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Abstract
Species distribution modeling has been widely used in studying habitat relationships and for

conservation purposes. However, neglecting ecological knowledge about species, e.g.

their seasonal movements, and ignoring the proper environmental factors that can explain

key elements for species survival (shelter, food and water) increase model uncertainty. This

study exemplifies how these ecological gaps in species distribution modeling can be

addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia.

Emus cover a large area during the austral winter. However, their habitat shrinks during the

summer months. We show evidence of emu summer habitat shrinkage due to higher fire fre-

quency, and low water and food availability in northern regions. Our findings indicate that

emus prefer areas with higher vegetation productivity and low fire recurrence, while their

distribution is linked to an optimal intermediate (~0.12 m3 m-3) soil moisture range. We pro-

pose that the application of three geospatial data products derived from satellite remote

sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an

effective representation of emu general habitat requirements, and substantially improves

species distribution modeling and representation of the species’ ecological habitat niche

across Australia.

Introduction
A variety of satellite remote sensing derived global environmental data products have been
available for decades, with many offering observations suitable for a range of ecological applica-
tions [1]. Among these observational data records, vegetation greenness indices, including the
Normalized Difference Vegetation Index (NDVI) and enhanced vegetation index (EVI), pro-
vide an effective proxy for vegetation cover, terrestrial productivity and food availability, and
have been widely used to define species habitat relationships and for species distribution
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modelling [2–4]. The species distribution modelling framework based on Hutchinson’s (1957)
fundamental niche theory has been widely used to predict core species habitats and critical
requirements for survival by linking species presence-absence data with a set of explanatory
environmental variables. In these statistical models, the ecological knowledge about the species
and their habitat is critical for species distribution modeling [5,6]. In this regard, satellite
remote sensing observations can be used to fill the ecological gaps in species distribution
modelling by providing spatially continuous observations and environmental proxies for the
three basic criteria governing species survival: shelter, food and water, and their relative spatial
and temporal distributions.

Disturbance-related observations such as fire frequency can provide information about shel-
ter extent and quality influencing species distribution and survival, whereby areas with recent
disturbance or high fire frequency may have less suitable cover than other areas with lower fire
disturbance levels. However, wildfire is not always a limiting distribution factor and may even
promote species presence or abundance by enhancing available forage. In North America for
example, moose populations increase in early plant successional stages following fire distur-
bance [7]. Fire as a historical event [8] is interactive with climate and plays an important role
in ecosystem dynamics. Fire regimes in the landscape can affect climate [9,10], plant communi-
ties [11], food availability [12], and species abundance and distribution [13,14]. Therefore,
knowledge of species response to fire disturbance is critical for ecological management [15].
Australia is one of the most wildfire prone areas on the planet [16], and the associated fire dis-
turbance and recovery regimes exert a strong influence on regional habitat distributions and
migration patterns for many bird species [14]. However, only a limited number of studies in
Australia have explored the effect of fire and seasonal climate variations on bird distributions
(e.g. [14,17–19]).

Ecosystem productivity is directly linked to food availability for species [20]. Even though
vegetation greenness indices, such as the NDVI, are correlated with photosynthetic canopy
cover and vegetation productivity, the total productivity varies across the landscape based on
vegetation morphological characteristics and environmental conditions. Remote sensing based
vegetation productivity estimates can provide useful information regarding potential changes
in food availability for herbivores and can respond to environmental change [21,22].

Soil moisture and rainfall data can provide information regarding water availability for ani-
mals. Global spatially gridded rainfall data are available from the WorldClim database [23] and
have been extensively used for ecological studies (e.g. [3,22,23]). On the other hand, satellite
remote sensing based surface (<5 cm depth) soil moisture data records are available spanning
multiple decades (from 1978) as derived by multiple overlapping active and passive microwave
sensors [24–26]. These data provide consistent global information relating to potential water
availability for species that may have utility for modeling species distribution and associated
niche space.

In this study, we applied a set of global satellite remote sensing data records including the
Global Fire Emissions Database (GFED4) [27], the MOD17 GPP product [21], and a global
surface soil moisture data record [26,28,29] as proxies for critical species habitat requirements
within an empirical modeling framework to explain movement patterns for the emu (Dro-
maius novaehollandiae), a large native flightless bird species of Australia. Emus can be found
over a wide range of habitats and exhibit a large seasonal movement range across Australia
[30]. We explored the effect of fire frequency and food and water availability on emu presence,
and also tested the effectiveness of other satellite environmental data records as alternative
metrics representing food and water availability, including MODIS (MOD13C1 CMG) NDVI
[31], and Tropical Rainfall Measuring Mission (TRMM) rainfall data [32].

