
RESEARCH ARTICLE

Identification of the Core Set of Carbon-

Associated Genes in a Bioenergy Grassland

Soil

Adina Howe1, Fan Yang1, Ryan J. Williams1, Folker Meyer2, Kirsten S. Hofmockel3,4*

1 Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, United

States of America, 2 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,

Illinois, 60439, United States of America, 3 Department of Ecology and Evolutionary Biology, Iowa State

University, Ames, IA, 50011, United States of America, 4 Pacific Northwest National Laboratory, Richland,

WA, 99352, United States of America

* khof@iastate.edu

Abstract

Despite the central role of soil microbial communities in global carbon (C) cycling, little is

known about soil microbial community structure and even less about their metabolic path-

ways. Efforts to characterize soil communities often focus on identifying differences in gene

content across environmental gradients, but an alternative question is what genes are simi-

lar in soils. These genes may indicate critical species or potential functions that are required

in all soils. Here we identified the “core” set of C cycling sequences widely present in multiple

soil metagenomes from a fertilized prairie (FP). Of 226,887 sequences associated with

known enzymes involved in the synthesis, metabolism, and transport of carbohydrates, 843

were identified to be consistently prevalent across four replicate soil metagenomes. This

core metagenome was functionally and taxonomically diverse, representing five enzyme

classes and 99 enzyme families within the CAZy database. Though it only comprised 0.4%

of all CAZy-associated genes identified in FP metagenomes, the core was found to be com-

prised of functions similar to those within cumulative soils. The FP CAZy-associated core

sequences were present in multiple publicly available soil metagenomes and most similar to

soils sharing geographic proximity. In soil ecosystems, where high diversity remains a key

challenge for metagenomic investigations, these core genes represent a subset of critical

functions necessary for carbohydrate metabolism, which can be targeted to evaluate impor-

tant C fluxes in these and other similar soils.

Introduction

Soil microbial communities are of critical importance; they influence nutrient availability,

decomposition rates, greenhouse gas emissions, soil fertility, and agricultural production [1–

3]. Despite decades of research, we still know very little about soil microbial community struc-

ture and functioning, especially in agricultural soils. Sequencing-based approaches, particu-

larly metagenomics, have greatly enhanced the resolution at which we can investigate genes
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contained within soil microbial communities [4–6]. Nonetheless we are becoming increasingly

aware that the incredible diversity present in soils requires very deep sampling to capture (esti-

mated Terabasepairs of sequencing) [7,8]. Efforts to characterize soil communities often focus

on identifying differences in gene content across environmental gradients (e.g., genes present

under varying land use history, nutrient loads, soil moisture content) [6,9–11]. An alternative

question is what genes are similar in soils? In other words, is there a core set of sequences,

genes, or functions that are present in all soils? Are the core genes found in one soil type, field,

or even plot representative in soils? A similar effort in the gut microbiome environment identi-

fied gut-associated genes shared between multiple humans (124 European individuals) and

provided a transformative reference gene set describing the minimal gut metagenome among

these individuals and its encoded functions [12]. The microbial diversity in soils is magnitudes

higher than the gut microbiome [13], suggesting that a soil core, if present, would be much

smaller. We explore the presence of core gene sequences in a single experimental field and

evaluate the insight it provides for soil function.

A single field site was selected for characterization of a soil core. Within a field, high levels

of local spatial variation of microbial community structure have been observed [14–16]. Con-

sequently, our study focused on the identification of a plot scale core soil microbial community

in fertilized prairie (FP) whole soil (WS) metagenomes from a single experiment. The resulting

soil core was also compared to several other soil metagenomes, including soil aggregate meta-

genomes from the same plot (e.g., originating from sieved partitions of the same FP WS),

metagenomes from soils located nearby, and publicly available soil metagenomes. We expect

that genes that are ubiquitously present in multiple soils may represent functions that are criti-

cal to soil processes. To evaluate the functions represented in our soil core, we identified genes

associated with carbon (C) cycling and evaluated their contributions to microbial biomass syn-

thesis and decomposition in these soils.

