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Abstract
Multi-Environment Trials (MET) are conventionally used to evaluate varietal performance

prior to national yield trials, but the accuracy of MET is constrained by the number of test

environments. A modeling approach was innovated to evaluate varietal performance in a

large number of environments using the rice model ORYZA (v3). Modeled yields represent-

ing genotype by environment interactions were used to classify the target population of

environments (TPE) and analyze varietal yield and yield stability. Eight Green Super Rice

(GSR) and three check varieties were evaluated across 3796 environments and 14 sea-

sons in Southern Asia. Based on drought stress imposed on rainfed rice, environments

were classified into nine TPEs. Relative to the check varieties, all GSR varieties performed

well except GSR-IR1-5-S14-S2-Y2, with GSR-IR1-1-Y4-Y1, and GSR-IR1-8-S6-S3-Y2

consistently performing better in all TPEs. Varietal evaluation using ORYZA (v3) signifi-

cantly corresponded to the evaluation based on actual MET data within specific sites, but

not with considerably larger environments. ORYZA-based evaluation demonstrated the

advantage of GSR varieties in diverse environments. This study substantiated that the

modeling approach could be an effective, reliable, and advanced approach to complement

MET in the assessment of varietal performance on spatial and temporal scales whenever

quality soil and weather information are accessible. With available local weather and soil

information, this approach can also be adopted to other rice producing domains or other

crops using appropriate crop models.
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Introduction

As the staple food for half of the world population, rice is widely grown in diverse environ-
ments worldwide. Rice productivity has doubled since the Green Revolution with more than
50% of the increase attributed to continuous rice breeding efforts primarily in the irrigated sys-
tem [1]. By practice, any breeding program is aimed at a specific target population of environ-
ments (TPE). It is often difficult to define the TPE for breeding efforts inclusive of rainfed
areas, because rice growing environments of rainfed ecosystems vary considerably across loca-
tions and years. As a predominantly self-pollinated species, yield performances of rice varieties
tend to show a significant level of genotype x environment interaction (GEI), particularly in
rainfed environments. In any breeding program, it is routine to generate hundreds, or even
thousands, of advanced progenies. To identify promising lines for specific TPEs from the huge
numbers of advanced progenies, it requires evaluation of yield performances of large number
of lines in multi-environment trials (MET), which is normally a time-consuming and very
expensive process. An efficient tool that can resolve this limitation could extremely accelerate
the process of varietal development.

Green Super Rice (GSR), defined as rice varieties that can produce high and stable yields
using less resource input, was conceptualized and developed as the ideal rice varieties for
rainfed environments. Considerable progress has been made in developing large number of
GSR lines with high yield potential and tolerances/resistances to multiple abiotic and biotic
stresses [2, 3, 4, 5, 6]. However, to identify promising GSR varieties suitable for specific tropical
rainfed areas in Asian and African countries, there is a need to test and evaluate large number
of promising GSR lines across multiple environments and to identify their TPEs. This has been
a major challenge in GSR breeding efforts.

To capture GEI using a series of mathematical functions in crop models has been proven as
an effective tool for evaluating yield performances of varieties in numerous environments based
on key plant eco-physiological principles [7, 8]. For rice, the ORYZA2000 model has been used
to predict rice growth and grain yields with high confidence level similar to other rice models in
the world [9]. It has also been successfully used for performance evaluation of breeding lines or
varieties over large numbers of environments [7] and environment characterization [10].

This study aims to develop and test an efficient strategy for quantifying yield performances
and stabilities of GSR varieties with tolerances to multiple stresses by determining their TPEs
over temporal and spatial scales using ORYZA version 3.0 (https://sites.google.com/a/irri.org/
oryza2000/home).

Materials and Methods

The modeling approach developed in this study intends to evaluate the performance of rice
breeding materials across different environments. The evaluation process has four steps: 1)
data collection from field experiments to determine varietal genetic coefficients to feed the
crop model and from secondary data source for regional soil and weather information; 2)
model calibration and validation to develop varietal genetic coefficients and evaluate the confi-
dence level of model prediction on crop yield using experimental data; 3) conduct simulations
on each rice grid cell in a given region using available soil and weather information; and 4)
analysis of the simulation results to define the TPEs and evaluate varietal performance among
different TPEs.

