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Abstract
This paper proposes a method to detect corresponding vertex pairs between planar tessel-

lation datasets. Applying an agglomerative hierarchical co-clustering, the method finds geo-

metrically corresponding cell-set pairs from which corresponding vertex pairs are detected.

Then, the map transformation is performed with the vertex pairs. Since these pairs are inde-

pendently detected for each corresponding cell-set pairs, the method presents improved

matching performance regardless of locally uneven positional discrepancies between data-

set. The proposed method was applied to complicated synthetic cell datasets assumed as a

cadastral map and a topographical map, and showed an improved result with the F-mea-

sures of 0.84 comparing to a previous matching method with the F-measure of 0.48.

Introduction
Map conflation of spatial datasets from different mapping agencies usually encounters locally
uneven positional discrepancies between corresponding objects of the datasets. To address
these discrepancies, corresponding point pairs are necessary to align one dataset with another.
In general, given a point in one dataset, several candidate points in another dataset within a dis-
tance threshold are evaluated with similarity measures such as distance, and a single point with
the highest similarity is chosen as the corresponding point [1]. However, these similarities are
easily affected by the aforementioned discrepancies. Thus, a transformation model, such as an
affine or a rigid model, is applied to explain the locally auto-correlated positional discrepancies
of each corresponding polygon object pair [1–5].

To find the above object pairs, intersection analysis has been applied which works well
when the objects to be matched are sufficiently large and isolated each other within each data-
set such as building objects. This is because the positional discrepancies do not significantly
affect the objects’ intersection relations. Meanwhile, when the datasets are planar tessellations,
the above analysis presents many erroneous intersections between cells of each tessellation.
This is because the cells are mutually exclusive and collectively exhaustive, thus a cell in one
dataset can significantly co-intersect cells in another dataset which represent different real-
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world entities [4]. Moreover, if the datasets are constructed by different mapping agencies with
their own representation rules, there needs to find M:N corresponding cell-set pairs (CCPs).
Considering the aforementioned erroneous intersections and complicated M:N corresponding
cell-set pairs, detecting CCP with a conventional object intersection analysis is not suitable for
planar tessellation datasets. Thus detecting corresponding vertex pairs (CVPs) also becomes a
complicated problem.

To address the above problem, we apply the idea of object intersection-based agglomerative
hierarchical co-clustering [6]. It represented polygon objects of two datasets and their intersec-
tion degrees as the nodes and edge weights of a bipartite graph, respectively, and searched
object clusters by agglomerative hierarchical clustering of the nodes according to the edge
weights. Then, a candidate object-set pair is obtained by dividing one object cluster into two
object-sets according to the datasets to which the objects belong. Among these object-set pairs,
the pairs whose shape similarities are larger than a threshold are chosen for corresponding
object-set pairs. The above agglomerative clustering and evaluation approach is similar to the
buffer growing algorithm of [7] which iteratively expands an edge-set pair by one segment
from either of two networks until a corresponding edge-set pair is obtained. By applying this
clustering analysis to cells of planar tessellation datasets, each tessellation is divided into cell-
sets, and then CVPs are independently detected from each CCP. Moreover, due to the cluster-
ing property, CCPs are obtained in a hierarchical structure. Thus, given a CCP, its super-CCP
which is made by merging the CCP’s neighbouring CCPs, can be also used to detect CVPs.
However, initial cell intersection degrees are affected by the discrepancies. To address this
problem, the above CVPs detection and map transformation with the CVPs are iterated until a
termination condition. Through these iterated matching and transformation processes, the
locally uneven positional discrepancies can be gradually reduced, and thus the datasets are
aligned. Then final CVPs are obtained as nearest vertex pairs within a tolerance distance.

RelatedWorks
Many studies proposed two-phase approaches which detects corresponding object pairs, and
then separately detects corresponding object pairs from each object pair with point set match-
ing. Gösseln and Sester [3] and Butenuth et al. [2] applied the ICP algorithm to vertices
extracted from contours of corresponding objects. Recently, Huh et al. [1,4] and Wang et al.
[5] applied string matching methods to the contours instead of point set matching. Because of
separate corresponding point pair detections for corresponding object pairs, these methods can
be robust to locally uneven positional discrepancies between datasets [1].