Materials and Methods

Samples were collected with permission from the Committee for Agricultural Development, a

nonprofit organization in Iowa that owns the property.

Study site

Soil was collected from the Iowa State Comparison of Biofuel Systems (COBS) experimental

site located on the South Reynoldson Farm in Boone County, IA (41˚55’14.42"N, 93˚

44’58.96"W); see [17] for a detailed site description. Soils consisted of loams in the Nicollet

(Fine-loamy, mixed, superactive, mesic Aquic Hapludoll) and Webster (Fine-loamy, mixed,

superactive, mesic Typic Endoaquoll) series with less than 3% slope. Sand content ranged

from 27% to 53% across the site and clay content ranged from 17% to 32%. In the 5 years prior

to sampling, average growing season precipitation at the site was 91.8 cm and mean annual

temperature was 9˚C. Four replicate blocks contain four plots (27 x 61 m2) of each planting

treatment in a randomized complete block design. The present study includes samples from

plots planted with fertilized native tallgrass prairie (31 species). Soil cores (5.5 cm x 10 cm)

were collected in July 2012 as described in [17]. Subsamples of soil were separated into soil

aggregate fractions by an optimal sieving method prior to DNA sequencing. Biogeochemical

analyses of these samples has been previously reported [18,19].

DNA extraction and library preparation

For each soil sample, DNA was extracted from 0.25 g of soil by using MoBio PowerLyzer

PowerSoil DNA Isolation Kit (MoBio, Carlsbad, CA). DNA was quantified using Nanodrop
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and approximately 1 μg of DNA per sample was used for metagenomic sequencing. Metagen-

ome libraries were prepared with IntegenX PrepX DNA Library Kit with 180 bp overlapping

inserts and subsequently size-selected prior to sequencing on an Illumina HiSeq2000. Library

preparation and sequencing were performed at Argonne National Laboratory (Argonne, IL).

Assembly and coverage of soil metagenome

An assembly of all soil metagenomes available from this site was used to generate a reference

set of contigs for this study as previously described in [7]. All sequencing reads originating

from FP samples (both WS and varying sizes of soil aggregates, n = 20) were combined and

assembled (sequencing reads available for all data in MG-RAST, see S1 and S2 Tables) to create

a cumulative reference metagenome. This reference was used to identify shared core contig

sequences among all FP WS metagenomes. Prior to assembly, Illumina adapters were trimmed

with Trimmomatic (v0.27, [20]) using Illumina TruSeq2-PE with threshold of seed mis-

matches, palindrome clip threshold, and simple clip threshold as 2, 30, and 10, respectively.

Remaining paired end sequences were merged with PANDAseq [21]. The resulting sequences

were normalized using the khmer package [22–24] and methods previously described in [7]

with the following parameters: -k 20 -C 10 -N 4 -x 100e9. High abundance k-mers with

coverage> 50 were trimmed from sequences, and the remaining sequences were partitioned

as previously described in [7,25] with the following parameters: -k 32 -N 4 -x 80e9. Assembly

was performed with the Velvet assembler (v 1.2.10, [26]) using odd k-mer lengths from 33 to

65. Resulting assembled contiguous sequences (contigs) were merged as described previously

[7] using CD-HIT (v4.6, [27,28] and minimus2 (Amos v3.1.0, [29])

