampled to produce the ensembles include 9 related to econom-
ics (via EPPA) and 5 related to climate (via MESM). The zonal resolution of the MESMmakes
it feasible to produce the 400-member ensembles necessary to reasonably resolve the distribu-
tion of future climate outcomes [9]. MESM outputs are rescaled to 2° latitude by 2.5° longitude
using a pattern-scaling technique [15] based on archived CMIP-3 Climate model simulations.
These precipitation and temperature results are used to drive the Community Land Model
(CLM) version 3.5 [18] to produce the runoff for each ASR. The CLM, which explicitly repre-
sents soil thermal and hydrologic processes, is also implemented within the IGSM as its land
surface scheme. The simulated runoff is bias corrected, using a modification of the Mainte-
nance of Variance Extension (MOVE) procedure to ensure that projected flows in each basin
are a realistic representation of natural flow conditions, details in [14].

Downscaled precipitation and temperature are also input to the CliCrop [19] component of
the WRS, a daily crop water deficit model which projects irrigation requirement. The multiple
water demands are inputs to the Water System Management (WSM) component of the WRS
that allocates water for consumption and assesses the adequacy of water supplies in light of
changing water availability at the ASR level. We use previously published and archived ensem-
ble IGSM runs that consider underlying uncertainty in both climatic (climate sensitivity, ocean
uptake and aerosol effects) and economic parameters (labor and energy productivity growth,

Fig 2. Schematic of connections between components of the IGSM framework and theWRS.Within
the IGSM, the EPPAmodel produces economic projections, calculating population and GDP for each ASR.
These determine municipal and industrial demands for water. Climate results fromMESM are projected
longitudinally via pattern scaling with archived GCM data. CLM determines runoff, and CliCrop calculates
irrigation demands. Water demands and surface-water supply are fed into theWSM to optimize the routing of
water across all ASRs. The resultant routing is then analyzed via water stress indicators.

doi:10.1371/journal.pone.0150633.g002
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population, resource availability, technology costs, pollution emissions and substitution elastic-
ities) as described in [9].

For this study, the WRS is configured to represent 54 ASRs over a large region of Asia (see
Fig 1). The ASRs are defined by major river basins and parts of river basins contained within a
country. For each ASR, available reservoirs are aggregated into a single storage unit that
receives water from runoff within the ASR and remaining flows of upstream ASRs. The stored
water is allocated to serve human water sector requirements and a required environmental
flow. Non-irrigation requirements (for municipal, industrial, and livestock uses) are driven by
socioeconomic factors on the assumption they are not significantly influenced by climate; irri-
gation requirements, on the other hand, are determined by environmental conditions, calcu-
lated by CliCrop.

Based on recent evidence over the past decade, global growth in irrigated land area has slo-
wed considerably (e.g., [20,21,22]) even though global food production has steadily increased
[23]. This indicates that rising global food demand is being met by increased rainfed agriculture
and intensification of existing irrigated land. Given the complexity of interactive socio-eco-
nomic drivers and environmental pressures, as well as global and national governance that will
affect future decisions regarding irrigation expansion (i.e. new dams and reservoirs, e.g., [24]),
the irrigated area is held constant (equal to current estimates from FAO and IFPRI) and irriga-
tion efficiencies are also static (see [25]) in these experimental simulations; we focus on
whether there is adequate water to meet needs associated with changes in ASR-scale socio-eco-
nomic activity and climate.

These methods have been described in detail in [14], where the WRS suite of models is com-
pared to observations. As this is an exhaustive exercise, we refer the reader to this study and do
not attempt to reproduce it here.

2.2 Ensemble Simulations and Scenarios
Our method is to construct numerous ensembles that incorporate the uncertainty in future
hydrology and water resources, as affected by uncertainty in climate and economic drivers of
water use. We gauge the changes simulated in these ensembles with respect to a single baseline
scenario. The baseline scenario represents a 50-year IGSM run with year-2000 water require-
ments from agriculture, industry, and municipalities and a mean year-2000 climate with 50
years of recent historical inter-annual climate variability. We compare resulting changes in
supply, requirement, or water stress with the baseline result to isolate the effect of the long-
term mean change in climate. For baseline domestic and industrial water requirements, we use
data from [25] that are also used in the global IGSM-WRS, described in detail in [14].

Our projections are designed to distinguish effects on water use of economic and population
growth separate from that of future climate change. We create three ensembles of 50-year sim-
ulations (2000–2050) of water resource supply and use. In the first, we utilize forecasts of the
socioeconomic drivers of water demand to create an ensemble as if only the economy changed
(no climate change), which we hereafter refer to as the Just Growth ensemble. In the second, we
utilize the same economic scenarios and associated emissions, simulating their effect on climate
to create another ensemble as if only the climate changed, which we hereafter label the Just Cli-
mate ensemble. Finally, we develop a large ensemble including both climate change and eco-
nomic growth, which we hereafter label the Climate and Growth ensemble. These ensembles
allow us to separately identify the relative importance of climate change and growth, study the
combined effect of these changes, and compare them against a baseline ensemble (as if neither
climate nor socio-economic drivers changed). The Just Growth, Just Climate, and Climate and
Growth ensembles are all generated on the assumption that there are no policy constraints on
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greenhouse gas emissions. This policy results in a median scenario (of the 400-member ensem-
ble) closest to the A2, used in the AR4, in terms of both GHG concentrations and net radiative
forcing, although slightly lower, by 2050. Analyzing mitigation effects, i.e. comparing results
with the stabilization ensemble runs, in this region will be handled in a future study.

2.2.1 Baseline Scenario Data. A long-term dataset of near-surface meteorological vari-
ables—the Global Meteorological Forcing Dataset (GMFD) [26]—provides the baseline climate
in this study. The data is constructed by combining a suite of global observation-based datasets
with the National Centers for Environmental Prediction-National Center for Atmospheric
Research (NCEP-NCAR) reanalysis. The GMFD data spans the years 1948 to 2008 at the 1°
spatial and 3-hourly temporal resolution.

Six near-surface meteorological variables have been processed: 2 m air temperature, total
precipitation, shortwave and longwave radiation, wind speed, and specific humidity. Then, we
remove underlying linear trends in the data in order to build a “clean slate” on which to apply
future trends. To detrend the 3-hourly forcing, the data is aggregated monthly, then regridded
to a 2.5° × 2° resolution. The linear trend is estimated for each of twelve months at each grid
over our study region based on the 50-year (1951–2000) period. To bridge the potential gaps
between the detrended baseline climate in the last year and the derived future climate (dis-
cussed in the following section) at the beginning of the future simulations, for each of the
twelve months, we add the 20-year mean (1981–2000)—same years used in developing the
future changes discussed in Section 2.2.2—to the monthly residual across the 50-year, then cal-
culate the ratio of this sum to the aggregated monthly time series. The detrended 3-hourly data
at each grid are then obtained by scaling the original 3-hourly time series with this monthly
ratio. Note that the same ratio is applied across each of the 3-hourly time steps within a specific
month. The resulting climate, which is detrended and beginning at the year 2000 mean is our
baseline scenario run through the WRS suite of models as discussed in Section 2.1. This proce-
dure is mapped in Fig 3.