Most of the above methods assumed 1:1 corresponding object pairs and a few studies pro-
posed methods to detect M:N corresponding object-set pairs. Bel Hadj Ali [8] proposed a
graph-connectivity-based method to integrate building datasets. He represented building
objects and their intersection relationships between the datasets as nodes and edges of a bipar-
tite graph, respectively. Through connectivity analysis of the nodes, the object clusters and
their corresponding building object-set pairs can be obtained. However, this method cannot
resolve erroneous intersections caused by the positional discrepancies. To address this prob-
lem, Bel Hadj Ali [8] applied a post-processing which repeatedly removes or adds one polygon
object to a corresponding object-set pairs until the highest shape similarity is obtained. Mean-
while, Huh et al. [4] applied an indeterminate boundary model. Similar to Bel Hadj Ali [8],
they connected the nodes only when the interior objects of original objects intersect each other
so that object intersections can be robust to the discrepancies within a tolerance distance.

However, these methods are not proper for planar tessellation datasets. In case of CCPs
with many small cells, the post-processing of Bel Hadj Ali [8] suffers from computational
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expense. Moreover, under the condition of locally uneven positional discrepancies between
datasets, these small cells in one dataset can co-intersect substantially different cell-sets in
another dataset and present erroneous large CCPs [1].

Proposed Method
In this study, CCPs between two planar tessellation datasets are found with agglomerative hier-
archical co-clustering and CVPs are detected for each CCP as shown in Fig 1. Comparing to
the previous methods of Bel Hadj Ali [8] and Huh et al. [4] which treated the cell intersections
between datasets as Boolean relations of 0 or 1, intersection degrees between 0 and 1 are
applied (Step 1 in Fig 1). Then, the proposed method converts the cell intersection degrees into
object proximities in a geometric space using a Laplacian graph embedding technique [6] (Step
2 in Fig 1). This is similar to the multidimensional scaling analysis of Mardia et al. [9] which
estimated the two dimensional spatial configuration of some British cities’ locations from the
road distances between the cities. Meanwhile, in this study, the cells that intersect each other
with higher degrees have closer coordinates and those with lower degrees have more distant
coordinates. With the coordinates of the embedded cells, cell clusters can be identified with a
conventional agglomerative hierarchical clustering method (Step 3 in Fig 1). Then, each of the
cell clusters is divided into two cell-sets according to the datasets to which the cells belong and
evaluated with a matching criterion. CVPs for each CCP are detected with the ICP algorithm
(Step 4 in Fig 1). However, the cell intersection degrees are affected by the positional discrepan-
cies problem. To address this problem, the above CVP detection and a map transformation
with the CVPs (Step 5 in Fig 1) are iterated until a termination condition. Because the datasets
are gradually aligned though the iteration, final CVPs are obtained as nearest vertex pairs
within a tolerance distance.

The detailed steps are presented in the following sections.

Measurement of cell intersection degree
To detect non-1:1 CCPs which stand for 1:N CCPs and M:N CCPs, it is necessary to find the
part-and-whole relationships of two cells between datasets [10, 11]. After a pre-processing to
align the coordinate systems of datasets, the degree of this relationship is measured by Eq (1) as
the ratio of the intersection area between cells of two datasets to the area of a smaller cell.

wi;j ¼
Area ðai \ bjÞ

min ðArea ðai Þ ; Area ðbjÞÞ
ð1Þ

where ai and bj represent cells in datasets A and B, respectively.
These measures are represented by as a matrixW that has a size of n×m, where n andm are

the number of cells in datasets A and B, respectively. Mathematically, the following Laplacian
graph embedding technique assumes a symmetrical matrix of input data. However, the cell
intersection degrees are measured between datasets A and B with n andm number of cells,
respectively. Thus the matrixW of size of n×m is alternatively represented as Eq (2) to satisfy
the assumption as shown in Fig 1(a) [12].