Field experiments

The materials used in this study included eight BC1F6 GSR introgression lines with improved
yields and tolerances to drought, salinity and submergence plus three check varieties (Table 1).
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Field experiments were conducted to test the performance of the eight GSR varieties (Table 1)
during three dry seasons (2011, 2012, and 2013) and one wet season (2013) in Los Baños, Phil-
ippines (LB, 121°15’E and 14°11’N).

The same set of varieties was also tested in Nueva Ecija, Philippines (NE, 120°56’E and 15°
42’N) during the 2013 dry and wet seasons (Table 2). The experiments conducted in 2011 and
2012 had two types of water management: 1) continuously flooded throughout the season; and
2) switching from continuously flooded to rainfed condition after panicle initiation. All experi-
ments in 2013 were under fully irrigated conditions with standard practices of nitrogen fertil-
izer application and other crop management.

Phenology development was recorded and destructive samples were collected from all field
experiments to determine the leaf area index (LAI) and biomass weights for green leaves, dead
leaves, stems, and panicles. Grain yields were determined in two 3 m2 areas at physiological
maturity. Soil water potential at soil depth of 15 cm was measured in rainfed fields using MPS
2 sensors (Decagon Devices Inc., Pullman WA) connected to a Decagon EM50 data logger.

The measured data under different crop management strategies and climate-soil conditions
were used to parameterize the genetic parameters of the tested GSR lines and checks to evaluate
the reliability of ORYZA (v3) in representing the growth, development, and yields of the tested
rice varieties across different environments.

Table 1. Parentage, breeding methodology and duration of 8 green super rice (GSR) lines and check varieties used in this study.

Variety Parentage (Cross information) Breeding method and

generation

Maturity(days after

sowing) under CF*
Description

Feng Fu Zhan

(FFZ)

Feng-Si-Zhan/Fu-Qing-Zhan 4 Pedigree breeding 115 CAAS-bred GSR variety for irrigated

conditions

GSR IR1-1-Y4-Y1 Huang-Hua-Zhan/Yue-Xiang-Zhan//

Huang-Hua-Zhan

Backcross

introgression line

BC1F6

120 High-yielding, irrigated cultivar with

tolerance of salinity, submergence and

drought

GSR IR1-

5-S8-D3-SUB1

Huang-Hua-Zhan/OM1723//Huang-

Hua-Zhan

Backcross

introgression line

BC1F6

120 High-yielding, irrigated cultivar with

tolerance of salinity, submergence and

drought

GSR IR1-

5-S10-D1-D1

Huang-Hua-Zhan/OM1723//Huang-

Hua-Zhan

Backcross

introgression line

BC1F6

124 High-yielding, irrigated cultivar with

tolerance of salinity and drought

GSR IR1-

5-S14-Sl2-Y2

Huang-Hua-Zhan/OM1723//Huang-

Hua-Zhan

Backcross

introgression line

BC1F6

115 High-yielding, irrigated cultivar with

tolerance of salinity and drought

GSR IR1-

8-S6-S3-Y2

Huang-Hua-Zhan/Phalguna//Huang-

Hua-Zhan

Backcross

introgression line

BC1F6

110 High-yielding, irrigated cultivar with

tolerance of salinity, submergence and

drought

GSR IR1-

8-S12-Y2-D1

Huang-Hua-Zhan/Phalguna//Huang-

Hua-Zhan

Backcross

introgression line

BC1F6

121 High-yielding, irrigated cultivar with

tolerance of salinity and drought

GSR IR1-

12-D10-S1-D1

Huang-Hua-Zhan/Teqing//Huang-

Hua-Zhan

Backcross

introgression line

BC1F6

110 Aromatic, high-yielding, irrigated cultivar

with tolerance of salinity and drought

IR74371-70-1-1 IR 55419–4*2/WAY RAREM Pedigree breeding 110 Drought tolerant [11]

