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Abstract

The prediction of the lineage dynamics of influenza B viruses for the next season is one of

the largest obstacles for constructing an appropriate influenza trivalent vaccine. Seasonal

fluctuation of transmissibility and epidemiological interference between the two major influ-

enza B lineages make the lineage dynamics complicated. Here we construct a parsimonious

model describing the lineage dynamics while taking into account seasonal fluctuation of

transmissibility and epidemiological interference. Using this model we estimated the epide-

miological and evolutional parameters with the time-series data of the lineage specific

isolates in Japan from the 2010–2011 season to the 2014–2015 season. The basic repro-

duction number is similar between Victoria and Yamagata, with a minimum value during one

year as 0.82 (95% highest posterior density (HPD): 0.77–0.87) for the Yamagata and 0.83

(95% HPD: 0.74–0.92) for Victoria, the amplitude of seasonal variation of the basic repro-

duction number is 0.77 (95% HPD:0.66–0.87) for Yamagata and 1.05 (95% HPD: 0.89–

1.02) for Victoria. The duration for which the acquired immunity is effective against infection

by the Yamagata lineage is shorter than the acquired immunity for Victoria, 424.1days (95%

HPD:317.4–561.5days). The reduction rate of susceptibility due to immune cross-reaction

is 0.51 (95% HPD: 0.084–0.92) for the immunity obtained from the infection with Yamagata

against the infection with Victoria and 0.62 (95% HPD: 0.42–0.80) for the immunity obtained

from the infection with Victoria against the infection with Yamagata. Using estimated param-

eters, we predicted the dominant lineage in 2015–2016 season. The accuracy of this predic-

tion is 68.8% if the emergence timings of the two lineages are known and 61.4% if the

emergence timings are unknown. Estimated seasonal variation of the lineage specific repro-

duction number can narrow down the range of emergence timing, with an accuracy of

64.6% if the emergence times are assumed to be the time at which the estimated reproduc-

tion number exceeds one.
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Introduction

The influenza virus is one of the most common respiratory viruses and causes a high disease

burden worldwide [1]. The influenza viruses co-circulating among humans can be classified as

influenza A viruses (IAV) and influenza B viruses (IBV). Approximately 75% of confirmed

cases of influenza are infections by the IAV [2]. IAV shows high antigenic diversity and rapid

change in antigenicity, and appropriate intervention against IAV epidemics is quite difficult in

terms of vaccine strain selection. The disease burden of IBV is also high, and 25% of confirmed

cases of influenza virus infection and 22–44% of pediatric influenza related deaths in the US

are caused by influenza B [2,3]. The number of major lineages of IBV is relatively low com-

pared to type A. There are only two major genetically and antigenically distinct lineages; the

Yamagata lineage and the Victoria lineage.

Trivalent vaccines against influenza include one of those two lineages. The selection of the

correct vaccine lineage is essential for high vaccine efficacy against influenza B infections.

Despite the limited number of existing IBV lineages, vaccine strain selection is still difficult

because the dominant lineage changes over time and the switching time of the dominant line-

age is difficult to predict. Although the quadrivalent vaccine includes both IBV lineages, Höp-

ping et al. 2016 pointed out the necessity of vaccine strain selection because the use of trivalent

vaccines is still common worldwide and the cost-effectiveness of quadrivalent vaccines is

under debate [4].

To predict an effective vaccine strain for IBV, a good model capturing the mechanisms of

its complex dynamics is needed. Important factors to consider regarding the complex epi-

demic dynamics of the Yamagata and Victoria lineages are i) the seasonal variation of trans-

missibility, ii) epidemiological interference between the two lineages, and iii) time series

changes of antigenicity due to the evolution of the pathogens. The incidence of IBV shows sea-

sonal fluctuation which can be explained by the seasonality of the transmissibility of IBV. This

transmissibility seasonality has been shown to be determined by seasonal variation of absolute

humidity [5,6]. Previous theoretical studies have shown that seasonal variation in transmissi-

bility can induce rich epidemic dynamics, such as periodic or chaotic behavior [7–9], therefore

a model capturing seasonal fluctuation of transmissibility is essential to predicting epidemic

dynamics. Epidemiological interference is also a known factor in complex epidemic dynamics

[10–13]. The time series of confirmed cases between two lineages are negatively correlated (Fig

1), implying epidemiological interference between the two lineages. Moreover, vaccine efficacy

studies also imply the existence of immune cross-reaction between lineages [4]. The epidemic

dynamics of a lineage are affected by that of the other lineage assuming the existence of

immune cross-reaction. The change of antigenicity of influenza across seasons is one major

obstacle for prediction. Especially in the case of IAV, the large variety of lineages and epidemic

interference between these lineages makes it difficult to predict the dynamics. To analyze these

complex dynamics, models taking into account these complex evolutionary dynamics have

been proposed so far [14–19]. Although the number of co-circulating IBV lineages is limited

compared to IAV the large genetic diversity within the lineages and the changing antigenicity

over time, especially for the Victoria lineage [20], makes dominant lineage prediction difficult.