2.2.2 Climate Change and Growth Scenario Data. This study considers changes in GDP
and population obtained in the unconstrained emissions (UCE) ensemble analyzed by [16].
The UCE policy uses the global ensemble of population projections described in [27]. To be
consistent with the IGSM uncertainty formulation, socioeconomic projections are provided by
EPPA region (Fig 2). To provide these population projections at the ASR scale, the EPPA
regions’ rate of population changes are mapped to the ASR regions within each EPPA region,
following the technique used in Strzepek et al. (2013). ASR-based population projections use
the growth rates from EPPA, with the current populations at the ASR level developed by IPFRI
[25] (see Fig 4).

The MIT IGSM is designed to quantify various sources of uncertainty in climate projections.
The fully coupled IGSM is forced from 1861 to 1990 by observed changes in greenhouse gas
concentrations, and from 1991 to 2100 by emissions of greenhouse gas and aerosol precursors
projected by the EPPA model [8]. Our 400-member climate forecast ensemble was conducted
based on different value combinations of three key climate parameters: effective climate sensi-
tivity, ocean heat uptake rate, and net aerosol forcing [8]. The value of each parameter is sam-
pled from its probability distribution obtained by comparing the twentieth-century
simulations with observations of surface, upper-air, and deep-ocean temperature changes [28].
The climate forecast ensemble is calculated for each of five emission pathways: Unconstrained
Emissions (No Policy) and four greenhouse-gas stabilization levels (Level 1, Level 2, etc.). In
this study, only the results for Unconstrained Emissions are presented.

In the assessment of regional climate change impact on water resource management in
Southeast Asia, we use a simple downscaling method, or delta method [29], to construct a
series of atmospheric forcing to conduct our ensemble simulations. The method is based on
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applying the interpolated monotonic changes in climate from the IGSM projections to the
baseline climate, accounting for any bias (or trend) in the baseline climate under future climate
change. This method assumes that changes in climates (i.e. multi-year anomalies) are most rel-
evant in the IGSM projections, and that the relationships between variables in the baseline cli-
mate–including periodic and irregular fluctuations in variables–are likely to be maintained.
The zonal anomalies (delta) are derived for the IGSMmonthly time series of 2001 to 2100 with
respect to the 20-year (1981–2000) climatology for each meteorological variable and each of
the 400 climate forecast scenarios. There exist some biases in the IGSM-simulated zonal pre-
cipitation of potential climate change as compared to the CMIP-3 GCM projections, and we
correct such biases based on the monthly zonal precipitation climatology of three periods
(2011–2040, 2041–2070, 2071–2100) from the SRESA2 simulation of the Intergovernmental
Panel on Climate Change (IPCC) 4th Assessment Report (AR4) [30]. The monthly zonal pre-
cipitation climatology from each of the 17 GCMs in the SRESA2 scenario has been analyzed to
examine the impact of model structure in bias correction.

To account for the uncertainty in regional climate change, a downscaling technique [15] is
employed to expand the IGSMmonthly zonal anomalies of precipitation and 2 m air tempera-
ture of each of 400 climate forecast scenarios across longitude at 2.5° × 2° by applying longitu-
dinally-resolved patterns, from observations and from climate model projections archived for
the IPCC AR4. The observed patterns for precipitation and temperature are derived from the
31-year (1979–2009) monthly GPCP v2.1 data set [31] and the 20-year (1981–2000) monthly
Princeton data set, respectively. The pattern shifts in response to human-forced change are
derived based on the same 17 GCM simulations from the IPCC AR4 SRESA2 emission sce-
nario. The resulting meta-ensemble (400 × 17 = 6,800 members) of the 2.5° × 2° IGSMmonthly

Fig 3. Schematic of the delta method for producing the future climate forcing. The procedure is applied
for six near-surface meteorological variables (near-surface air temperature, wind speed and specific humidity
at the lowest atmosphere level, total precipitation, shortwave and longwave radiation). The IGSMmonthly
precipitation is partitioned into 3-hourly based on the observed number of precipitation events within that
month and amount of precipitation per each event in the derived 3-hourly baseline precipitation time series.

doi:10.1371/journal.pone.0150633.g003
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Fig 4. Year 2000 global distribution of population (in millions). Population is projected onto the Assessment Sub Regions (ASRs) of theWRS (Water
Resource System) water-management network of river basins. Black contours denote political boundaries.

doi:10.1371/journal.pone.0150633.g004
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anomalies (precipitation and temperature) is used for the Gaussian quadrature procedure pre-
sented later.

The IGSMmonthly zonal anomalies of each climate forecast scenario are further interpo-
lated using a polynomial of degree 3, with a least-squares fit, to produce a smooth time series
(removing rapid changes in gradient in the vicinity of the data points). This is performed for all
the near-surface meteorological variables, except that the zonal precipitation anomalies go
through the additional bias correction (as described before) prior to the interpolation proce-
dure. A similar downscaling technique [15] is used to map the interpolated IGSMmonthly cli-
mate across longitude. These anomalies are then added to the detrended 3-hourly baseline
climate to construct the future 3-hourly atmospheric forcing (so called “delta method”), which
is used to drive the CLM offline from 2001 to 2050 to simulate the runoff.

The combined effect of growth and climate are then explored in combination through
WSM. The IGSM-WRS is integrated to 2050 for all cases. The following analyses will focus on
the ability of the ASRs to meet water demands [14] and the relative stress that these demands
place on renewable surface water and water available within the managed system.

2.3 Ensemble Thinning via Gaussian Quadrature Procedure
Due to computational limitations, running the full ensemble of 6,800 members is infeasible.
For this reason, we use a Gaussian Quadrature approach, as described in [32], to produce a
subset and respective weights that represent the full ensemble. The Gaussian Quadrature
approach identifies a set of indices for the ensemble members, and then identifies a subsample
of simulations for which the values of the identified indices are distributed similarly to that of
the full ensemble. Thus, we select a series of indices—or summary statistics—that characterize
relevant differences among the ensemble members. The number of statistics used determines
the size of the resulting subset (i.e., more statistics results in a larger subset) related to the num-
ber of equations to solve in order to obtain the Gaussian Quadrature (originally proven in
[33]), with more detail for the specific application in [33].