NSICRc158 IR 73885-1-4-3-2-1-6 (MATATAG 9)/

IR70479-45-2-3//IR64680-81-2-2-1-3

Pedigree breeding 120 High Yielding under Irrigated variety [12]

PSB Rc82 IR 47761-27-1-3-6/PSB RC 28

(IR56381-139-2-2)

Pedigree breeding 119 High Yielding under Irrigated variety [13]

* CF = continuous flooding or under irrigated conditions

doi:10.1371/journal.pone.0164456.t001
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Modeling study

General description of ORYZA version 3.0. Evaluations conducted under various envi-
ronments and crop management practices have established the reliability of ORYZA2000 in
predicting rice growth, development, and yield [14]. This model has been successfully used in
evaluating the performance of breeding lines in various environments [7] under different water
and nitrogen management systems [5, 10, 15, 16, 17]. The ORYZA (v3) is an improved version
of ORYZA2000 with additional functions to quantify the effects of drought, nitrogen defi-
ciency, and irrigation management [18] (https://sites.google.com/a/irri.org/oryza2000/home).
Unlike ORYZA2000 [19], most of the variety parameters used by ORYZA (v3) are genetic
parameters, and the effects of environment on photosynthesis, assimilate partitioning, growth
of crop organs, leaf area development, and water and nitrogen uptake have been integrated
into the model with extra parameters representing responses of specific varieties.

Model calibration for varietal parameterization. The observeddata from experiments
marked by “C” (Table 2) was used for variety parameterization in the process of model calibra-
tion. The experiment-specificcrop management practice and weather information were used
correspondingly in each experiment. Under rainfed conditions, soil water potential was used as
input for variety parameterization. The parameters controlling and affecting leaf development,
light interception, assimilate partitioning, leaf death, drought tolerance, rooting depth, and
nitrogen uptake were calibrated using an auto-calibration tool to minimize the differences
between the measured and simulated values on LAI, total above-ground biomass (AGB), and
biomass of green leaves, dead leaves, stems, and panicles.

The auto-calibration program was developed based on differential evolution algorithms of
global optimization [20] and applied on the earlier studies [21, 22] for parameterization of
ORYZA2000. The documentation of varietal parameterization using the auto-calibration pro-
gram is available online (https://sites.google.com/a/irri.org/oryza2000/downloads/ new-
release/download-new-version). The varietal parameters used in this study were fixed for
ensuring that the differences between simulated and measured values are similar to the coeffi-
cients of variation (CV) of field measurements [23, 24], the desired target differences were set
to 5% of the measured values for storage organ biomass, 10% for green leaf and total AGB, and
15% for LAI and dead leaf biomass. The initial values of varietal parameters were from a popu-
lar variety, IR72, and their variation ranges were assumed to be 25 to 50% to ensure that the

Table 2. Experiments and associated varieties implemented in Los Baños (LB) and Nueva Ecija (NE), Philippines, during the dry seasons of 2011

(2011-DS), 2012 (2012-DS), 2013 (2013-DS) and wet season of 2013 (2013-WS). RF indicates switching from continuously flooded to rainfed condition

after panicle initiation while CF indicates continuously flooded throughout the season. The datasets were marked for calibration (C) and evaluation (E).

Variety Experiments

2011-DS-RF 2011-DS-CF 2012-DS-RF 2012-DS-CF 2013-DS-CF 2013-WS-CF

FFZ C C E E

GSR IR1-1-Y4-Y1 C E

GSR IR1-5-S8-D3-SUB1 C E

GSR IR1-5-S10-D1-D1 E C C E

GSR IR1-5-S14-Sl2-Y2 C E

GSR IR1-8-S6-S3-Y2 C E

GSR IR1-8-S12-Y2-D1 E C C E

GSR IR1-12-D10-S1-D1 E C C E

IR-74371-70-1-1 E C C E

NSICRc158 C C C(LB), E(NE) E(LB, NE)