Abundances of contigs associated with each sample was estimated through the alignment of

sequencing reads with assembled contigs using Bowtie2 (v2.0.5, default parameters, [30]). Cov-

erage of each contig was estimated as the maximum base pair coverage of the assembled

sequence, requiring a minimum of coverage length of 100 bp. This abundance estimation was

intentionally chosen to be liberal, intending to capture representative core contigs even at low

abundance in individual samples. To be identified as present in all samples, contigs were

required to be present at 5 or greater base pair coverage in all four local soil metagenomes. For

core contigs, the MG-RAST automated annotation system was used to identify associated func-

tion of assembled contigs (MG-RAST ID 4519723.3) [31]. In order to standardize samples with

various sampling depths, the total number of single-copy recA genes in each sample was esti-

mated, using annotations from MG-RAST, requiring a sequence alignment (E-value < 1e-5) to

recA (Subsystem ID SS04542). The coverage of each gene was estimated from the base pair esti-

mated coverage of its originating assembled contig divided by the total estimated recA genes

identified in each sample. To identify carbon-associated genes, all assembled contigs were com-

pared to known proteins in the Carbohydrate Active Enzyme (CAZy) database [32] using NCBI

BLAST (v2.2.25, blastx), requiring an E-value� 1e-5. The best scoring alignment to the CAZy

database for each sequence was used for characterization (both function and taxonomic origin).

If multiple annotations shared identical best score alignments, one was chosen at random. The

resulting set of CAZy-associated assembled contigs comprised the dataset referred to as the

cumulative FP-CAZy metagenome. Annotations associated with each contig as well as analysis

performed in this study can be found at https://github.com/germs-lab/carbon-core-soil-paper.

Characterization of the fertilized prairie whole soil carbon core

community

To identify the genes present in all of the available metagenomes of the FP WS, we defined the

core carbohydrate-associated contigs as sequences that were present a minimum abundance of
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5 or greater base pair coverage in each of the four WS field replicate metagenomes; these core

contigs are hereafter referred to as the FP-CAZy core. As we focused on carbohydrate-associ-

ated genes, only contigs that shared sequence similarity to a known protein within the CAZy

database were considered.

To examine the content of the FP-CAZy core, a phylogenetic tree (based on bacterial and

archaeal 16S rRNA genes) was constructed for bacteria associated with FP-CAZy core contigs

(S1 Fig). As core proteins cannot be aligned easily to construct a phylogenetic tree, representa-

tive 16S rRNA genes associated with phyla associated with CAZy genes were obtained. Core

sequences were searched against GenBank (release 198.0) from which organisms with full

genomes were identified. Bacterial and archaeal 16S rRNA genes were extracted from these

full genomes to build the phylogenetic tree. For microorganisms containing multiple 16S

rRNA genes, the first gene sequence identified in the GenBank record was selected as repre-

sentative. The 16S rRNA gene sequences were aligned by using RDP (Ribosomal Database

Project, release 11, [33]) Aligner. MEGA 5.2 (Molecular Evolutionary Genetics Analysis, [34])

was used to construct the phylogenetic tree. Specifically, the phylogeny was inferred using

maximum likelihood heuristic method (nearest neighbor interchange) with a general time

reversible nucleotide substitution model (discrete gamma distribution with 5 categories and

allowing the presence of invariant sites). The phylogeny was tested using the boostrap method

(999 times). For every microorganism in the phylogenetic tree, the abundance of associated

FP-CAZy core contigs associated to that phyla (standardized against the recA gene abundance)

was also calculated. For each metagenome CAZy annotations were grouped into six CAZy

classes, glycosyltransferases (GT), glycoside hydrolases (GH), carbohydrate esterases (CE), car-

bohydrate-binding modules (CB), polysaccharide lyases (PL) and unknown. The abundance

of each CAZy class was summed based on phylogenetic identification within the same sample,

and averaged across 4 replicates (at 95% confidence intervals).