Remote Sensing Products Explain Emu Seasonal Movements in Australia

PLOS ONE | DOI:10.1371/journal.pone.0147285 January 22, 2016 2 / 11



Methods

Species Data
The emu has been categorized as a species of least concern on the International Union for Con-
servation of Nature (IUCN) red list [33]. Emus occupy a wide range of habitats in Australia
and can be found in savannas, grasslands and subtropical regions [34]. Emus also exhibit a
regionally extensive seasonal movement pattern that is reported to be a function of rainfall pat-
terns [30]. Because of their broad movement range, emus play a significant role in the seed dis-
persal of many Australian plant species [35,36]. We used 240 summer and winter species
occurrence records from the New Atlas of Australian Birds [37], where monthly spatial obser-
vation records from birdwatchers are available from 1998. The associated emu presence data
indicate that the geographic distribution of this species shrinks during the austral summer
(January) and increases to its broadest range in the austral winter (July) (Fig 1).

In order to investigate potential environmental factors influencing summer habitat reduction,
120 presence data points for the month of January were used for further analysis. Because emus
have large daily movement patters [39], pseudo-absence data were randomly sampled from out-
side of a 10 km radius window around each presence point to determine the relationship between
emu presence and associated habitat conditions defined from the satellite observational records.

Explanatory Variables
Explanatory variables were created to represent emu summer habitat characteristics (21 June—
21 September) from 2000–2010. We used GFED4 monthly burned area data with 0.25 degree
spatial resolution [27] to create fire frequency data. The GFED4 data are created using

Fig 1. The presence record of emu (Dromaius novaehollandiae) in January (summer) and July (winter)
in Australia reported from the Atlas of Australian Birds (Barrett et al., 2003) superimposed on a MODIS
MOD12Q1-UMD global land cover map [38] where the following vegetation classes each cover more
than one percent of the total area: EBF (Evergreen Broadleaf Forest), OSH (Open Shrubland), WSA
(Woody Savanna), SA (Savanna), GRA (Grassland), CRO (Cropland), and BAR (Barren).

doi:10.1371/journal.pone.0147285.g001
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ensemble satellite observations including MODIS (MCD 64A1) burned area, Tropical Rainfall
Measuring Mission (TRMM) and Visible and Infrared Scanner (VIRS) monthly active fire
observations, and Along-Track Scanning Radiometer (ATSR) data. The fire frequency data
show the number of times a pixel has been burned within the observational record, extending
from 2000–2010 for this study. The resulting fire frequency values range from 0 (no recorded
fire record) to 11 years, representing the highest fire frequency for the study record.

The Moderate Resolution Image Spectroradiometer (MODIS) MOD17 Gross Primary Pro-
ductivity (GPP) product [21,40] is based on the light use efficiency (LUE) concept [41], in
which plant production is linearly related to photosynthetically active radiation (PAR)
absorbed by the vegetation canopy (APAR), and the efficiency with which this solar radiant
energy is transformed into vegetation biomass, which varies according to plant functional type
and climate variability across ecosystems [42]. The MODIS MOD17 global operational GPP
data record extends from 2000 to present with 8-day temporal fidelity and 1-km spatial resolu-
tion compatible with MODIS global geographic projection tiles. However, here we used the
global mosaicked images with 0.05 degree spatial resolution (~ 5 km) from the MODIS
MOD17 A2 C5 product. The MOD17 product is created using MODIS derived fractional pho-
tosynthetic active radiation (FPAR) [43] in a light use efficiency modeling framework. The
8-day GPP data were disaggregated to a daily time step, and the average GPP for Austral winter
and summer months was determined from the 2000–2010 record.

The global soil moisture data record used for this study extends from November 1978 to
December 2010 and was created using merged and calibrated overlapping satellite active and
passive microwave sensor observations including SMMR, SSM/I, TMI, ASMR-E, AMI-WS,
and ASCAT [26,28,29]. The surface (<5cm depth) soil moisture record is available at a daily
time step and 0.25 degree spatial resolution in volumetric (m3 m-3) units. We used the data set
to derive average austral winter (JJA) and summer (DJF) soil moisture levels over the 2000–
2010 record for Australia. For the analysis, we only used the highest quality soil moisture data
with consistent agreement among all of the component sensor retrievals.