Modelling the complex evolutionary dynamics is essential to predicting future changes in IBV.

In this paper, we assess the predictability of the dominant lineage of IBV using a mathemat-

ical model describing IBV epidemics. To this end, we construct a parsimonious mathematical

model that takes into account the seasonal variation of transmissibility, the epidemiological

interference between lineages, and the time series change of antigenicity. We first estimate the

parameters of our model, including these three factors, from the time series of IBV confirmed
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cases per lineage and time series of specific humidity. Using these estimated parameters we

assess the predictive potential of the dominant lineage in the next season.

Methods

Data

We analyzed the weekly reports of the number of cases of human IBV in Japan from the 2010–

2011 season to the 2015–2016 season, collected by the National Institute of Infectious Diseases,

Japan (http://www.nih.go.jp/niid/en/influenza-e.html). The following analyses are based on

the data which we accessed on 12th April 2016. Cases where the lineage was not available were

excluded.

Mathematical model describing natural history of IBV

We employed individual-based Monte Carlo simulation (IBM) with host populations of

10,000. The host population was determined based on a sensitivity analysis of posterior distri-

butions to the host population size (S1 Fig). We described the transmission process of the

Yamagata lineage and the Victoria lineage using the compartmental SEIRS model. Based on

the natural history of IBV, we classified the host population into four classes by infection state

against each lineage; susceptible S, latent E, infectious I, and recovered R. A total of 42 = 16

infection states were considered. We denote these infection states by XY where X is the infec-

tion state against Victoria and Y is that for Yamagata. For example SE denotes S for Victoria

and E for Yamagata.

Fig 2A summarizes the transition of infection states for a lineage. The infection probability

of a susceptible host is the product of the susceptibility of host q and the force of infection, qλ.

Fig 1. Time series data of weekly reported lineage-specific IBV cases isolated in Japan from the 2010–2011

season to the 2015–2016 season. The gray line shows the number of isolates of the Victoria lineage and the black

line shows the number of isolates of the Yamagata lineage.

doi:10.1371/journal.pone.0166107.g001
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Fig 2. Model structure. (a) shows a single lineage model (one strain) and (b) shows the full model.

doi:10.1371/journal.pone.0166107.g002
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Susceptibility of host q depends on infection states against both lineages as described below,

qvictoria ¼

(
1 for SS; SE; SI

aYamagata!Victoria for SR

0 otherwise

;

qYamagata ¼

(
1 for SS;ES; IS

aVictoria!Yamagata for RS

0 otherwise

:

ð1Þ

For example, the susceptibility against Victoria is 1 if the host is susceptible to Victoria (the

infection state for Victoria is S) and does not have any immunity against Yamagata (the infec-

tion state for Yamagata is S or E or I). If the host is susceptible to Victoria and has immunity

against Yamagata (SR), the susceptibility to Victoria decreases to 1−αYamagata!Victoria by cross-

immune reaction. The force of infection at time t, λ(t), is determined by the number of

infected hosts I(t) and the specific humidity h(t) at time t as follows,

lnðtÞ ¼ gn½1þ expðan � bnhðtÞÞ�
InðtÞ

N
;

n 2 fVictoria; Yamagatag:
ð2Þ

Here N denotes the host population size, γ is the lineage specific recovery rate, the term 1

+exp(an-bnh(t)) describes the transmission coefficient determined by humidity, where h is spe-

cific humidity, and a and b are lineage specific parameters. We followed Shaman et al. 2010 [5]

regarding the model of the relationship between specific humidity and transmissibility; i.e.

specific humidity shows seasonal fluctuation resulting in seasonal fluctuation in transmissibil-

ity (and this fluctuation is reflected in parameter b). We extrapolated h(t) using the daily

observed data of specific humidity in Tokyo, Japan, collected by the Japan Meteorological