The resulting FP-CAZy core contigs were compared to other soil metagenomes. Within the

COBS experimental site, these other metagenomes included soil aggregate fractions isolated

from FP WS (n = 14), as well as microaggregates isolated from unfertilized prairie (n = 4) and

continuous corn (n = 2) cropping systems (S2 Table). FP-CAZy core sequences were consid-

ered present in these samples if identified in at least one field replicate with 5 or greater base

pair coverage. To assess the relevance core sequences more broadly, we analyzed several public

soil metagenomes (Fierer et al 2012, Howe et al 2014), where presence of FP-CAZy core

sequences were considered to be present if sequence similarity of the best scoring BLAST

alignments of core sequence to metagenome reads had a minimum E-value score of 1e-5,

length of 70, and identity of 70%.

Results

Characterization of the FP-CAZy core

The total size of each FP WS replicate metagenome ranged from 4.3 to 20.5 Gbp (average

10.3 ± 7.1 Gbp). Within these metagenomes, a total of 226,887 contigs were identified with

shared sequence similarity to known CAZy proteins. Among these contigs, a total of 11,193

contigs were identified as present in all four replicates (at varying abundances). Requiring a

minimal abundance of greater than 5-fold bp coverage, a total of 911 sequences were present

in all four metagenomes and comprised the FP-CAZy core metagenome (representing 499,329

bp of 41.4 Gbp). Given the conservative requirements for core sequences, these represent a

lower bound estimate of shared sequences within the field replicated FP metagenomes. To

evaluate the effects of sequencing depth, we estimated the total number of core k-mers in sub-

sets of the four WS metagenomes, 100,000 to 100 million reads (278 to 539 million unique k-
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PLOS ONE | DOI:10.1371/journal.pone.0166578 November 17, 2016 4 / 14



mers average, n = 4 bootstraps). We found that the total core k-mers comprised 4.8 to 8.9% of

total unique k-mers, suggesting that with more sequencing, the core size continue to grow line-

arly. The sequencing depth represented within this study (minimum 4.3 Gbp) is greater than

the average sequencing depth of 1.67 Gbp (median 0.47 Gbp) of 1,093 public soil-associated

metagenomes in MG-RAST (October 27, 2015, material = peat soil, sediment, soil, agricultural

soil, alpine soil, arable soil, bulk soil, clay soil, farm soil, grassland soil, lawn soil, leafy wood

soil, paddy field soil, rhizosphere, sandy sediment, volcanic soil, and xylene contaminated

soil). Even with this above average sequencing effort, we were able to identify only 911 core

sequences among the four FP metagenomes. When we further limited our analysis to CAZy-

associated proteins related to bacteria, archaea, viruses, and fungi, our core consisted of a total

of 843 contigs shared between all four FP replicates.

We next explored the content of our core, evaluating the putative functions and taxonomy

of proteins sharing similarity to core contigs. Functions and taxonomy associated with core

sequences were quantified in their prevalence (number of unique occurrences within the core)

and relative abundance (cumulative abundance). Overall, the FP-CAZy core of 843 contigs

represented five major enzyme classes and 99 enzyme families. The average relative abundance

of proteins indicated GT > GH> CE> CB> PL (Fig 1A, S1 Fig). Among these, the most

abundant enzyme families included GT2, GT4, and GH13, which were associated with a total

prevalence of 145, 109, and 38 core sequences and present at estimated average abundances of

4.0, 2.9, and 1.1 copies per recA sequence, respectively (Fig 1B). The most represented taxa of

the FP-CAZy core were similar to Proteobacteria, Actinobacteria, and Firmicutes, related to a

total prevalence count of 266, 120, and 70 unique assembled sequences, respectively. The rela-

tive abundances of phyla associated with core sequences revealed diverse membership (Fig 2),

with sequences associated with Proteobacteria broadly represented in association with

enzymes GT, GH, and CE (S1 Fig). Fungal sequences associated with GH and CE enzymes

were also abundant. A few core enzyme classes were represented by only a single phylum, the

Fig 1. Functional profile (mean ± SE) of CAZy enzyme classes (A) and 10 most abundant enzyme families (B) represented in

FP-CAZy core sequences (GT, glycosyltransferase; GH, glycoside hydrolase; CE, carbohydrate esterase; CB, carbohydrate-

binding module; PL, polysaccharide lyase).

doi:10.1371/journal.pone.0166578.g001
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most abundant classes including GH94 (37 copies/1000 recA, Proteobacteria) and GH76 (29

copies/100 recA, Fungi).