W 0 ¼
0

WT

W

0

" #
ð2Þ
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Fig 1. The five steps of the proposedmethod to find corresponding cell-set pairs and their corresponding vertex pairs between dataset
A and B. The proposedmethod co-clusters cells of planar tessellation datasets according to the cells’ intersection degrees and evaluates cell
clusters whether they are geometrically corresponding cell-set pairs. Then corresponding vertex pairs are detected from these cell-set pairs and
used for map transformation to reduce positional discrepancies between datasets. These matching and transformation processes are iterated
until a termination condition.

doi:10.1371/journal.pone.0157913.g001
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Laplacian graph embedding of cell intersection degree
Given a cell intersection degree wk,l inW0, the d-dimensional coordinate vectors of cells xk and
xl are obtained through the minimization of Eq (3)’s left term [13,14]. The minimization
means that the cells with higher intersection degrees have close coordinates, whereas those
with lower intersection degrees have distant coordinates as shown in Fig 1b. Therefore, cluster-
ing analysis of these coordinate vectors presents coherently co-intersected cell clusters between
datasets.

1

2

XN
k¼1

XN
l¼1

kxk � xlk 2 wk;l ¼ trace ðXTLXÞ ð3Þ

where N is the total number of cells (N = n +m), L is the Laplacian matrix ofW0 such that
L = D −W0, D is the diagonal matrix such that D(k,k) = ∑k 6¼lW0(k,l) and X is the coordinate
matrix such that [x(1)|� � �|x(d)]. Here, the entries of column vector x(p) are coordinates of cells in
the pth dimensional space such that x(p) = [x1

(p),� � �,xN(p)]T. Thus, xk corresponds to the kth row
of X because xk

(p) is the coordinate of the kth cell in the pth dimensional space.
The left term of Eq (3) can be represented as the matrix formulation of right term of Eq

(3). Thus the solution to the minimization problem {x(p)|p = 1,� � �d} is obtained by the eigen-
vectors of L X = λ X corresponding to the eigenvalue {λ(p)|p = 1,� � �d} under the condition
0 = λ(0)<λ(1)�� � ��λ(p)�� � ��λ(d) [13,14].

However, the eigenproblem assumes a constraint of XT X = I [14], which results in normal-
ised coordinate vectors x(p) in each dimensional space. Thus, the eigenvectors need to be scaled
according to each dimension’s relative importance. Huh et al. [6] simply determined the coor-
dinate vector of a cell as corresponding row of X according to Dhillon [15]. However, impor-
tance of each embedding space are not same each other [16]. Sameh and Wisniewski [17]
proved that the minimum value of trace(XTLX) equals the sum of the eigenvalues as shown in
Eq (4).

min trace ðXTLXÞ ¼
Xd
p¼1

l ðpÞ ð4Þ

Due to Eq (4), we treat λ(p) as the amount of error variance in the pth dimensional embed-

ding space. Thus, in clustering, it is appropriate to apply more weight to j xðpÞk � xðpÞl j than to

j xðpþ1Þ
k � xðpþ1Þ

l j because λ(p) � λ(p+1). Therefore, in this study, xk is determined as kth row of
X0 in Eq (5) [16].

X 0 ¼ xð1Þffiffiffiffiffi
l1

p ; � � � ; x
ðdÞffiffiffiffiffi
ld

p
" #

ð5Þ

where X0 is a scaled d-dimensional embedding coordinates matrix. Because of Eq (2), the
embedding coordinates of the ith cell of dataset A are obtained by the ith row of X0, and those of
the jth cell of dataset B are obtained by the (n+j)th row of X0.

Now, the dimensionality d needs to be determined. As the size of the original matrixW is n
bym, its full rank is min (n,m) [15]. Thus, it is determined by Eq (6).

d ¼ min ðn; mÞ ð6Þ
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Agglomerative hierarchical clustering and evaluation of candidates
Among diverse clustering methods, an agglomerative hierarchical clustering is chosen because
it expands initial cells one by one cell and searches CCPs. This process is similar to the buffer
growing algorithm [7] as previously mentioned. Fig 2 presents a pseudo-code of the agglomera-
tive hierarchical clustering and evaluation of candidate CCPs. Starting from initial cell cluster-
ing, the two most similar cell clusters Ca and Cb are identified and merged into one super-cell
(cluster Ct) as shown in Fig 1c. Now, new clustering is obtained by removing the two cell clus-
ters Ca and Cb and inserting the super-cell cluster Ct. This super-cell cluster is also inserted
into a set of candidate cell clusters (M). These steps are repeated until all cells are merged into a
single cell cluster.