PSBRc82 E C C E C(LB), E(NE) E(LB, NE)

doi:10.1371/journal.pone.0164456.t002

Combining Limited MET Data with Crop Modeling to Identify Widely Adaptable Rice Varieties

PLOS ONE | DOI:10.1371/journal.pone.0164456 October 10, 2016 4 / 18

https://sites.google.com/a/irri.org/oryza2000/home
https://sites.google.com/a/irri.org/oryza2000/downloads/


calibrated parameter values are physiologically reasonable. The values of key varietal parame-
ters for each GSR variety developed from the calibration process were presented in S1 Table
(Hereafter, ‘S’ after table/figure numbers indicates supporting information).

Validation of model prediction. Model predictions on rice growth and yield must be vali-
dated using independent experiments before the model can be used for further simulations
over different environments. To ensure the predictability of ORYZA (v3) for the growth and
development of different varieties under different environments, the model was initially evalu-
ated against a standard set of measurement data from actual field experiments as indicated by
‘E’ in Table 2.

The experiment-specificweather and soil data, as well as crop management information,
were fed to the model for validation. Measurements on the actual and simulated sequential
AGB, panicle biomass (PB), and commercial grain yield (GY) from the experiments for all
GSR and check varieties were integrated into X and Y data pairs for each sampling date. With
the data pairs, the statistical analyses were conducted to quantify the differences betweenmea-
sured actual (X) and simulated (Y) values for AGB, PB, and GY. The calculated statistical
parameters were the linear regression parameters for slope (α), intercept (β), and correlation
coefficient (R2), and the Student’s t-test with unequal means assumption (P(t)). In addition, the
normalized root mean square errors (RMSEn) and index of modeling agreement (Meff) [25]
were calculated using Eqs 1 and 2, where n is the number of measurements, i is the data pair
index, and X is the average of all observations for a variable.

RMSEn ¼
ðn
Pn

i¼1
ðYi � XiÞ

2
Þ

0:5

Pn
i¼1

Xi
� 100 ð1Þ

Meff ¼ 1 �

Pn
i¼1
ðYi � XiÞ

2

Pn
i¼1
ðjYi � X j þ jXi � X jÞ2

ð2Þ

Model reproduces experimental data best when α, R2 and Meff are close to 1, β is close to 0,
P(t) is larger than 0.05, and RMSEn is similar to the CV of measured values.

Simulations with numerous environments. GEI needs to be quantified using thousands
of simulations in various environments in order to achieve the study targets. Consequently, the
simulations were designed to have the same crop management across environments for all vari-
eties to ensure that the variation in rice growth and development will come from the GEI. In
this study, crop management was excluded as a factor of environment because it is an integra-
tion of human activities and could be modified easily.

All GSR varieties used in this study were bred for drought-prone environments, thus, the
simulations were designed for rainfed conditions. The current rice cultivation regions in South-
ern Asia were gridded at 15 arc-minute geo-resolution, with each grid cell assigned as one envi-
ronment, thereby producing 3796 environments. The corresponding historical weather (across
15 years) and soil information of each grid cell was extracted from IRRI database and from the
World Inventory of Soil Emission Potential (WISE), respectively [26], to determine the tempo-
ral and spatial variations of the target environments. Temporally, the 15 years of weather infor-
mation from 1998 to 2012 explained the dynamics and variation of the environment season by
season. Spatially, the environments of adjacent grid cells may be similar to or significantly dif-
ferent from each other due to varying weather and soil information.

For each GSR variety and each environment, two groups of simulations were designed to
differentiate the performance of the crop under the two types of water management practices
—continuously flooded (group 1) and rainfed (group 2) in Table 2. For both groups, fertilizer
was fully supplied, and rice was assumed to grow under conditions without any biotic-stress.
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Therefore, radiation and temperature were the only limiting factors for rice growth in group 1,
while soil moisture was an additional limiting factor in group 2. In each group, 24 sowing dates
per year were included, starting from 1 January at 15-day intervals, over 14 years (from 1998 to
2011). The rice crop sown in the later seasons of 2011 grew through early 2012 and required
the weather information for 2012 for simulation. In total, 672 simulations (24 sowing dates
y-1 × 14 years × 2 groups) were implemented for each variety in each environment. Other crop
management practices, except for water management, were completely the same for both
groups. The field bund height was set to 10 cm and the seedlingswere transplanted at 14 days
after sowing with a density of 66 seedlingm-2.