Two key impacts on water resources are runoff and irrigation demand. These impacts inte-
grate many aspects of different climate scenarios including precipitation and Potential Evapo-
transpiration (PET). [34] developed the Climate Moisture Index (CMI), which uses the ratio of
annual precipitation (P) to annual PET as follows:

CMI ¼ P
PET

� �
� 1 when P < PET

CMI ¼ 1� PET
P

� �
when P � PET

CMI may range from +1 to -1, with wet climates showing positive CMI, and dry climates
negative CMI. [35] demonstrated that changes in CMI are highly correlated with changes in
runoff and irrigation demand. Thus, CMI is a single, simple to calculate index that is highly
correlated with major impacts of interest in this study.

We calculated CMI for each of the 6,800 climates for 5 regions based on the Koeppen-Gey-
ger climatic zones (shown in Fig 5) and for two 10-year time slices: a mean over 2025 to 2034
and a mean over 2041 to 2050, in order to match the time slices used in the Results discussed
later. In the CMI calculation, we use the modified Hargreaves equation to calculate PET [36],
which uses a relationship between precipitation and temperature. Since WRS also accounts for
changes to GDP and population, we add four more indices: year 2050 GDP and population for
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both India and China. This leaves us with 14 indices total: 10 for climate (5 regions over 2 time
slices) and 4 for socioeconomics.

Fig 6 shows the distribution of the 14 variables for the full ensemble. In this figure, plots a)
through e) show the CMI of the 5 regions for the two time slices. In these CMI plots, the dark
black line marks the base CMI value. Plots f) and g) show GDP for China and India in 2050 as
a percent change from the year-2000 value, and plots h) and i) show population for China and
India in 2050, also as a percent change from the year-2000 value. The distributions of the
resulting subset are shown as dashed lines. As shown, the Gaussian Quadrature procedure suc-
cessfully reproduces the original 6,800-member ensemble with a sub-sampled set of 551 mem-
bers. We then use this sub-sampled ensemble to perform our water resource assessment.

2.4 Measures of Water Stress
We use two measures of stress to understand the impacts of changes in climate and growth.
The first measure, Unmet Water Requirement (UWR), is the percentage of the total water
requirement that is not met by the system. UWR is the main component of the objective func-
tion in WSM and is a direct aggregate measure of water stress in each ASR. We calculate UWR
as follows:

UWR ¼ 1� total water consumption
total water requirement

� �
� 100%

In the global WRS model, total water requirement is an estimate of the amount of water that
would be consumed given socio-economic factors, climate conditions, and current

Fig 5. Regions used in the Gaussian Quadrature summary statistics with 2.5° longitude by 2.0° latitude HFD grids.Colored polygons denote the 5
regions used for the Gaussian Quadrature thinning, based on the Koeppen-Geyger Climatic Zones. Black lines are the political boundaries of China, India,
and Pakistan.

doi:10.1371/journal.pone.0150633.g005
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infrastructure, if water were an unlimited resource. For example, if the total water requirement
—irrigation, industrial, and municipal—is 100 billion cubic meters (BCM) and the system can
only deliver 90 BCM, the UWR would be 10%. A UWR of 0% indicates that all crops (as well as
the other water requirement sectors) are without water stress. The WSMmodule allocates
domestic and industrial consumption requirements to be satisfied first (given sufficient water
supply) and the agriculture sector must absorb the loss. Since irrigation is by far the highest
requirement for water, it is extremely rare that domestic and industrial sectors absorb any loss
from the water limitations. Furthermore, since crops are irrigated depending on their value
and water availability, many crops are partially irrigated on a regular basis, which is why we see
unmet requirement in the baseline scenario (see Fig 7). Partial irrigation complicates the inter-
pretation of UWR in the baseline scenario, so we focus on changes in UWR, assuming that
these changes indicate additional stress in a given region. For instance, an increase in unmet

Fig 6. Distribution of the 14 Climate Moisture Index (CMI) statistics used in the Gaussian Quadrature thinning procedure. The solid lines show the
values for the full 6,800-member ensemble. Dashed lines are the Gaussian Quadrature subset distributions for comparison. The solid vertical lines on the
CMI plots (a to e) show the baseline CMI values.

doi:10.1371/journal.pone.0150633.g006

Fig 7. Baseline unmet water requirement (%) for the study region at the ASR level. Unmet requirement
is defined as total consumptive use divided by the total water requirement.

doi:10.1371/journal.pone.0150633.g007
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requirement would likely decrease the supply from the agriculture sector, which could increase
food prices.

The second measure, a Water Stress Index (WSI), is used to assess the stress on the water
resource system for each ASR. For this, we use the metrics adopted for other applications of the
IGSM-WRS [14,37]. Our WSI, similar to that developed by [38] is based on input water flows
(from surface runoff and upstream ASRs) and desired withdrawals, as a measure of the pres-
sure that human water uses exert on renewable surface fresh water. This measure does not cal-
culate unmet requirement; instead, it gauges stress on the natural water system through its
accounting for withdrawal and consumptive uses. WSI is calculated as the ratio of each ASR’s
mean annual total withdrawal (TW), which by definition includes consumptive loss, to the
mean annual runoff (RUN) generated within the ASR, plus inflow (INF) from any upstream
ASR that flows directly into it, as described by [14]:

WSI ¼ TW
RUN þ INF

For only the municipal and industrial sectors, water requirements included in TW are repre-
sented by consumptive use in the model.—with additional consideration for reuse within the
basin to assess total withdrawal. To estimate withdrawal, we use common ratios that represent
the fraction of consumption over withdrawal. Inflow to any given ASR is a consequence of flow
regulated from upstream ASRs; therefore WSI is an evaluation metric of the managed water
system as simulated by WRS. Irrigation receives its total withdrawal, with its return flow cred-
ited to the downstream ASR (see [14] for details). We characterize the severity of water stress
according to [38], which classifies an ASR’s water use as slightly exploited whenWSI< 0.3;
moderately exploited when 0.3�WSI� 0.6; heavily exploited when 0.6�WSI� 1; overly
exploited when 1�WSI< 2; and extremely exploited whenWSI� 2. Similar water-stress
indices are computed in other studies and generally consider a threshold of 0.4 to indicate
severe water limitation [7]. Fig 8 shows the WSI for the baseline scenario. As shown, a large
portion of northern China as well as India and the Indus River systems experience at least
moderate to extremely exploited water conditions.

3. Results

3.1 Distributional Changes in Climate Parameters
In the IGSM-WRS framework, two variables respond to changes in climate: runoff, which pro-
vides surface water supply to the ASR; and irrigation requirement, which is an estimation of

Fig 8. Distribution of water stress index by ASR, as simulated by IGSM-WRS from the baseline climate
run.

doi:10.1371/journal.pone.0150633.g008
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farming water requirements. The baseline runoff is shown in Fig 9 in billion cubic meters
(BCM). In general, there is substantial runoff in the southeast, which benefits from a wet and
humid climate, while the north and far west of the region are especially dry. Note that, in order
to keep units consistent, runoff is not normalized by area, so larger ASRs have more runoff in
part due to the contributing land area.