To apply this clustering [18], the distance of two clusters D(Cp, Cq) needs to be measured.
This distance is measured by the averaged distance of embedding coordinate vectors in the two
clusters as shown in Eq (7) [19].

D ðCp; CqÞ ¼ 1

jCpj jCqj
X
a2Cp

X
b2Cq

dðxpa ; xqbÞ ð7Þ

where Cp and Cq are the pth and qth clusters, respectively, d(�) is the Euclidean distance func-
tion, |�| is the number of cells, and xpa, x

q
b are embedding coordinate vectors of the ath cell of Cp

and the bth cell of Cq, respectively.

ICP algorithm to detect corresponding vertex pairs
Given the cluster set M, each cell cluster is divided into two cell-sets according to their datasets,
and their shape similarities are evaluated by the criterion of Eq (8) as shown in Fig 1d. Among
the candidate CCPs obtained from the cell clusters, those with an S1(A

l, Bl) larger than a thresh-
old Th1 are chosen for the CCPs.

S1 ðAl ; Bl Þ ¼ MðAlÞ \ f CðMðBl Þ Þ
MðAlÞ [ f CðMðBl Þ Þ � Th1 ð8Þ

where Al ¼ f al1; � � � ; al jAl jg and Bl ¼ f bl1; � � � ; bl jBl jg are two cell-sets from the lth cluster Cl,

andM and fc present the functions that aggregate the disjointed cells into one super-cell and
align the centroids of the two cell-sets Al and Bl, respectively.

Each cell-set of a CCP is aggregated into super-cells, and two vertex sets are extracted from
the boundary edges of the each super-cell. Then the ICP algorithm [19] with a 6-parameter
affine transformation model is applied to detect CVPs. This algorithm finds the closest vertex
in one vertex set for each vertex in the other one, and then estimates a transformation model
that best aligns the two vertex sets. This correspondence and transformation analysis is
repeated until a termination condition. The original ICP algorithm only considers Euclidean
distance because only coordinates are possible feature for the correspondence analysis. Mean-
while, the vertices in this study are vertices on the boundary edges of a super-cell. Thus, the
coordinates and interior angle of a vertex can be used for the correspondence analysis as
shown in Fig 3.

In this figure, when only closeness between coordinates is used to find CVPs, (v(i), v(j)),
(v(i+1), v(j+1)) and (v(i+2), v(j+2)) would be CVPs. However, the coordinates of v(i+1) and v(j+1)
and the interior angles of v(i+2) and v(j+2) are too different each other though they are the closest
pairs. To reject such erroneous pairs, we apply the distance and angle difference conditions of
Eq (9).

dðvðiÞ; vðjÞÞ � Th 2 and j yvðiÞ � yvðjÞ j � Th 3 ð9Þ
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where d(v(i), v(j)) is the Euclidean distance (m) between v(i) and v(j), and θv(i) and θv(j) are the
interior angles (degree) of v(i) and v(j), respectively.

As the proposed method detects CCPs according to the hierarchical clustering, one vertex
can be matched to several vertices of the other dataset. This is because the ICP algorithm is
independently applied to each CCP. For example, cells 6 and 12 in Fig 1a constitute three
CCPs of {5,6}:{10,11,12}, {2,3,4,5,6}:{8,9,10,11,12} and {1,2,3,4,5,6}:{7,8,9,10,11,12} according
to the clustering result in Fig 1c. When the shapes of the cells’ bottom right corners are compli-
cated, the corner’s detected CVPs for the three CCPs can be different. In this case, the final
CVP of the corners is determined as the most frequently detected pairs. If more than one pairs
are detected with the same largest frequency, the shortest pair is chosen for the final CVP.