The model predicted commercial GY (grain biomass with 14% moisture). The average
drought index (varying from 0 to 1 for severe to no drought stresses) in the vegetative and
reproductive stages was used for varietal performance evaluation over a large number of envi-
ronments and for the identification of TPEs.

Analysis of data

Simulation data cleaning. Three variables were extracted from the outputs of simulations
for each variety in each environment and each group, namely GY, average daily drought stress
index in the vegetative stage (DIV) and reproductive stage (DIR). The outputs of each variable
in groups 1 and 2 (i.e. irrigated and rainfed water management, respectively) were organized
into matrices P and A, respectively (Eqs 3 and 4), where p and a stand for the simulated values
of a variable among GY,DIV, and DIR from groups 1 and 2. The subscripts i and j represent
the indices of sowing dates in a year and years of simulation, respectively. Subscript i changes
from 1 (first sowing date on 1 January) to n (last sowing date), while j varied from 1 (start year
1989) to m (last year of simulation). In this study, the n and m were 24 and 14, respectively.

P ¼ jpijj ði ¼ 1; 2; � � � ; n; j ¼ 1; 2; � � � ;mÞ ð3Þ

A ¼ jaijj ði ¼ 1; 2; � � � ; n; j ¼ 1; 2; � � � ;mÞ ð4Þ

The matrix P was only organized for GY, assigned as PY, but A was organized for variables
GY,DIV, and DIR, indicated as AY, AV, and AR, respectively. In PY, any zero value of pij
implied that the ith sowing date was not suitable for rice growth. Therefore, the corresponding
pi. and ai in all four matrices were removed and excluded in the succeeding analyses.

Classificationof TPE. To define the characteristics of each environment, the matrices PY,
AY, AV, and AR of all varieties were combined into four big matrices of PY0, AY 0, AV 0, and
AR0, respectively. The TPE for rainfed rice was classified based on information on the best
rainfed season in each environment.

To identify the best rainfed season, the average rainfed yield (RY) and CV over the years
and all varieties under rainfed condition were calculated for each sowing date from AY 0 (Eqs 5
and 6), where c is the number of varieties in this study, subscript v denotes varieties, and i
stands for sowing seasons. The 24 sowing dates were tested to derive RY and a maximum of 24
values were derived for CV. The best rainfed season was selected from the top three RY for the
smallest CV.

RYi ¼

Pc
v¼1

Pm
j¼1

aijv

m� c
ð5Þ
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CVi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m�c

Pc
v¼1

Pm
j¼1
ðaijv � a0iÞ

2
q

AYi
ð6Þ

For each environment, the data of the best rainfed season was extracted from PY0, AY 0, AV 0,
and AR0 to data arrays pyjv, ayjv, avjv, and arjv for irrigated and rainfed grain yields, and the
drought indices at the vegetative and reproductive stages, in which j and v are the year and vari-
ety indices among all tested varieties and years. These four arrays were used to determine the
TPE class of a given environment.

For each environment, the TPE class for rainfed rice was defined by the severity and type of
drought stress it was subjected to. The severity of drought stress was presented by the frequency
(f75) at which ayjv/pyjv is lower than 0.75. Here, we assumed that the yield reduction by 25%
caused by drought is acceptable for a single season, but a higher frequency of such reduction
among seasons was considered a significant drought impact. Severity of drought stress was
classified into three groups: 1) severe drought stress for f75�50%; 2) moderate drought stress
for 25%�f75<50%; and 3) none to mild drought stress for f75<25% (Table 3).