For spatial consistency, we resampled the fire frequency and soil moisture data to the same
0.05 degree spatial resolution (geographic projection) as the MODIS GPP data record using a
nearest-neighbor resampling technique (Fig 2).

Fig 2. Satellite remote sensing derived environmental variables used to explain emu summer habitat suitability, including soil moisture, gross
primary production (GPP) and fire frequency used as respective habitat suitability metrics for water availability, food supply and shelter
conditions.

doi:10.1371/journal.pone.0147285.g002
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The average austral summer NDVI was also derived over the domain using the MODIS
(MOD13C1 CMG) global monthly, 0.05 degree spatial resolution NDVI product for the 2000–
2010 record [31]. TRMM rainfall data were acquired at 3 hourly intervals and 0.25 degree spa-
tial resolution over the 11 year study record, and used to estimate mean austral summer precip-
itation over the domain. The rainfall data were resampled to a 0.05 degree spatial resolution
and geographic projection consistent with the other variables. Rainfall data processing was
conducted using Google Earth Engine (GEE) [44,45], which provides a web based platform
where multiple data sets can be acquired and analyzed in an efficient way using the Google
data servers.

Statistical Analysis
Environmental variables for predicting emu summer distribution were selected based on the
amount of variance explained and lowest Akaike information criterion (AIC) after checking
for co-linearity. Co-linearity in logistic regression models can lead to unreliable estimates of
the model coefficients. In this study, variables having less than 70% Pearson correlation
(Table A in S1 File) were considered for generalized additive models (GAM) [46] implemented
in the R programing environment [47]. We used the GAM with binomial family distribution
and logit link to estimate emu seasonal habitat pattern shifts between winter and summer
based on the survey presence location observations. The difference between the generalized lin-
ear model and GAM approach is that the GAM adds smoothed non-parametric functions
(here thin plate regression splines) to the parametric part of the generalized linear model
(GLM), and in this regard improves GLM performance [48]. We used linear functions for all
the variables except soil moisture and rainfall.

The habitat suitability model performance was assessed using a threshold independent mea-
sure of the Area Under the Curve (AUC) of the Receiver Operator Characteristic (ROC) plot
using the ROCR library [49] in R. The AUC is a dimensionless metric that varies between 0
and 1, where values close to 1 represent greater model accuracy. We used a 10-fold cross valida-
tion technique, setting aside 20% of the data for validation and estimating model parameters
with the remaining 80% of the observations. We repeated this procedure 10 times and derived
the ensemble mean of the predicted suitability map, and the average AUC of the test data
points. We classified the predictions based on the overall performance indicated by the rate of
true positive versus false positive predictions.

Results
The best GAM in explaining emu spatial distributions over the domain resulted from using fire
frequency, soil moisture and GPP as predictor variables. The resulting GAM showed an adjusted
R2 of 68.5% (p< 0.0001) and AIC of 122 with an average AUC of 98% (Fig A in S1 File). An
alternative GAM using TRMM rainfall and NDVI instead of soil moisture and GPP resulted in
slightly lower model R2 performance (64%) and higher AIC of 126 (Fig B in S1 File).

In the fitted model, soil moisture has a nonlinear relationship with the response variable on the
logit scale such that soil water content has a positive relationship with emu presence up to an inter-
mediate level of approximately 0.12 m3 m-3, while larger soil moisture values are associated with
reduced emu presence and degraded habitat suitability (Fig 3). These results indicate that emus
occupy a zone of optimal summer habitat conditions between relatively wet and dry regions.

As expected, GPP used as a proxy for food availability exhibited a positive relationship with
emu spatial abundance, with higher vegetation productivity associated with more favorable
habitat suitability. On the other hand, areas with greater fire frequency (higher probability of
fire occurrence) indicate lower habitat suitability and lower emu abundance (Fig 3).

Remote Sensing Products Explain Emu Seasonal Movements in Australia
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The resulting GAM based habitat suitability map (Fig 4) indicates the probability of emu
presence, ranging from unsuitable (0% probability of occurrence) to marginal (60%) and highly
suitable habitat and certain occurrence (100%); the suitability classification is based on the per-
formance object created by ROCR library in R so that all values below 60% probability of
occurrence are considered as areas of absence. These results indicate that the summer range for
the emu is limited to southern and eastern parts of Australia that tend to have higher vegetation
productivity, lower fire frequency and optimal soil moisture levels (Fig 5).