Map transformation with corresponding vertex pairs
Since the cell intersection degrees in Step 1 are affected by the positional discrepancy problem,
erroneous CCPs can be obtained from the initial clustering result. To address this problem,
we iterate the above CVP detection and a map transformation until a termination condition.
Convectional affine or rigid transformation is not appropriate because their transformation
averages local discrepancies equally over the entire coverage [20]. Thus we choose the
smoothed thin plate spline transformation as shown in Eq (10) because of its ability to explain
the global and local discrepancies [21].

f ðx ; yÞ ¼ a1 þ ax x þ ay y þ
X P

k¼1
wk Uð j ðxk ; ykÞ � ð x ; y Þ j Þ ð10Þ

Fig 2. The pseudo-code of clusteringmethod.

doi:10.1371/journal.pone.0157913.g002
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where (xk, yk) is the coordinates of the k
th CVP in the target dataset, P is the number of CVPs,

U(r) is a radial function defined as r2logr2 where r is Euclidean distance between (xk, yk) and
(x, y) as |(xk, yk)−(x, y)|. a1, ax, ay, wk are the transformation coefficients obtained through the
minimization of Eq (11) [21].

Eðf Þ ¼
Xp

k¼1
jðxk ; ykÞ � f ðxk ; ykÞj2 þ l

ð ð
@2f
@ x2

� �2

þ @2f
@ x @ y

� �2

þ @2f
@ y2

� �2
" #

ð11Þ

This minimization problem can be resolved by applying the least square method to Eq (12)
given CVPs in the form of f(xk, yk) = vk = (xk0, yk0). Now, when λ is set to 0, the transformation
function f exactly aligns the CVPs, whereas λ is set toward infinity, the function approach a
hyperplane which is the least square fit of the CVPs [21]. The optimal value for λ can be
obtained by the generalized cross validation method. However, it required significant computa-
tional burden. Thus, in this study, λ is heuristically set to the average entry value of K asX

i;j

ki;j

 !
=ðsize ðKÞÞ2.

K þ l I P

PT 0

" #
w

a

" #
¼ v

0

" #
ð12Þ

where K is a matrix whose entries are determined as ki,j = U(|(xi, yi) − (xj, yj)|), P is a matrix
whose kth row is (1, xk, yk), w and a are column vectors formed from wi and ai, respectively.

Fig 3. Vertex matching criteria. Vertices (v) and their interior angles (θ) of boundaries of super-cells in dataset A and B with distance and
angle difference threshold.

doi:10.1371/journal.pone.0157913.g003
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Termination condition of iteration and final vertex matching
The iteration is terminated when the change ratio of the RMSE (m) of the CVPs is not mean-
ingful. This stable condition is determined by Eq (13).

RMSE i � RMSEi�1j j.
RMSE i

� Th 4 and RMSE i � Th 5 ð13Þ

where RMSEi is the RMSE of the CVPs detected at the ith iteration.
Now the final CVPs are obtained as nearest vertex pairs between aligned two datasets. With

the same idea of the distance condition of Eq (9), a tolerance distance is applied. As the 99%
confidential interval of previously detected CVPs’ RMSE, the tolerance distance is set to 2.54
RMSEi.

Results and Discussion

Experimental data
The proposed method was applied to two synthetic cell datasets assuming cadastral topograph-
ical maps (Fig 4). In general, the topographical map is the national base map with a high spatial
quality. In the other hand, the cadastral map is created by joining and digitizing each legacy
parcel-oriented map, which results in erratic and low spatial quality. Thus, the proposed
method to detect the CVPs between the two maps can be an effective method to improve the
spatial quality of the cadastral map. The topographical map has categorical layers such as trans-
portation, building, hydrology, administration, elevation. However, the cadastral map is only
related to land management, not the facilities over the ground. Thus, the layers of transporta-
tion and administration are chosen and spatially joined which makes the most area of the
experimental topographical map has road and block cells as shown in dataset 2 of Fig 4.