We take two approaches to present the large number of future runoff changes: (1) we show
example maps of probability points on the distribution of a single metric, maintaining the geo-
graphic spatio-temporal patterns in each scenario, and (2) we simplify complex results by ignor-
ing spatio-temporal correlations and mapping points for specific values in the ASR probability
distributions. For (1), first we characterize the resulting runoff of each scenario using a single
metric across area and time. We find a strong likelihood that runoff will decrease for the majority
of the population (Fig 10). The values shown (as a cumulative probability distribution) are

Fig 9. Baseline annual runoff by ASR (in billion cubic meters per year).

doi:10.1371/journal.pone.0150633.g009

Fig 10. Percentage change in runoff across all ensemble members. Each point in the line represents one
of the 551 members with appropriate weights from the Gaussian Quadrature (Section 2.3). The percent
change in runoff represents a weighted-averaged result for the entire domain of study region (Fig 1)—such
that for every member's result in the distribution shown, each ASR's runoff has been weighted by its
population (Fig 3).

doi:10.1371/journal.pone.0150633.g010
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calculated using a population-weighted mean of the percent change in annual runoff from all the
ASRs by 2050, with ensemble members sorted from driest to wettest. Around 87% of scenarios
suggest an overall decrease in runoff. While the scenarios shown in Fig 10 indicate a predominate
tendency toward a relative decrease in runoff averaged for the entire region, we find that the vari-
ability across ASRs is quite diverse.

Fig 11 highlights this situation. The first column shows results around the 10th percentile,
the second column around the median, and the third column around the 90th percentile. With
these we can see there are patterns that persist in most cases, e.g., reduced runoff in western
Pakistan and Afghanistan, but many of the ASRs provide varying results depending on the spe-
cific climate pattern. The diversity in the regional patterns of runoff change is further illus-
trated by mapping the 10th, median, and 90th percentiles of runoff change for each ASR in a
“point-wise” fashion (Fig 12). As a result, these maps display a general inference about the run-
off change distribution at each ASR, but do not represent the likelihood of a specific climate
pattern. In this context, for any given ASR, a drier climate would be anticipated for those in the
north and west portions and little to no change in the south, as compared to the baseline sce-
nario. Most regions have scenarios that project wetter and others that project a drier future but
there are exceptions. Afghanistan and Pakistan are especially prone to a drier future climate, as
90% of the scenarios indicate decreased runoff, and southern and western China are more
likely to decrease or remain the same, as even in the 90th percentile a wetter climate is not
predicted.

The other calculated metric within the WRS framework that is influenced by the IGSM's cli-
mate response and pattern-scaling is the irrigation requirement—an estimate of the amount of
water that farming in an ASR would use if there were an abundant water supply (given irrigated
area per crop and irrigation efficiencies). In this modeling framework, irrigation requirement
responds to changes in precipitation and temperature, rising when soil conditions are drier

Fig 11. Runoff change patterns (in %) around the 10th, 50th, and 90th percentile. Two are shown for each percentile, based on the mean runoff change
for the region (the metric used in Fig 10). Top label shows the percentile (left) and the GCM name (right.)

doi:10.1371/journal.pone.0150633.g011
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and falling when they are wetter, without exceeding the maximum water needed by the crop.
Baseline irrigation requirement is shown in Fig 13. We calculate the percentage change in irri-
gation requirement, weighted by population, for each scenario. A distributional summary
across the ensemble members is shown in Fig 14, ordered from least to greatest. All of the sim-
ulations result in increased irrigation requirement across the region, with the least at around
no change and the most around 8%.

Similar to Fig 11, in Fig 15 we show examples of six maps of changes in irrigation require-
ment: two from ensemble members near the 10th percentile, two near the 50th percentile, and
two near the 90th percentile results. Again, we see that different climate patterns can result in a
similar value of the metric used in Fig 14. In these examples, we do generally see more drying
in the north and west and less drying in the south, although not all examples shown adhere to
these general patterns.

Similar to the point-wise maps of runoff shown in Fig 12, individual ASR changes in irriga-
tion requirement are mapped in Fig 16. Since precipitation and temperature are the main driv-
ers for both runoff and irrigation requirement estimations, we see a similar pattern in both
maps, with the north drier (i.e., increased irrigation requirement) than the south although both
are indicating that irrigation is more likely to increase. Since the irrigation sector is by far the
largest requirement for water in this region, small changes in mean irrigation requirement can
have a substantial impact on the water sector within each ASR.

Fig 12. Changes in ASR runoff (%) calculated point-wise by ASR. These are changes in decadal averaged ASR runoff from the baseline to the future
scenarios averaged over 2041–2050 for the 10th, 50th, and 90th percentiles.

doi:10.1371/journal.pone.0150633.g012

Fig 13. Baseline irrigation requirement (in billion cubic meters)

doi:10.1371/journal.pone.0150633.g013
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3.3 Distributional Changes in Growth Parameters
Domestic and industrial water requirements are both driven by changes in growth in the WRS
framework. Although these consumptive requirements are smaller than the irrigation require-
ments in the baseline scenario, in most ASRs they do play a significant role in the future scenar-
ios, depending on population growth and GDP projections.

Fig 14. As in Fig 9, but shown for percentage change in irrigation requirement across all ensemble
members. Each point in the line represents one of 551 climate scenarios.

doi:10.1371/journal.pone.0150633.g014

Fig 15. Irrigation requirement change patterns (in %) around the 10th, 50th, and 90th percentile, two each based on the mean irrigation requirement
change for the region. Top label shows the percentile (left) and GCM name (right.)

doi:10.1371/journal.pone.0150633.g015
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3.3.1 Domestic Water Requirements. Domestic water requirement for the baseline sce-
nario is shown in Fig 17. Taking a similar approach as with the runoff and irrigation require-
ments, a region-wide estimate of domestic water requirement is shown in Fig 18 as a percent
change, weighting each ASR value by population. Compared to changes in irrigation require-
ment, domestic water requirement grows substantially percentage-wise, with an 80% to 180%
increase. But, since the baseline domestic requirement is small compared to the baseline irriga-
tion requirement (see Figs 11 and 16), the total amount of increase in requirement is relatively
small.

Now we analyze the variety of domestic water requirement mapped across the region
(shown in Fig 19). For the growth parameters, the variety of changes across the region is
derived from the EPPA results and is important in order to be consistent in terms of the inter-
action of the region’s socio-economics by EPPA region (Fig 1). Fig 20 summarizes the distribu-
tional changes in domestic water requirement (2000–2050) across scenarios by presenting the
10th, 50th and 90th percentiles, calculated individually for every ASR. China is expected to see
relatively small increases in domestic requirement compared to Mainland Southeast Asia and
parts of India, where substantial increases are expected—between 2 and 5 times the baseline
values.