Agency (http://www.jma.go.jp/jma/indexe.html). In(t) denotes the number of infected hosts

with lineage n, for example, Ivictoria(t) = IS(t)+ IE(t)+ II(t) + IR(t). The host infection state

becomes E after infection, and the host obtains infectiousness and the infection state becomes

I with probability ε. I recovers with probability γ and obtains immunity. The immune response

wanes due to the evolution of antigenicity. The emergence of new distinct lineages from exist-

ing lineages is not observed for a long time [20]. We assume that the evolutionary dynamics of

IBV within the same lineage is stable and the probability of waning immunity is constant over

time, κ. The parameters (α, a, b, ε, γ, and κ) are lineage specific.

Estimation of parameters

Using the time-series data of the number of laboratory-confirmed IBV cases per lineage and

specific humidity, we estimated the parameters (α, a, b, and κ) in the model described in the

last section. Based on previous study [21] we parameterized ε as 1/ε = 0.6 day and γ as 1/γ =

4.0 day. These parameters are estimated for each lineage. We also estimated the herd immunity

against each lineage at the beginning of the period explored in this study, i.e., SS, SR, RS, RR at

the beginning of the 2010–2011 season. Hereafter, we refer to SS, SR, RS, RR at the beginning

of the 2010–2011 season as SS(0), SR(0), RS(0), RR(0), respectively.
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To estimate these parameters we implemented Approximate Bayesian Computation (ABC)

using our model [22]. Models describing the interaction between nonlinear dynamics, i.e. epi-

demiological interference, are difficult to solve analytically. As a result, model-based inference

is complicated to implement due to the difficulty of obtaining an analytical solution for the

likelihood function. In such case ABC gives us a good approximation of the posterior distribu-

tion. The procedure of ABC that we conducted is, i) we simulated IBM with a parameter set,

{α, a, b, κ, SS(0), SR(0), RS(0), RR(0), p}, determined by prior distribution of each parameter,

ii) the simulation results were compared to the time-series data of lineage specific confirmed

cases and we recorded the parameter sets, {α, a, b, κ, SS(0), SR(0), RS(0), RR(0), p}, if the dis-

tance between the simulation results and the observed data was smaller than a threshold, iii)

we estimated prior distribution of each parameter (each element of parameter set) from the

recorded parameter sets, {α, a, b, κ, SS(0), SR(0), RS(0), RR(0), p}, by kernel density estimation.

To construct the posterior distributions of each parameter, we collected 1,000 parameter sets

showing smaller distance between simulation and data than the threshold. The number of

accepted IBM runs was determined based on sensitivity analysis of the number of accepted

IBM runs to the posterior distributions (S2 Fig). We defined the distance between simulation

results and observed data as D:

Dða; a; b;k; SSð0Þ; SRð0Þ;RSð0Þ;RRð0Þ; pÞ ¼
p
X

t

jIsimðtÞ � IobsðtÞj
X

t

IobsðtÞ
; ð3Þ

where Isim denotes the simulation result of the number of infected individuals and Iobs denotes

the eld data. The parameter p is used for the adjustment of the population size. The parameter

sets were accepted when the distance, D, is smaller than 0.44. We assume that the sampling

probability of cases for laboratory testing and the host population size are constant over time

and conrmed cases are proportional to the number of infected hosts. We set the prior distribu-

tions as uniform distributions for all parameters, the ranges of the priors are [0, 1] for αVic-

toia!Yamagata, [0, 1] for αVictoia!Yamagata, [0, 5] for aVictoria, [0, 5] for aYamagata, [0, 5] for b Victoria,

[0, 5] for b Yamagata, [0, 0.001] for κVictoria, [0, 0.01] for κYamagata, [0, 10] for p, [0, 10000] for SS,

[0, 10000] for SR, [0, 10000] for RS, [0, 10000] for RR. We normalized SS, SR, RS, and RR as SS
+SR+RS+RR = 10000. We introduce the infected people at the beginning of each epidemic sea-

son as the initial condition during the IBM simulation process. We dened the beginning of the

epidemic season as the time when the number of isolations exceeds 7. The number of infected

people in the beginning of an epidemic season was adjusted by p.