The proposed method has five thresholds as shown in Table 1. Th1 controls the cell-set
matching in terms of the shape similarity as shown in Eq (8). Th2 and Th3 impose the distance
and angle constraints for CVPs as shown in Eq (9). Finally, Th4 and Th5 control the termina-
tion condition for the matching and transformation iteration.

Among these thresholds, Th1, Th2 and Th3 should be determined as feasible lower or upper
limits of the observed shape similarities of CCPs, distances and angle differences of CVPs in
the training site. We applied the boxplot method [22] to training datasets of the central urban
area of Suwon, Korea in [4]. In Fig 5, the bottom and top of a box represent the first quartile
(Q1) and third quartile (Q3), and the band inside the box represent the median (Q2) of the
observed geometries in the training site. Then, the upper and lower limits are determined as
Eqs (14) and (15), respectively. In this study, Th1 is set as the lower limit of observed shape sim-
ilarities of CCPs, and Th2 and Th3 as the upper limits of observed distances and angle differ-
ences of CVPs.

UL ¼ max x j x < Q 3 þ 1:5 � ðQ 3 � Q 1Þf g ð14Þ

LL ¼ min x j x > Q 1 � 1:5 � ðQ 3 � Q 1Þf g ð15Þ

where x is an observed geometry in the training site. According to the above method as shown
in Fig 5, the 3 thresholds were determined as 0.83, 5.8 (m) and 10.2 (degree), respectively.
While, Th4 and Th5 were determined among several candidate values based on experimental
results.
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Results and accuracy assessment
Similar to Fig 1c, the dendrogram of the first agglomerative hierarchical clustering of Fig 4 is
obtained as Fig 6a. A dendrogram is a tree diagram in which the bottom row of nodes repre-
sents the individual cells of the two maps, and the remaining nodes represent the merging of
their sub-nodes. Each cell cluster that corresponds to these nodes is divided into candidate cor-
responding cell-sets. Among these candidate pairs in Fig 6, five pairs (C1, C2, C3, C4 and C5)
that satisfy the matching criteria are chosen for example. Due to the characteristics of this hier-
archical clustering of the proposed method, CVPs of super-CCPs (e.g., C4) as well as those of
sub-CCPs (e.g., C2) are obtained independently. This makes the proposed method choose reli-
able CVPs among many candidate CVPs independently detected from each CCP.

Table 2 shows RMSE of CVPs and its change ration at the ith iteration. According to the ter-
minal condition of Eq (13), the vertices of transformed the dataset 1 at the 5th iteration are
compared to those of the dataset 2 with the tolerance distance of 3.747 m (2.54 � 1.475m).

Fig 7 compares three cases of the detected CVPs by applying the ICP algorithm with the

same conditions of Eq (9). Huh et al. [4] shrunk all cells of the maps by Th 2=
ffiffiffi
2

p
, and then

searched connected cell-sets along the shrunk cells’ intersection relationship. However, Huh
et al. [4] assumed cells whose sizes are sufficiently larger than the shrinking tolerance. Thus,
given narrow street cells such as Fig 4, they can be collapsed and not be used for constituting

Fig 4. Two synthetic cell datasets for experiment. S1 and S2 Datasets are assumed as a cadastral map and a topographical
map, respectively (Printed under a CC BY 4.0 license, with permission from Spatial Informatics & Systems Lab., Seoul National
Univ.).

doi:10.1371/journal.pone.0157913.g004

Table 1. The thresholds of the proposedmethod.

Th1 Th2 Th3 Th4 Th5

0.83 5.8 (m) 10.2 (degree) 0.2 1.5 (m)

doi:10.1371/journal.pone.0157913.t001
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CCPs. To prevent this problem in this study, a cell’s centreline is alternatively used for its
shrunk cell. Then CPRs and their CVPs are detected similar to the proposed method.