Fig 16. Changes from baseline in irrigation requirement (%) calculated point-wise by ASR, showing changes in decadal averaged ASR irrigation
requirement from the baseline to the future scenarios averaged over 2041–2050 for the 10th, 50th, and 90th percentiles.

doi:10.1371/journal.pone.0150633.g016

Fig 17. Baseline domestic water requirement (in billion cubic meters).

doi:10.1371/journal.pone.0150633.g017
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3.3.2 Industrial Water Requirement. In this model framework, industrial water require-
ment, an aggregate of all industrial water use, responds to changes in per capita GDP. The

Fig 18. As in Fig 13, but for percent change in domestic requirement for the region for all scenarios. Each point in the line represents one of 400
growth scenarios. Percent change for each ASR in each scenario is weighted by population.

doi:10.1371/journal.pone.0150633.g018

Fig 19. Domestic water requirement change by region (in %) around the 10th percentile, median, and 90th percentile, two each, similar to the metric
used in Fig 18. Top label shows the percentile.

doi:10.1371/journal.pone.0150633.g019
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baseline industrial water requirement is shown in Fig 21. A large portion of the industrial
requirement is in China, with a fair amount in India and Vietnam. Fig 22 shows the inverse
cumulative distribution of population-weighted percent change in industrial requirement.
Industrial requirement varies considerably across scenarios, ranging from 60% increase to
440% increase from baseline, with a median of about 200%. In Fig 23, six examples of the vari-
ety of industrial water requirement changes are shown across scenarios of similar percentiles
based on the mean percent change weighted by future population. Here we can see the richness
of the scenario members’ patterns derived by the socio-economic modeling.

Once again, using the probability distribution of each individual ASR, we calculate and map
the 10th, median, and 90th percentiles, shown in Fig 24. Here we see that the industrial require-
ment for ASRs in India and China increase considerably, by about two or three times the base-
line amount in the median case and three to four times in the 90th percentile.

3.4 Mapped Changes in Water Stress
As previously discussed (Section 2.4), we assess changes in water stress via two measures:
UWR and WSI. We will also evaluate these changes across three ensembles: Just Growth, Just

Fig 20. Changes from baseline in domestic water requirement (%) calculated point-wise by ASR, changes are based on the baseline (Fig 16) to the
future scenarios averaged over 2041–2050 and shown for the 10th, 50th, and 90th percentiles for each ASR.

doi:10.1371/journal.pone.0150633.g020

Fig 21. Baseline industrial water requirement (in billion cubic meters).

doi:10.1371/journal.pone.0150633.g021
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Climate, and Climate and Growth. For the Just Growth ensemble, we run the model with the
baseline climate, changing only the growth parameters—population and GDP—which affect
domestic and industrial water requirements. With this ensemble, we isolate the effects of

Fig 22. Mean change in industrial requirement for the region for all scenarios. Each point in the line represents one of 400 growth scenarios. Percent
change for each ASR in each scenario is weighted by population.

doi:10.1371/journal.pone.0150633.g022

Fig 23. Industrial requirement change (in %) around the 10th percentile, median, and 90th percentile, two each, based on the mean industrial
requirement change for the region (the metric used in Fig 22). Top label shows the percentile.

doi:10.1371/journal.pone.0150633.g023
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growth by removing the effects of climate. In the Just Climate ensemble, we keep the growth
parameters constant at the year-2000 value, and provide the model with a different future cli-
mate projection for each scenario. With this ensemble, we remove the effect of growth and
focus on the effect of climate change. In reality, growth and climate occur simultaneously; how-
ever, for policy decisions, distinguishing growth effects from climate change effects is impor-
tant since policy rarely targets both growth (e.g., population or wealth) and climate (GHG
mitigation) simultaneously. We are also interested to assess the degree to which the effects of
growth and climate interact non-linearly. Hence, we run a final ensemble, Climate and Growth,
which combines the two effects, and represents the future we face under an “unconstrained
emissions” pathway.

In Fig 25 the 10th, 50th, and 90th percentiles of UWR point-wise distribution are mapped for
each of the three ensembles. As shown, UWR rarely decreases in the future. For the Just Growth
ensemble, we see UWR increasing or remaining constant, even in the 10th percentile, although
there are some basins that are affected by growth changes more than others, especially much of
India where increases are the most substantial. In the Just Climate ensemble, driven by the
changes in runoff and irrigation requirement, UWR increases for much of China (especially in
the north), Afghanistan and Pakistan, as well as northern India. For the Climate and Growth
median case, we find a fairly consistent increase across the region with only a few ASRs show-
ing no change. Essentially, this third ensemble appears to be a simple sum of the two above,
where, for example, in India, growth has larger effects in the south and climate in the north
resulting in a relatively evenly distributed stress across the country. UWR, which is based on
the ratio of consumption over demand, will behave this way (i.e. as a simple summation) when
the modeled basin management is not able to increase consumption even though demand
increases. This result implies that adaption or mitigation to water shortage will be a necessity
in the region. Appendix A shows the distribution of scenarios using the population-weighted
change in UWR and the example maps around specific points in the distribution using that
single metric.

Fig 26 shows series of maps for the WSI similar to that shown for UWR in Fig 24. Results
for the three ensembles are mapped for every ASR based on specified exceedances—10th, 50th,
and 90th percentiles. In the Just Growth ensemble we find that northern China and southern
India are most prone to increased stress caused by growth. And we see a similar pattern in the
Just Climate ensemble, although for India the climate effect is fairly evenly distributed.
Increases in stress are also prominent in the west, in Pakistan and Afghanistan. We see these
same patterns emerging, although more pronounced, in the final ensemble, Climate and

Fig 24. As in Fig 19, but for industrial water requirement shown for the 10th, median, and 90th percentiles for each ASR.

doi:10.1371/journal.pone.0150633.g024
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Growth. WSI, as apposed to UWR, does not change directly by changes in demand, but
responds to changes consumption and changes in water supply. So, if consumption cannot
increase by better reservoir management, WSI will respond only to changes in runoff. By com-
paring these results to the changes in runoff shown in Fig 12, we can see that for northern
China, as well as for Pakistan and Afghanistan, where runoff decreases are more substantial,
this appears to be the case. For much of India, however, these changes in WSI appear to be
driven by an increase in consumption rather than changes in runoff, and therefore the water
resources are further exploited by more efficient basin management.