Because the identification of core sequences required similarity to protein encoding

sequences within the CAZy database, we evaluated potential biasing of the core from the

CAZy database itself. We randomly selected 50,000 proteins each from the CAZy database and

the cumulative metagenome to generate a random set of CAZy classes and associated taxon-

omy. The simulated random distribution was performed 1000 times to compare to the

observed CAZy classes and phylogeny of the core sequences. We found that protein distribu-

tions were significantly different for both CAZy class and phyla (ANOVA, p< 0.05), suggest-

ing that observations here not the result of database bias.

Representation of FP-CAZy core in cumulative FP and other soil

metagenomes

The total number of FP-CAZy core sequences represent only 0.4% of all CAZy proteins identi-

fied in the cumulative FP metagenomes (843 out of 226,887 unique sequences). With greater

sequencing depth, we would expect this number to increase significantly. By abundance, the

core comprises ~1% of the most abundant (� 5-fold bp coverage) CAZy-associated sequences.

We compared core functions and taxonomy to those all observed functions and taxa in the FP

metagenomes. The distributions of the abundances of identified CAZy enzyme classes in the

core and cumulative FP metagenome were similar though the relative abundances of CB and

GT differed by up to 4% (S3 Fig). We observed that at the enzyme family level, abundances in

the core and cumulative datasets contrasted, with the exception of GT2 and CE10 (p-

Fig 2. Abundance of phyla represented in the FP CAZy core (mean ± SE; n = 4).

doi:10.1371/journal.pone.0166578.g002
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value > 0.2). Similarly, the distribution of phyla-associated with dominant enzyme families

(e.g., GT2, GH13, CE10, and GT4) was significantly different between the core and cumulative

metagenomes (S4 Fig). For example, proteins associated with GT2 originating from Actino-

bacteria (14 sequences) and Firmicutes (6 sequences) were significantly enriched in the core.

Comparison of the FP-CAZy core to metagenomes of FP aggregates as well as adjacent

corn and unfertilized prairie aggregates (Bach and Hofmockel 2014) revealed substantial

sequence similarity. The large majority of FP-CAZy core sequences, 840 out of 843, were also

identified within FP soil aggregate fractions (sieved fractions of whole soil samples). In adja-

cent soil samples (microaggregates of unfertilized prairie (n = 4) and corn (n = 2) fields, a total

of 792 and 600 FP-CAZy core sequences were observed in unfertilized prairie and corn meta-

genomes, respectively. Comparing the FP-CAZy core to other globally distributed soil meta-

genomes (Fig 3, S2 Table) revealed the most shared sequences (e.g., sequence similarity) with

other grassland (405 ± 109) and agricultural soils (535 ± 95) and fewer shared core sequences

with forest (196 ± 39), tundra (78), and desert (40 ± 8) soils. However, at the functional level

(as opposed to sequence similarity), the relative distribution of CAZy enzyme classes was

broadly similar (Fig 4).

Discussion

The soil represents arguably the most challenging environment to access with modern molecu-

lar microbial ecology. Its high diversity and spatial heterogeneity, even at the meter scale,

Fig 3. Number of shared fertilized prairie metagenome core sequences in global soil metagenomes

sharing sequence similarity (E-value 1e-5).

doi:10.1371/journal.pone.0166578.g003
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make it difficult to sample and characterize. Despite these difficulties, the importance of

microbial communities in terrestrial biogeochemistry and ecosystem C- cycling are well

agreed upon [35,36]. Understanding the functional capacity of soil microorganisms remains

an important goal for understanding ecosystem health and stability [37]. We explored the

insights a minimal local soil core metagenome could provide for identifying key enzymes,

microorganisms, and ecological functions related to soil C cycling. Among all C-cycling

enzymes identified in our soil metagenomes, the CAZy-associated soil core represented only