The impact of drought stress is highly related to the timing of its occurrence in the different
rice growth stages. Drought stress is relatively more harmful when it occurs in the reproductive
rather than the vegetative stage [27]. In this study, drought stress was classified into three types
according to the growth stage at which it occurred: 1) vegetative; 2) reproductive; and 3)
mixed, when drought stress occurred in both vegetative and reproductive growth stages.

To determine the drought type of an environment, av and ar were derived from avjv and
arjv as average values of all their elements. Drought was vegetative type if av is smaller than ar ,
or reproductive type if ar is smaller than 90% of av , otherwise, the drought was mixed type
(Table 3). Finally, all environments were classified into 9 TPE groups based on the GEI gener-
ated by simulation results of ORYZA (v3).

Yield stability and adaptability of variety. Yield stability of a given variety across envi-
ronments was evaluated with simulated grain yields under irrigated and rainfed conditions
among the best rainfed rice seasons. For a variety, the irrigated and rainfed yields in the best
rainfed season were extracted from each environment to form two new data matrices YP and
YA (Eqs 7 and 8), where j stands for the simulation years changing from 1 to m (Eqs 1 and 2),

Table 3. TPE classification of environment in the study area based on the drought severity and

drought timing. The f75 is simply the frequency of the rainfed yields occurring less than 75% of irrigated

yield.

TPE Drought Timing Drought Severity

L1 Vegetative None or Mild Drought (f75<25%)

L2 Reproductive

L3 Vegetative + Reproductive

M1 Vegetative Moderate Drought (25%�f75 <50%)

M2 Reproductive

M3 Vegetative + Reproductive

S1 Vegetative Severe Drought (f75�50%)

S2 Reproductive

S3 Vegetative + Reproductive

doi:10.1371/journal.pone.0164456.t003
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k stands for the number of environments, and q is the total number of environments.

YP ¼ jypjkj ðj ¼ 1; 2; � � � ;m; k ¼ 1; 2; � � � ; qÞ ð7Þ

YA ¼ jyajkj ðj ¼ 1; 2; � � � ;m; k ¼ 1; 2; � � � ; qÞ ð8Þ

Five indicators, γ, δ, λ, φ and ψ, were derived from the data of YP and YA to quantify the
yield stabilities of a variety in a class of TPE or all tested environments where parameter γ is
the average rainfed yield derived from YA; δ presents how far the rainfed rice yield is from the
irrigated rice yield (Eq 9); λ is the coefficient of variation of rainfed yield in YA (Eq 10), repre-
senting the yield variation cross over both spatial and temporal scales; φ is the spatial variability
of yields among environments; and ψ is the temporal variability of yield among different
growth seasons (Eqs 11 and 12). The parameters λ, φ, and ψ, represent the yield stability over
all environments, or on a given TPE, depending on the yield dataset used in the analysis. Vari-
ety has higher yield stability when the values of these parameters are lower.

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m� q� ð
Pm

j¼1

Pq
k¼1
ðypjk � yajkÞ

2
Þ

q

Pm
j¼1

Pq
k¼1

ypjk
ð9Þ

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m�q

Pm
j¼1

Pq
k¼1
ðayjk � gÞ

2
q

g
ð10Þ

φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

q

Pq
k¼1

1

m

Pm
j¼1

ayjk
� �

� g
� �2

r

g
ð11Þ

c ¼
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The analyses above were implemented for all environments and 9 TPE classes. To derive the
five indicators for all environments as an entity, the data in PY and AY were used. For each
TPE class in Table 3, the five indicators were derived from the YP and YA, which were catego-
rized into 9 groups based on TPE classes (Table 4).

Table 4. The datasets used to determine TPE Classes and yield stability in the TPE. YP and YA are

the irrigated and rainfed rice grain yields in the best rainfed season. The λ is the coefficient of variation of

rainfed yield in YA, φ is the spatial variability of yields among environments, and theψ is the temporal variabil-

ity of yield among different growth seasons.