3.5 Water Stress Frequency Distributions
Next, we show the frequency distributions of outcomes to qualify the consequences of the sce-
narios in terms of future risk. We select specific regions, first by political boundaries and sec-
ond by hydrologic basin boundaries, and calculate the aggregate water stress for 2041–2050
over the region, with ASR values weighted by population. As in the previous section, we com-
pare these WSI changes with the baseline scenario WSI. Recognizing that the baseline scenario
is only one of many possible traces of climate through time, we develop a baseline ensemble to
understand the range of water stress that results from the impact of climate sequences on water
availability. To do this, we use a multivariate k-nearest-neighbor bootstrap approach (as dis-
cussed in [39]) to develop this baseline ensemble of 500 members, each containing a 50-year

Fig 25. Exceedance changes in ASR UWR (%).Changes are based on the baseline (Fig 6) to the future scenarios averaged over 2041–2050 and shown
for the 10th, 50th, and 90th percentiles for each ASR.

doi:10.1371/journal.pone.0150633.g025
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time series of the required WSM climate-dependent input data including monthly values of
irrigation requirement, runoff, and reservoir evaporation. [39] shows that the multivariate k-
nearest-neighbor bootstrap approach has the advantage over simple bootstrapping in that it
maintains the lag-1 correlation as well as geospatial correlations. As constructed, the baseline

Fig 26. Exceedance changes in decadal averagedWSI (unitless). Changes are based on the baseline (Fig 7) to the future scenarios averaged over
2041–2050 and shown for the 10th, 50th, and 90th percentiles for each ASR.

doi:10.1371/journal.pone.0150633.g026

Fig 27. Map of major political regions showing the aggregate frequency distributions of water stress.

doi:10.1371/journal.pone.0150633.g027
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ensemble can be viewed as a statistically based emulation of the uncertainty in the WRS projec-
tion caused by the natural variability of climate–which is inherently unpredictable.

The distributions of the two stress indices for China, India, and Mainland Southeast Asia
(as shown in Fig 27) are shown in Fig 28, where a kernel smoothing approach is used to
approximate the shape of the distributions. These plots show characteristics of the distribu-
tions, e.g., mode, skewness and the nature of the distribution tails, all of which illustrate the
likelihoods associated with the respective impacts. The three future ensembles—Just Growth in
red, Just Climate in blue, and Climate and Growth in yellow—are shown as the difference from
the last decade of the baseline scenario value (2040–2050) and that of the future result. The
baseline ensemble distribution (in grey) shows the difference between the 50-year baseline sce-
nario mean and the last ten years of each baseline ensemble member. The baseline scenario-
mean value is also printed above each plot. We can thus compare the distributions from natural

Fig 28. Frequency distributions of changes in decadal averaged Unmet Water Requirement (UWR, left column) and water stress index (WSI, right
column) for 2041–2050 against the baseline result aggregated over major socio-economic regions (Fig 28) and weighted by population.Mean
baseline value shown above each figure. Results are shown for the Just Growth, Just Climate, and Climate and Growth ensemble scenarios. In addition, a
distribution for the Baseline result is also provided that depicts the range of UWR andWSI decadal-averaged changes that would result from internal
variability of the climate forcing (see text for details).

doi:10.1371/journal.pone.0150633.g028
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variability (the grey distribution) to the range of the future water stress ensembles to under-
stand the magnitude of the uncertainty derived from changes in climate, growth, or both. Note
that we remove the natural variability from the changes in these future WSIs by comparing
them with the baseline, which contains the same natural variability. This is an effect of using
the delta method, and allows us to focus on long-term mean changes, isolating the effect of the
climate change trend from that of natural variability in climate. In China, for UWR, both
growth and climate have adverse effects but climate is slightly stronger with a noticeable widen-
ing of the distribution, i.e. more climate uncertainty than growth. The Climate and Growth
ensemble is, as expected, worse but not simply an aggregate of the two. The noticeable differ-
ences for WSI are that the mode of growth is more potent that climate; however, climate shows
a noticeable tail on the side of high impact. In India, climate is less stress inducing than growth.
In fact, for WSI, there are a few scenarios projecting positive impacts. Growth has a more
adverse effect. We also see the long tail toward higher stress in the WSI plot although the maxi-
mum change in stress is not as high as for China. In Mainland Southeast Asia, both stress indi-
ces show a similar pattern to the distributions shown for India—likely from being in similar
latitudes. Note that the natural variability distributions are rarely wider than the distribution of
the future ensembles, but in some cases (e.g., WSI in Mainland Southeast Asia) future uncer-
tainty by the 2040s is close to the historical uncertainty.

Next, we aggregate by hydrologic basin (see Fig 29), again using population to give each
ASR a respective weight. These basins were chosen because their rivers cross country bound-
aries and could be a cause for political tension. As seen in Fig 30, in the Indus Basin, shared
mostly by India and Pakistan, there is considerable stress in the baseline case; climate and
growth both increase stress further, and few scenarios result in a stress decrease. In the Ganges
basin, climate and growth both increase stress for most of the scenarios; growth and climate
are both about equally potent. The Mekong and Brahmaputra basins both reside in wet cli-
mates with low storage basin-wide. These areas are also major producers of paddy rice, a water
intensive crop, which results in high UWR. In the Mekong, climate has about an equal chance
of either increasing or decreasing stress, and the growth effects are minor; in the Brahmaputra,
climate has a slightly negative, almost neutral effect, while growth is more extreme—especially
in terms of UWR changes.

3.6 Populations at Risk to IncreasedWater Stress
An analysis was performed to assess the population that is prone to water-stress exposure
under current conditions and future scenarios. The population of each ASR was assigned to

Fig 29. Map of major basins used to show the aggregate frequency distributions of water stress.

doi:10.1371/journal.pone.0150633.g029
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one of the water-stress classifications, using both UWR andWSI, based on the value of the
resulting water stress indicator. Note that in our model we are assuming that population
growth is constant by EPPA region, where each ASR grows proportionally to the baseline pop-
ulation. For UWR, a simple classification is used: Class 1 is less than 10%, class 2 is between
10% and 20%, classes 3, 4 and 5 are also set at increments of ten, and the final class, 6, is set to
values above 50%. We count the number of people in each UWR class for the Baseline scenario
and compare that to the same metric at 2050 from the three scenario ensembles (Just Climate,
Just Growth, and Climate and Growth). These results are shown in Fig 31.