Prediction of dominant lineage

Using the posterior distributions obtained by ABC, we simulate IBM for one epidemic season

and compare the results with empirical data of lineage specific confirmed cases. To measure

the accuracy of the prediction, we conducted IBM 1,000 times and counted the number of sim-

ulations that showed the same dominant lineage as the empirical data. The average specific

humidity at specific time points over the epidemic season was used for prediction. For predic-

tion we consider three scenarios, i) predict using empirical data for the emergence dates of lin-

eages, ii) predict without using empirical data for the emergence dates of any lineage, and iii)

estimate the emergence dates of both lineages and predict the dominant lineage with the esti-

mated emergence dates. In scenario ii), we simulated IBM while varying the emergence timing

of both lineages from the beginning to the end of the epidemic season. Regarding iii), we

assume the emergence timing for a lineage is equivalent to the time when the lineage specific

Lineage Dynamics of Human Influenza B Viruses
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basic reproduction number R0,n exceeds one. In our model, R0,n can be described by:

R0; VictoriaðtÞ ¼
SSþ aYamagata!VictoriaSR

N

�

Z1

t¼t

g½1þ expðaVictoria � bVictoriahðtÞÞ�expð� gtÞdt;

R0; YamagataðtÞ ¼
SSþ aVictoria!YamagataRS

N

�

Z1

t¼t

g½1þ expðaYamagata � bYamagatahðtÞÞ�expð� gtÞdt:

ð4Þ

We estimate the timing when R0,n exceeds one using estimated parameters.

Results

Our model captured the lineage dynamics of both Victoria and Yamagata from the 2010–2011

season to the 2014–2015 season well (Fig 3). Table 1 summarizes the estimated values of

parameters; with most parameters being similar between Yamagata and Victoria, with the

exception of b and κ. The amplitude of seasonal fluctuation of transmission rate for the

Fig 3. Comparison between the accepted simulations by ABC and the data from the 2010–2011 season

to the 2014–2015 season. Each gray line shows the accepted simulation run by ABC. The dashed line shows

the average of the accepted simulation runs by ABC. The black line shows the data of the weekly reported

number of isolates. The top panel shows the isolation of Victoria lineage and the bottom panel shows the

isolation of Yamagata.

doi:10.1371/journal.pone.0166107.g003
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Victoria lineage, bVictoria, is higher than that for Yamagata. κYamagata is much higher than κVicto-

ria, the average sojourn time until the loss of immunity is 1.15 years for Victoria and 0.079

years for Yamagata. As validation of our model, we simulated the epidemics in 2015–2016 sea-

son using the estimated posterior distributions and the field data of the emergence time of Vic-

toria and Yamagata in 2015–2016 season, and the simulated final epidemic sizes per lineage

were compared to the field data (leave-one-out cross-validation). Our model can capture the

final epidemic size per lineage well (Fig 4).

Using the posterior distribution of parameters in our model we predicted the dominant

lineage for the 2015–2016 season. The number of isolates for the Yamagata and Victoria line-

ages were close during the 2015–2016 season in Japan; 663 isolates of the Yamagata lineage

and 694 isolates of the Victoria lineage were reported by 12th April 2016. Although the emer-

gence timing plays a key role in determining the dominant lineage, at this moment we do not

know the future emergence timing. The average accuracy obtained by varying the emergence

timings of Yamagata and Victoria is 0.614. Fig 5A shows the sensitivity analysis of the accuracy

of prediction for the dominant lineage. The accuracy was improved to 0.688 if we use the

actual emergence timing.

Table 1. The estimated values of the parameters in our model.

Parameters for Yamagata aYamagata bYamagata κYamagata (year-1) αYamagata!Victoria

Estimated values (95% HPD) 0.82 (0.77, 0.87) 0.77 (0.66, 0.87) 12.60 (3.96, 30.24) 0.51 (0.084, 0.92)

Parameters for Victoria aVictoria bVictoria κVictoria (year-1) αVictoria!Yamagata

Estimated values (95% HPD) 0.83 (0.74, 0.92) 1.05 (0.89, 1.20) 0.86 (0.65, 1.15) 0.62 (0.42, 0.80)

doi:10.1371/journal.pone.0166107.t001

Fig 4. Cross-validation of our model estimation. The histogram shows the distribution of the predicted final epidemic size in the 2015–2016 season

using the posteriors of parameters estimated from the weekly reported lineage-specific IBV cases from the 2010–2011 season to the 2014–2015 season.