These cases show the effect of reducing the uneven positional discrepancies by the iterative
matching and transformation process of the proposed method. In the first case, the previous
and the proposed methods detect seven and nine CVPs, respectively. All the CVPs connect
proper positions between two maps except one common CVP at the right bottom area of Fig
7a and 7b. The proposed method find two more CVPs because the proposed method’s iterative
matching and transformation process gradually reduces the aforementioned discrepancies, and
thus makes the corresponding geometries between the maps closer and more similar each
other as shown in Fig 7c. In the second case, the bottom CVP in Fig 7d connects vertices from
different cells; meanwhile the proposed method finds proper ones as shown in Fig 7e. This is
because the narrow street cell bridges upper and bottom block cells and presents erroneously a
large CCP of Huh et al. [4]. Thus CVPs along the narrow street cannot be properly detected.
This problem also occurs in the third case as shown in Fig 7g. However, the proposed method
detects proper ones as shown in Fig 7e and 7h because the both maps are well locally aligned as
shown in Fig 7f and 7i.

To statistically compare the performance of the proposed method with that of the ICP algo-
rithm, we used three types of measures: precision, recall and Fmeasure (Eq 16).

Fmeasure ¼ 2� precision � recall
precision þ recall

ð16Þ

where precision is the ratio of the number of true CVP detections to that of all of the detected
CVPs and recall is the ratio of the number of true CVP detections to that of the manually
detected reference pairs. We applied the two methods for the test site of Fig 4. As shown in
Table 3, the precision and recall of the proposed method were 0.85 and 0.82, respectively; those
of the ICP algorithm were 0.63 and 0.38, respectively. Thus, the Fmeasures of the two methods
were 0.84 and 0.48, respectively. The precisions of the both methods were similar each other,
while the recall of the proposed method was higher. This means that the proposed method
detects more CVPs than the previous method with similar probability of false detection as
shown in Fig 7. This improvement was obtained through the proposed method’s iterative CCP
and CVP matching and transformation process which makes the corresponding geometries

Fig 5. Thresholds training of the proposedmethod. The results of boxplot method to obtain the proposedmethod’s three thresholds. Th1(a), Th2(b),
Th3(c) frommanually chosen CCPs and CVPs in the training site in [4].

doi:10.1371/journal.pone.0157913.g005
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between the maps closer and more similar each other. The CCP detection is a local bottom-up
search which makes the detection insensitive to the uneven positional discrepancies. Moreover,
CCPs have a hierarchical structure which means that CVPs of super-CCPs as well as those of
sub-CCPs are obtained independently. Thus, more accurate and plausible ones can be chosen
from these abundant candidate CVPs, which leads to an improvement for CVP detection.

Fig 6. Agglomerative hierarchical co-clustering result of the synthetic datasets. Five detected CCPs in Fig 6 and the dendrogram of
the first agglomerative hierarchical clustering (a) and the CCPs’ cell-sets in the dataset 1 (b) and dataset 2 (c) (Printed under a CC BY 4.0
license, with permission from Spatial Informatics & Systems Lab., Seoul National Univ.).

doi:10.1371/journal.pone.0157913.g006
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Conclusions
The rapid development of location-based services on web portals and mobile devices, has led
diverse organisations to construct spatial datasets with their own data acquisition methods and
spatial quality standards. To conflate these datasets, CVPs need to be detected to reduce the
positional discrepancies. However, given complicated M:N cell-set pairs and uneven positional
discrepancies between cell datasets, a new method to detect abundant and accurate CVPs is
necessary.

To address this problem, the proposed method applies agglomerative hierarchical co-clus-
tering to detect CCPs, and then detect CVPs with the ICP algorithm for each CCP. The basic
idea of the proposed method is similar to the buffer growing algorithm because the both meth-
ods iteratively expand an object-set pair by one object from either of two datasets until a corre-
sponding pair is obtained. To determine the priority for the expansion in this study, cell
intersection degrees are applied. However, these degrees, especially for small cells, are easily
affected by the aforementioned discrepancies. To address this problem, the above CVPs

Table 2. RMSE of CVPs and its change ratio at the ith iteration. S3 Dataset is the detected CVPs at 1st iteration and S4 Dataset is the transformed S1
Dataset with S3 Dataset. S5 Dataset is the detected CVPs at 2nd iteration and S6 Dataset is the transformed S4 Dataset with S5 Dataset. S7 Dataset is the
detected CVPs at 3rd iteration and S8 Dataset is the transformed S6 Dataset with S7 Dataset. S9 Dataset is the detected CVPs at 4th iteration and S10 Data-
set is the transformed S8 Dataset with S9 Dataset. S11 Dataset is the detected CVPs at 5th iteration and S12 Dataset is the transformed S10 Dataset with
S11 Dataset.