Fig 3. Partial response and residual plots from the fitted GAM using soil moisture, GPP, and fire frequency as explanatory variables for predicting
emu habitat distribution; shading denotes the 95% confidence interval associated with the model estimates, and partial residuals of the presence/
pseudo-absence observations are shown as points.

doi:10.1371/journal.pone.0147285.g003

Fig 4. Estimated potential summer habitat suitability map for emu ranging frommarginal (60%
probability of occurrence) to highly suitable habitats (100%).White areas represent non-suitable habitats
(<60% probability of occurrence), while purple circles denote emu summer presence points.

doi:10.1371/journal.pone.0147285.g004
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Discussion
The results of this study are consistent with previous reports that emus avoid areas with rela-
tively high fire frequency [14]. Greater density of summer emu presence in the southern part of
the region can be explained by differences in the environmental variables between summer and
winter seasons (Fig 5), which suggests that emus optimize their niche conditions during the
dry season by moving into more favorable habitats in southern Australia with greater potential
food availability (GPP), lower large wildfire risk and greater water availability. On the other
hand, during the summer, northern Australia becomes less suitable as the land is drier with less
food availability, and greater fire occurrence.

Species response to fire regimes is difficult to measure because fire is affected by many envi-
ronmental factors. However, our results indicate that the satellite based fire frequency data, as
an indicator of ecosystem susceptibility to fire, is a useful index for representing fire related dis-
turbance effects on emu populations.

A key component of habitat modelling is selecting the most important environmental fac-
tors that can provide the most information about species distributions. Most of the studies in
the context of species distribution modeling view habitat as a stable part of the ecosystem by
selecting average annual values of rather long term climatic variables. However, in Australia
and other regions with large seasonal climate variations, many species have migratory dispersal
patterns, and seek to avoid environmental restrictions by relocating to more suitable habitats.
Many satellite environmental data records are available with potential utility for mapping and
monitoring regional habitat suitability and seasonal dynamics, and associated niches for a
range of potential species. Many of these data records provide consistent observations and fre-
quent temporal coverage suitable for modeling species niche space dynamics as a result of sea-
sonal movements, which has previously been neglected in species distribution modelling.
Selection of environmental variables should be considered in relation to major species niche
requirements, including food supply, shelter and available water requirements. Moreover,
other satellite data, including vegetation biomass and open water inundation dynamics from
satellite microwave remote sensing [50, 51]http://freezethaw.ntsg.umt.edu/, have potential to
be used for modeling species seasonal habitat dynamics. However, the relatively coarse spatial
resolution of many global satellite data records may limit their utility for species with small
scale movement patterns or a narrow niche space. Other than the environmental variables,

Fig 5. The difference between average winter (July) and austral summer (January) conditions for soil moisture, GPP, and fire frequency (years)
defined from the 2000–2010 satellite records.Winter reduction in soil moisture in northern Australia coincides with lower productivity and higher fire
frequency in those regions.

doi:10.1371/journal.pone.0147285.g005
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collecting species locality points that account for dynamic seasonal changes in species migra-
tory distributions can address uncertainties in habitat suitability maps.

One of the limitations of this study was our use of mean seasonal climate attributes and tem-
porally limited emu observational data to define species habitat and movement patterns. Cli-
mate variability is dynamic and superimposed on longer-term climate trends that were not
addressed in this study. Improved regional monitoring of emu populations and locations
would allow for better assessment of how populations may respond to inter-annual climate
variability and longer-term climate trends.

The restricted extent of summer suitable habitats for emu has implications for understand-
ing the potential effect of projected climate change on this species. The Millennium Ecosystem
Assessment (2005) documents climate change as the largest forthcoming threat to biodiversity
across most global biomes. Apart from the direct effect of climate on species, projected regional
climate trends could change suitable ranges and migratory patterns for emu and other species
[52]. The majority of global climate models represented in the fifth assessment of the Intergov-
ernmental Panel on Climate Change (IPCC) predict warmer and drier conditions for Austra-
lian rangelands [53]. Our results indicate that these conditions could promote widespread loss
of suitable habitats and niche space for emu, particularly during the austral summer season,
with potential restrictions on seasonal habitat availability. Moreover, potential changes in emu
habitat and populations could affect the regional ecosystem, as emu play a significant role in
seed dispersal for many plant species in Australia [54]. The proposed data and modeling
framework can be applied for other regions and species for better understanding and estima-
tion of species occurrence and habitat suitability.

Supporting Information
S1 File. Supporting information including the Pearson correlation values between initial
environmental variables (Table A). The Receiver Operator Characteristic (ROC) curve for 10
model runs (Fig A). Partial response and residuals of the GAM fit (Fig B).
(DOCX)
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