Fig 30. Frequency distributions of changes in decadal averaged Unmet Water Requirement (UWR, left column) and water stress index (WSI, right
column) for 2041–2050 against the baseline result aggregated over selected basins (Fig 30) and weighted by population.Mean baseline value
shown above each figure. Results are shown for the Just Growth, Just Climate, and Climate and Growth ensemble scenarios. In addition, a distribution for
the Baseline result is also provided that depicts the range of UWR andWSI decadal-averaged changes that would result from internal variability of the climate
forcing (see text for details).

doi:10.1371/journal.pone.0150633.g030
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In this figure, note that the Just Climate ensemble has no population growth, so the differ-
ence between the Just Climate and the other two ensembles is largely attributed to the addi-
tional population (in the Just Growth and Climate and Growth scenarios). Also, note that the
Just Climate ensemble does not change much in the extreme classes: Class 1 and 6. The largest
effect of climate is to decrease population in Class 3 and increase in Class 4 (see Table 1), which
is a movement into a more severe water stress state. We see this movement in Just Growth as
well (Table 1), but here the unmet requirement is changing for many ASRs from Classes 2 and
3 into the next higher stress class (Classes 3 and 4, respectively). These ASRs are moving into a
higher UWR class because growth only increases UWR, as we have shown (Section 3.5). The
most striking change is the increase of population in Class 4 and 5, compared to the baseline,
for both the Just Growth and Climate and Growth ensembles. The increases in Class 6 are
largely attributed to population growth occurring within ASRs that are already at this high
stress level (Table 1); increases in Class 4 populations are largely attributed to the addition of
former Class 3 populations, due to water demand increases from growth (Table 1) or the com-
bined effects of growth and climate change on supply and demand changes (Table 1). An addi-
tional notable result is that there are very few instances of populations moving to decreased
stressed conditions, seen in a small fraction of cases for the Just Climate scenario in the 90th

percentile (Table 1).
For WSI, water-stress classifications are based on the aforementioned [38] study (Section

2.4):WSI< 0.3 is slightly exploited; 0.3�WSI� 0.6 is moderately exploited; 0.6�WSI� 1 is
heavily exploited; 1�WSI< 2 is overly exploited; andWSI� 2 is extremely exploited. The
strongest effect of the Just Climate scenario is to bring more populations currently living under
Moderately stressed conditions into Heavily water stressed environments by 2050 (Fig 32,
Table 2). Similar to the results seen for UWR, there are only a small number of cases, shown in
the 90th percentile, in which climate will move populations into less stressed WSI conditions.
The effect of Just Growth is consonant with the Just Climate result (Table 2), where a compara-
ble increase in population is taken fromModerately into Heavily stressed conditions.

Fig 31. Population exposed to water stress based on UWR classifications using the 2041–2050 mean.
Grey bars represent the number of people in each class in the baseline scenario (set to year-2000 value); the
box-and-whisker plots show the distributional characteristics of the three ensemble scenarios.

doi:10.1371/journal.pone.0150633.g031
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Combined, the Climate and Growth scenario places comparable populations fromModerately
stressed environments into Heavily stressed environments (Fig 32, Table 2). In doing so, the
Moderately stressed condition is the only class of WSI that contains a decrease in the median
total population (on the order of 200 million) at 2050 (compared to the Baseline condition).

We further aggregate these classifications to underscore the impacts of these scenarios on
the more severe water-stress conditions. We assign a threshold to both the UWR andWSI
measures, so an ASR may be classified as either stressed (over the threshold) or unstressed
(under the threshold). The developed aggregations are shown in Table 3. For UWR we use a
threshold value of 30% (reflecting at least 30% annual water requirements not met) and for
WSI we use a threshold value of 0.6 (must be at least in the Heavily stressed class). Overall, we
find no occurrences (in any member, among all scenarios) of a decrease in the total water-
stressed population by 2050. The effect of socio-economic growth is quite evident, as seen by
the median result of over 1 billion additional people exposed to “water-stressed” conditions by
2050. Additionally, in only 10% of the members will this result be below 850 million based on
either the UWR or WSI indicators. The Just Climate scenario impact is smaller than the others,
causing a median shift of about 13–16% population increase. The Just Growth scenario also
provides very comparable results between the UWR andWSI based thresholds—both out-
comes indicating that over 1 billion additional people by 2050 will become water-stressed due
to socioeconomic growth unconstrained by global actions to limit greenhouse gas concentra-
tions and autonomous adaptation. There is a small adverse effect to this result when the effects
of climate change are added (as indicated by the Climate and Growth result), but it only results

Table 1. Matrix of populations’ (in millions) exposure to water stress. Shaded gray cells show the population remaining in the UWR class relative to the
Baseline result. The off-diagonal cells denote population shifts by 2050 across the various UWR classes; population shifts between classes are depicted by
their location within the table matrix. Each cell provides the 10th [left, bracketed], 50th (center), and 90th [right, bracketed] percentile results.

Just Climate

From \ To Class-1 Class-2 Class-3 Class-4 Class-5 Class-6

Class-1 [165] 259 [341] [1] 84 [177]

Class-2 [212] 212 [212] [17] 17 [17]

Class-3 [0] 0 [16] [165] 288 [307] [451] 454 [576]

Class-4 [727] 727 [744] [219] 236 [236]

Class-5 [0] 0 [2] [440] 442 [442]

Class-6 [198] 198 [198]

Just Growth

From \ To Class-1 Class-2 Class-3 Class-4 Class-5 Class-6

Class-1 [214] 247 [280] [213] 241 [269]

Class-2 [211] 311 [367] [0] 49 [153]

Class-3 [362] 409 [448] [585] 689 [801]

Class-4 [800] 898 [1003] [237] 272 [308]

Class-5 [550] 664 [726] [0] 0 [178]

Class-6 [306] 347 [392]

Climate and Growth

From \ To Class-1 Class-2 Class-3 Class-4 Class-5 Class-6

Class-1 [204] 242 [277] [215] 246 [286]

Class-2 [172] 209 [313] [50] 160 [193]

Class-3 [161] 274 [422] [648] 808 [976]

Class-4 [788] 890 [998] [239] 272 [310]

Class-5 [426] 505 [632] [34 185 [259]

Class-6 [305] 348 [393]

doi:10.1371/journal.pone.0150633.t001
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in a ~1–3% increase in the population growth affected by socioeconomic changes. Overall, the
central tendency of the UWR andWSI based thresholds in the Climate and Growth scenario is
to flank (i.e. within ± 200 million) a future outcome that 1 billion additional people will be liv-
ing in regions under water stress.

Fig 32. Population exposed to water stress based onWSI classifications using the 2041–2050 mean.
Grey bars represent the number of people in each class in the baseline scenario (set to year-2000 value); the
box-and-whisker plots show the distributional characteristics of the three ensemble scenarios.

doi:10.1371/journal.pone.0150633.g032

Table 2. Matrix of populations’ (in millions) exposure to water stress. Shaded gray cells show the population remaining in theWSI class relative to the
Baseline result. The off-diagonal cells denote population shifts by 2050 across the variousWSI classes; population shifts between classes are depicted by
their location within the table matrix. Each cell provides the 10th [left, bracketed], 50th (center), and 90th [right, bracketed] percentile results.