Dashed line shows the field data.

doi:10.1371/journal.pone.0166107.g004
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We showed that understanding the emergence timing is crucial for the prediction of the

dominant lineage. We also tried to narrow down the considerable range of the emergence tim-

ing using the lineage specific basic reproduction number R0,n. Fig 6 shows R0,n during 2015–

2016 season. The calendar week when the R0,n exceeds one is the 46th week (95% highest poste-

rior density (HPD): 43rd–48th week) for Victoria and the 47th week (95%HPD: 44th -50th week)

for Yamagata. The actual emergence time, determined as the time when the weekly isolation

number exceeds 6, is the 46th and 43rd week for Victoria and Yamagata, respectively. Estimated

emergence timing by R0,n can improve the accuracy of prediction, 64.6 percent of 1000 simula-

tion runs with estimated timing shows the correct dominant strain.

Due to the similar number of isolates between Yamagata and Victoria in the 2015–2016 sea-

son, it was difficult to determine the dominant strain. We also compared our prediction to the

frequency of Victoria lineage isolates among all the IBV isolates (Fig 5B). Our model can pre-

dict the frequency of lineage as well. The predicted frequency of the Victoria lineage using the

observed emergence timing by R0,n is 0.58 (95%HPD: 0.01–0.99), the predicted frequency

using estimated emergence timing by R0,n is 0.61 (95%HPD: 0.01–0.99), the average predicted

frequency of Victoria among varied emergence timings is 0.64 (95%HPD: 0.12–0.97), and the

observed frequency of Victoria was 0.51 from the field data.

Discussion

In this paper we estimated the dynamics of two major IBV lineages using a parsimonious

mathematical model. Although the prediction of the dominant lineage of IBV is important for

vaccine strain selection, the complex lineage dynamics of IBV makes this prediction difficult.

Our result suggests that the prediction of the dominant lineage of IBV may be possible if the

epidemiological interference between lineages was quantified.

Our estimates of the waning rate of immunity suggest that immunity against the Yamagata

lineage is shorter than immunity to Victoria. This tendency is robust even when the seasons of

the data for the estimation were changed; 2010–2013, 2011–2014, 2012–2015, 2010–2014, and

2011–2015 compared to the result using 2010–2015 seasons (Table 2). There are two possible

interpretations of this result: i) the antigenicity of Yamagata changes much faster than Victoria

or ii) the immunity against Yamagata wanes faster than Victoria. The results of phylogenetic

analysis and the antigenicity measured by hemagglutination inhibition assay suggest that the

Victoria lineage is under stronger selection pressure due to host immunity, and the antigenic-

ity of Victoria changes faster than that of Yamagata [20]. Therefore hypothesis i) is not likely

to be true. On the other hand, the hypothesis ii) is not rejected by the result of phylogenetic

and antigenicity analyses. If the immunity itself wanes rapidly, the lineage cannot be under

selection pressure by host immunity and the change of antigenicity is not essential for the per-

sistence of the lineage. Furthermore, the broader age-distribution of infection of Yamagata

than Victoria implies frequent re-infection with the Yamagata lineage [20], supporting the

possibility of rapid waning immunity against the Yamagata lineage. The clinical trial of vac-

cines against the Yamagata lineage showed stronger immune reaction to Yamagata than to

Victoria [23], but this immunity may persist temporarily and wane rapidly. To conclude,

whether the immunity against the Yamagata lineage is of long or short duration will require

further study.

Fig 5. The model prediction of the epidemic in the 2015–2016 season with varied emergence timings.

The straight gray lines show the actual emergence timing, and the dashed line shows the timing when the

predicted R0,n exceeds one. (a) shows the probability that the model predicts the dominant strain is the

Victoria lineage. (b) shows the model prediction of the frequency of the Victoria lineage among all isolations.

The actual frequency of the Victoria lineage among all isolates in the 2015–2016 season is 0.51.

doi:10.1371/journal.pone.0166107.g005
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Our estimates of lineage-specific reproduction numbers agree with phylodynamic analysis

[20]; the average reproduction number of Victoria is larger than that of Yamagata. The sea-

sonal fluctuation of the reproduction number of Victoria is also larger than that of Yamagata.

Our estimate of the reproduction number takes into account both cross-reactivity of immunity

between Victoria and Yamagata and waning immunity. If we misestimated these two factors,

estimated values would be far from the estimate by phylodynamic analysis.

Our estimation suggests that the cross-immunity between Victoria and Yamagata is high

enough that infections by one lineage suppress infections to the other lineage at the population

level. However, cross-immunity between the two lineages cannot protect individuals from

infection. This highlights the importance of the selection of the IBV vaccine lineages in the

countries where trivalent influenza vaccines are used.