Iteration 1st 2nd 3rd 4th 5th

RMSE (m) 2.741 1.686 1.711 1.603 1.475

Change ratio of RMSE - 0.626 0.015 0.067 0.087

doi:10.1371/journal.pone.0157913.t002

Fig 7. Comparison of the detection results.Results by applying the ICP algorithm(a, d, g) and those by the
proposed method (b, e, h); (c), (f) and (i) show the transformed dataset 1 at the final iteration and the dataset
2 (Printed under a CC BY license 4.0, with permission from Spatial Informatics & Systems Lab., Seoul
National Univ.).

doi:10.1371/journal.pone.0157913.g007
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detection and map transformation are iterated to make the corresponding geometries between
the maps closer and more similar each other. Then final CVPs are obtained as nearest vertex
pairs within a tolerance distance.

The proposed method was applied to synthetic datasets. The experiments indicated that the
performance of the proposed method was superior to that of the ICP algorithm. The precision
and recall of the proposed method were 0.85 and 0.82, respectively. And those of the ICP algo-
rithm were 0.63 and 0.38, respectively. Therefore, the proposed method can detect more abun-
dant true CVPs. This improvement was obtained by the following characteristics. The CCP
detection is a local bottom-up search which makes the cell matching insensitive to the uneven
positional discrepancies between datasets. Moreover, these CCPs have a hierarchical structure
which means that CVPs of super-CCPs as well as their sub-CCPs are obtained by independent
vertex matching. Thus, accurate and abundant CVPs which are insensitive to the uneven posi-
tional discrepancies between datasets can be obtained.

Supporting Information
S1 Dataset. Synthetic dataset 1.
(ZIP)

S2 Dataset. Synthetic dataset 2.
(ZIP)

S3 Dataset. Corresponding vertex pairs between S1 and S2 Datasets at the 1st iteration.
(ZIP)

S4 Dataset. Transformed S1 Dataset with S3 Dataset.
(ZIP)

S5 Dataset. Corresponding vertex pairs between S4 and S2 Datasets at the 2nd iteration.
(ZIP)

S6 Dataset. Transformed S4 Dataset with S5 Dataset.
(ZIP)

S7 Dataset. Corresponding vertex pairs between S6 and S2 Datasets at the 3rd iteration.
(ZIP)

S8 Dataset. Transformed S6 Dataset with S7 Dataset.
(ZIP)

S9 Dataset. Corresponding vertex pairs between S8 and S2 Datasets at the 4th iteration.
(ZIP)

S10 Dataset. Transformed S8 Dataset with S9 Dataset.
(ZIP)

Table 3. The statistical evaluation of the proposedmethod and the ICP algorithm for datasets in Fig 4. S13 Dataset is the detected CVPs by the ICP
algorithm and S14 Dataset is the transformed S2 Dataset with S13 Dataset. S15 Dataset is manually detected corresponding point pairs between S10 Data-
set and S1 Dataset for statistical evaluation.

Precision Recall Fmeasure

Proposed method 0.85(181/212) 0.82(181/221) 0.84

ICP algorithm 0.63(85/135) 0.38 (85/221) 0.48

doi:10.1371/journal.pone.0157913.t003
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S11 Dataset. Corresponding vertex pairs between S10 and S2 Datasets at the 5th iteration.
(ZIP)

S12 Dataset. Final corresponding point pairs between S10 and S2 Datasets.
(ZIP)

S13 Dataset. Corresponding vertex pairs between S1 and S2 Datasets by the previous ICP
algorithm.
(ZIP)

S14 Dataset. Transformed S1 Dataset with S13 Dataset.
(ZIP)

S15 Dataset. Manually detected corresponding vertex pairs between S10 and S1 Datasets.
(ZIP)
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