Just Climate

From \ To Slightly Moderately Heavily Overly Extremely

Slightly [1249] 1296 [1378] [0] 82 [129]

Moderately [226] 313 [313] [395] 395 [482]

Heavily [89] 89 [89]

Overly [0] 0 [26] [535] 562 [562]

Extremely [0] 0 [122] [74] 196 [196]

Just Growth

From \ To Slightly Moderately Heavily Overly Extremely

Slightly [1531] 1713 [1875] [136] 177 [318]

Moderately [245] 329 [393] [637] 754 [872]

Heavily [14] 114 [133] [0] 25 [108]

Overly [538] 736 [813] [0] 0 [194]

Extremely [228] 254 [278]

Climate and Growth

From \ To Slightly Moderately Heavily Overly Extremely

Slightly [1534] 1693 [1882] [110] 180 [324]

Moderately [234] 313 [404] [624] 767 [901]

Heavily [11] 14 [125] [20] 117 [143]

Overly [526] 657 [801] [0] 1 [209]

Extremely [0] 0 [132] [117] 249 [276]

doi:10.1371/journal.pone.0150633.t002
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4. Discussion and Closing Remarks
This study has employed the IGSM-WRS framework aimed at assessing the fate of managed
water systems, depicted by 52 large sub-regions across Asia. A number of experiments were
performed to assess the isolated as well as combined effects of socioeconomic growth and
regional climate change out through the 2040s. With this large ensemble of projections, a fre-
quency distribution of impacts was developed that articulates the severity and likelihood of
water stress in this region of Asia. We find a variety of patterns across the region for changes in
surface-freshwater supply, and this results from a variety of influences in the hydroclimate (i.e.
runoff) as well as water requirements in agriculture, industry and municipality water needs.
We find that regions most vulnerable to changes in climate include much of China (especially
in the north), Pakistan and Afghanistan. Further, India, China and Mainland Southeast Asia
are all highly likely to experience significant changes in socioeconomically-driven water
requirements.

Some limitations and assumptions made within the framework for this particular experi-
mentation are notable. First, we model consumptive water requirement rather than withdrawal.
We do this because our sub-regions are large, and presumably will include substantial water
reuse within an ASR. Second, we keep irrigated areas constant by crop for all scenarios. In real-
ity, these changes respond to a variety of drivers, including local and global food prices, land
and water availability, and government subsidies. Estimating changes in irrigated area is a diffi-
cult task; however, we do plan to include these changes in an upcoming report, as they have the
potential for profound impact on future water stress. Third, the framework uses socioeconomic
drivers exogenously, therefore missing potentially important feedbacks (e.g., water limitations
could have an adverse effect on food or energy prices, which would likely cause shocks in the
economic system on a local or global scale, further affecting investments in water-related tech-
nology and infrastructure). The fourth limitation has to do with the treatment of uncertainties.
As discussed in the introduction, we do not address uncertainty outside of emissions driven by
economics, climate, population, and GDP growth. Lastly, this framework’s water management
simulation uses a single objective function with perfect foresight within a calendar year, consis-
tent priorities across all ASRs, and perfect cooperation within a river network. Furthermore,
we do not simulate hydropower generation in the representative reservoirs. Realistic water
management is done in a complicated, often inefficient fashion with varying knowledge about
next month’s water supply (e.g., water managers generally know historical averages). These
assumptions about water management allow us to have a water allocation scheme that is con-
sistent across ASR and scenario, providing a model environment that is not partial to regions
that are historically “better” water managers. Our scheme also adapts to changes in water sup-
ply and requirement more efficiently than a realistic system, likely providing a more optimistic
picture of water stress in the region. For example, water managers are typically challenged and
forced to make operational decisions based on imperfect information and forecasts, and

Table 3. Water-stressed population increase (in millions and percent). Based on a threshold of 10% for unmet requirement (UWR) and 0.6 for WSI.
Each cell provides the 10th percentile [left bracketed value], median (center in bold type), and 90th percentile [right bracketed value] results.

UWR > 30% [Baseline = 1604 / 55%] WSI > 0.6 [Baseline = 846 / 29%]

[10th] Median [90th] [10th] Median [90th]

Just Climate [451] 454 [576] / [15.4%] 15.5% [19.6%] [395] 395 [482] / [13.5%] 13.5% [16.4%]

Just Growth [1027] 1301 [1507] / [27.0%] 31.0% [34.0%] [866] 1055 [1231] / [22.7%] 25.5% [27.9%]

Climate and Growth [1105] 1393 [1694] / [29.1%] 33.5% [38.4%] [843] 1066 [1251] / [22.3%] 25.7% [28.6%]

doi:10.1371/journal.pone.0150633.t003

Uncertainty of Growth and Climate Change onWater Stress Risk in Asia

PLOS ONE | DOI:10.1371/journal.pone.0150633 March 30, 2016 30 / 33



hydropower needs may interfere with water allocation. These assumptions and limitations are
issues we plan to address in future studies.

Regardless, there are a number of significant results we have found in this study. For exam-
ple, by isolating socioeconomic growth from changes in climate, we find that the two have
characteristically different impacts on water stress. Industrial and municipal water require-
ments, driven by socioeconomic growth, are less significant in the baseline but will increase
considerably in the future. Alternatively, changes in climate can be significant in our current
system, but do not change as much (compared to growth) in the future relative to their baseline
value. Socioeconomic drivers on water requirements are, therefore, likely to play a larger role
in future management decisions than they do in the current system. When we assess potential
population increase in water stressed regions, we find it highly probable that many people who
live in moderately stressed conditions will live in heavily stressed conditions in the future. We
specifically find that increases in water-stressed populations will be about 1 billion in the
median case, more than doubling the baseline case (for WSI). These changes will likely require
more aggressive water policies and regulations in areas where water resource decisions have
been less tense historically. Without assertive water policies in these regions, water limitations
could be harmful to the health and well being of the people in these regions, as well as the
environment.

This research has shown the importance of Economic and Population growth driven water
demand uncertainty relative to climate change uncertainty facing water infrastructure invest-
ment planning to mid-century. The insights are valuable to policy makers and analysts working
on water infrastructure planning. These results do not necessarily imply an insurmountable
future for this region. Through climate mitigation, and perhaps most importantly, proper plan-
ning and financing of adaptive and protective measures for these anticipated shortages—based
on reliable information as to the effectiveness of certain strategies to avert the risks presented
above—these future water systems can be augmented to better ensure their resiliency and sus-
tainability. Addressing these options for the future, however, will require substantial research
and additional experimentation with integrative tools like the IGSM-WRS. Forthcoming stud-
ies will expand upon these experiments to quantify the effectiveness of climate mitigation poli-
cies and widespread adaptive measures such as enhanced storage, expansive water transfers,
water-use efficiencies, and reduced consumption via water mandates or changes in common
practice.
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