Prediction of strain dynamics requires long time series data of lineage specific isolates. In

fact, prediction using data from only one year cannot capture the strain dynamics, and the

opposite lineage of a year’s dominant lineage, as shown in the data, was selected as the domi-

nant lineage each time (the data is not shown in this paper). Surveillance with an appropriate

and consistent study design is essential for predicting the lineage dynamics for vaccine strain

selection.

For simplicity, our model assumed constant antigenic evolution within each lineage. This

assumption is based on the fact that no new lineage has emerged after the branching of IBV to

Yamagata and Victoria, which suggests it has relatively stable evolutionary dynamics com-

pared to IAV. Our model is sufficient for the short-term prediction of lineage dynamics, how-

ever, when we predict the emergence of new lineages and the extinction of current lineages,

the evolutionary dynamics at the quasi-species level would need to be taken into account.

Even though the dominant lineage can be predicted, selection of the specific strain is still

required. Especially, the antigenicity of the Victoria lineage changes rapidly, so further under-

standing of the evolution of the Victoria lineage is necessary. Phylodynamic studies showed

that the time series change of the genetic diversity of Victoria is similar to influenza A H3N2

and H1N1, so the model must take into account evolution at the strain level [16,17,24,25].

Fig 6. Estimated basic reproduction number at the beginning of the epidemic R0,n in the 2015–2016

season with varied emergence timings. (a) shows R0,Victoria, and (b) shows R0,Yamagata. The solid black line

shows the median of the highest posterior density (HPD) and the curved dashed lines show the lower and

upper bounds of 95% HPD.

doi:10.1371/journal.pone.0166107.g006

Table 2. The posterior of parameters estimated using the data in varied seasons. Each parenthesis shows the 95% highest posterior density.

Data used for the

estimation

Posterior of each parameter

aYamagata bYamagata κYamagata αYamagata!Victoria

(year-1)

aVictoria bVictoria κVictoria αVictoria!Yamagata

(year-1)

2010–2015 0.82 (0.77,

0.87)

0.77 (0.66,

0.87)

12.60 (3.96,

30.24)

0.51 (0.08, 0.92) 0.83 (0.74,

0.92)

1.05 (0.89,

1.20)

0.86 (0.65,

1.15)

0.62 (0.42, 0.80)

2010–2014 0.77 (0.74,

0.80)

0.89 (0.84,

0.95)

14.97 (7.3,

26.65)

0.68 (0.15, 0.99) 0.91(0.8,

1.01)

1.04 (0.98,

1.09)

0.73 (0.62,

0.84)

0.57 (0.50, 0.63)

2011–2015 0.83 (0.78,

0.88)

0.84 (0.74,

0.94)

14.60 (6.57,

27.01)

0.61 (0.10, 0.99) 1.02 (0.91,

1.12)

1.20 (1.03,

1.38)

0.73 (0.62,

0.84)

0.70 (0.55, 0.82)

2010–2013 1.00 (0.92,

1.17)

0.92 (0.85,

0.99)

8.40 (1.93,

33.95)

0.38 (0.02, 0.97) 1.00 (0.92,

1.08)

0.80 (0.65,

0.95)

0.95 (0.77,

1.20)

0.44 (0.29, 0.62)

2011–2014 0.84 (0.61,

1.10)

1.14 (0.81,

1.56)

21.90 (5.11,

36.14)

0.82 (0.34, 0.99) 1.36 (1.06,

1.70)

0.98 (0.52,

1.56)

0.36 (0.27,

0.51)

0.49 (0.24, 0.79)

2012–2015 0.88 (0.79,

0.96)

0.66 (0.54,

0.79)

5.84

(2.37,19.71)

0.95 (0.69, 0.99) 0.69 (0.57,

0.84)

1.12 (0.87,

1.40)

1.35 (0.69,

3.58)

0.84 (0.45, 0.99)

doi:10.1371/journal.pone.0166107.t002
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In conclusion, we developed a parsimonious mathematical model describing the lineage

dynamics of IBV. Using the weekly number of lineage specific isolates we estimated the repro-

duction number, the waning rate of immunity, and the strength of cross-immune reaction.

Our prediction suggests that models taking into account epidemiological interference due to

cross-immune reaction and the seasonality of transmission can predict the lineage dynamics

of IBV for the next year.
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