0.4% of genes. Despite representing only a fraction of all genes observed in FP metagenomes,

the identified FP-CAZy core shared similar functions to whole metagenomes, supporting our

hypothesis that core sequences represent a set of minimum C-cycling functions necessary in

FP soils. The most dominant functions identified within the core and cumulative metagen-

omes were GT2 and GT4, which are involved in the formation of cell wall polysaccharides of

diverse organisms including bacteria, archaea, fungi, and plants, as well as numerous biological

processes such as pathogen protection, intercellular signaling, and biofilm production [38]. In

the core, these enzymes have been observed as originating from Proteobacteria. Sequences

similar to Bacteroidetes and Actinobacteria dominated the GT2 family in core functions, while

Verrucomicrobia and Euryarchaeota genes were prevalent in GT4 family. We observe that

broad membership may provide core enzymes in soils, supporting previous observations that

high biodiversity may help to stabilize carbon cycling [39,40].

Fig 4. Functional distribution of the presence of CAZy enzyme classes in global soil metagenomes.

doi:10.1371/journal.pone.0166578.g004
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We found that genes associated with amylolytic enzymes (GH13) were highly prevalent in

the core, highlighting the central importance of breakdown and utilization of starch and

related oligo- and polysaccharides. In general, genes known to be associated with GH13 con-

tribute to trehalose synthesis, a compound that is used by both plants and fungi to store carbon

and energy, as well as protecting bacterial cells from physical and chemical stresses [41]. Abun-

dant core sequences associated with GH13 are similar to genes of Proteobacteria, Actinobac-

teria, and Planctomycetes, suggesting that these organisms may play a central role in starch

utilization. Although Proteobacteria and Actinobacteria are commonly associated with C

cycling in soil, Planctomycetes have only recently been identified in agricultural soils [42], tun-

dra soils [43], and Arctic peats [44], demonstrating its global presence, and potential functional

importance in soils. Additionally, Planctomycetes have been associated with decomposition of

cellulose within agricultural soils [45], making this a noteworthy phylum for further investiga-

tions focused on soil C cycling.

Genes that were enriched in the core relative to the cumulative metagenome were

hypothesized to play critical roles in soil C-cycling. These genes included sequences sharing

similarity to GH13 associated Actinobacteria and Planctomycetes, GT4 associated Actino-

bacteria, Firmicutes, Euryarchaeota, and Verrucomicrobia, GT2 associated Actinobacteria

and Firmicutes, and CE10 associated Fungi and Proteobacteria sequences. These enriched

core functions represented a relatively small diversity of all observed carbon related func-

tions. Enriched core genes comprised 3% of cumulative GT2-associated Actinobacteria and

Firmicutes proteins; 3% of GT4-associated Actinobacteria, Firmicutes, Euryarchaeota, and

Verrucomicrobia proteins; 14% of CE10-associated Proteobacteria and Fungi proteins; and

5% of GH13-associated Actinobacteria and Planctomycete proteins. Their prevalence in

multiple soils suggest that amongst diverse functions and memberships, these genes and bac-

teria are critical for C-cycling.

Another interesting observation within the core was the presence of ubiquitous and

abundant sequences associated with CE, in particular CE10. In general, CE genes act on

plant polysaccharides to degrade acetylated plant hemicelluloses [46] and are commonly

clustered with GHs in operons or regulons and are co-expressed to decompose esterified

polysaccharides of plant cell walls. Little is known about CE10, which is associated with coli-

nesterase type enzyme. Soil substrates associated with CE, α- and β-glycerophosphates and

choline-P, have been identified as degradation products of phospholipids of cellular mem-

branes during NMR analysis [47–49] and have been shown to cycle and accumulate in agri-

cultural soils [50]. The observed CE10 presence in the core supports the premise that cell

membranes may be an important soil substrate, and CE hydrolases may be a potential target

for quantifying the importance of microbial cell wall turnover, which is a pressing question

given the putative importance of microbial necromass to soil C storage [51,52].

At a broad level, the functions encoded by the core are observed in global soils, ranging

from those originating from agriculture to deserts. However, at the strain level (e.g.,

sequence variation), our core was significantly more represented in soils from similar land-

use and geography. Within the same large-scale field experiment, we found that independent

of crop selection or management practices (corn and unfertilized prairie), multiple soil meta-

genomes shared a large majority of core sequences (97%). In soils originating from Iowa but

located about 60 miles SE from the FP site, core sequences were less prevalent compared to

local samples (33% in prairie and 68% in corn). In contrasting soils, such as deserts and for-

ests, significantly fewer FP-CAZy core sequences could be identified, suggesting that the soil

environment, which can be geographically specific, is important for defining a soil core and

its functional potential. This result has been reported previously where soil type was the criti-

cal driver of microbial community compositional differences [53,54]. For metagenomic

Minimal Carbon-Associated Core Soil Metagenome
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studies, this observation has implications for the genomic or functional level that should be

compared between studies. We observe that genes encoding for functions (e.g., enzyme clas-

ses) are largely similar in global soils but find that core sequences are not broadly representa-

tive, at least at the current sequencing depths being used to study oil microbiomes.

Sequencing-based approaches for studying the soil microbial communities continue to

increase in volume and in complexity (e.g., metaproteomics and metabolomics). Our results

present a challenge that is confronting the study of soil ecosystems. At a local scale (soils

originating from the same experimental plot), greater than average sequencing depth for cur-

rent soil studies, and focusing on genes encoding for carbon cycling functions, we are able to

identify less than a 1% signal of sequences being shared among multiple metagenomes. In

contrast, the gut microbiome identified that 40% of genes was shared within at least half of

the 124 individuals studied [12]. These results reaffirm that we are still only beginning to

sample the immense diversity in these soils and are far from identifying a minimal soil core

microbiome, at least at the gene level. Our results also emphasize the need to consider vary-

ing scales of characterization when comparing soil microbial communities. Given the unique

nature of soil, we have a strong need to evaluate new methods for binning soil sequences

include protein clustering (e.g., operational protein units analogous to operational taxo-

nomic units from sequenced 16S rRNA amplicons), co-occurrence networks and interac-

tions, and improved hierarchy in functional annotations. Continued efforts to us our

identified targets to expand what is known about the minimal genes encoding functions in

soil will be helpful to identify critical community processes within complex metagenomes

and can serve as the framework with which to deconstruct and understand the high diversity

of microbial soil communities.

Supporting Information

S1 Fig. Phylogenetic tree of taxonomic origins of CAZy proteins most similar to core genes

(using available 16S rRNA genes). The diamonds on the maximum likelihood phylogenetic

tree indicate branches with bootstrap values greater than 80. CAZY gene abundance was calcu-

lated across four whole-soil replicates and the error bars represent 95% confidence intervals.

(EPS)

S2 Fig. Abundance of phyla represented in enzyme families GH, GT, CB, and CE associ-

ated with the fertilized prairie core metagenome.

(EPS)

S3 Fig. Relative abundance of CAZy enzyme families and classes in fertilized prairie meta-

genome core and the cumulative fertilized prairie metagenome.

(EPS)

S4 Fig. Abundance of phyla associated with enzymes in fertilized prairie metagenome core

and the cumulative fertilized prairie metagenome.

(EPS)

S1 Table. Sequencing summary of fertilized prairie whole soil metagenomes.

(DOCX)

S2 Table. Number of shared core sequences among various soil metagenomes. Number of

replicates is one unless otherwise indicated.

(DOCX)
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