TPE Classes Yield datasets to define TPE Yield stability (= 1.0—value of the parameter)

L1 YPl1 and YAl1 λ, φ and ψ for domain of TPE: L1

L2 YPl2 and YAl2 λ, φ and ψ for domain of TPE: L2

L3 YPl2 and YAl λ, φ and ψ for domain of TPE: L3

M1 YPm1 and YAm1 λ, φ and ψ for domain of TPE: M1

M2 YPm2 and YAm2 λ, φ and ψ for domain of TPE: M2

M3 YPm3 and YAm3 λ, φ and ψ for domain of TPE: M3

S1 YPs1 and YAs1 λ, φ and ψ for domain of TPE: S1

S2 YPs2 and YAs2 λ, φ and ψ for domain of TPE: S2

S3 YPs3 and YAs3 λ, φ and ψ for domain of TPE: S3

doi:10.1371/journal.pone.0164456.t004
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A better variety should have a large value of γ to indicate high productivity in drought-
prone environments, and a small value of δ to indicate strong tolerance to drought stress or
low risk in drought-prone environments. A small value of λ is attributed to good yield stability
in spatial and temporal dimensions, or even a good spatial or temporal yield stability with the
small value of φ or ψ.

Moreover, the values of λ, φ and ψ derived from the whole matrices of PY and AY also rep-
resented the properties for varietal adaptability among TPEs which may vary from severe to no
drought stress conditions. The good adaptability for many different kinds of TPEs does not
necessarilymean a good productivity and lower risk to drought stress. For a rice breeder, a vari-
ety with low values of δ, λ, φ and ψ, and a high value of γ over different kinds of environments
is a good set of selection criteria. The selectionwould be very difficult for all TPE classes but is
achievable for a few TPE classes. For a local farmer, a variety with lower values of λ and ψ and a
higher value of γ is desirable, while a low value of δ implies easy crop management in rainfed
rice production systems.

The cluster analysis. Hierarchical clustering analysis was conducted to directly show the
difference between the GSR and the check varieties in terms of plant physiological parameters
using the ORYZA (v3) model and varietal adaptability. The varietal performance in a given
TPE or across all TPEs was clustered into five groups based on the five parameters γ, δ, λ, φ
and ψ to rank the performances of the varieties from 1 (best) to 5 (worst).

Results

The reliability of ORYZA (v3) for production prediction

Following the calibration and validation processes, each variety used in this study was parame-
terized and evaluated in independent experiments (Table 2). In comparing the simulated to
measured values, ORYZA (v3) performedwell in representing the three key plant growth vari-
ables–AGB, PB, and GY–in both calibration and validation datasets for all varieties (Table 5).
The estimations on AGB, PB, and GY were reliable for individual varieties because all statistical
indicators were close to the desirable values (Table 5), despite different values among varieties
(S2 and S3 Tables). The graphical analysis shows that more than 90% of the simulated plant
biomass and GY values were within the range of confidence defined by CV of measurements
(S1 Fig). Particularly, the similar accuracies in estimating biomass accumulation and grain
yields in rainfed conditions as those in full irrigated conditions implied that drought stress in
rainfed was a reliable estimate.

In summary, ORYZA (v3) was able to represent the dynamics of AGB and PB during the
growing season, and also well predicted the end-seasonGY for all tested varieties and environ-
ments. The simulated values on yield, biomass accumulation, and drought stress were reliable
inputs for the classification of TPE and evaluation of varietal performance in a large number of
different environments.

Classification of TPE based on GEI

Using the calibrated and validated crop parameters, ORYZA (v3) predicted the yields of all
varieties based on GEI (Table 1) in 3796 environments (i.e. soil and climate combinations) in
Southern Asia. Using the predicted yields under fully irrigated and rainfed conditions, these
environments were classified into 9 TPE classes depending on drought severities and time of
drought occurrence relative to the crop growth stage in the best local rainfed season (Fig 1).
The major TPE was identifiedwith mild drought stress at the vegetative stage, with 15.4% of
the total environments under mild drought throughout the growth season. Moderate drought
stress was mainly affecting the whole growth season or reproductive stage while severe drought
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mainly occurred in the reproductive stage for 5.4% of the environments. There was no severe
drought stress for the best rainfed season in SoutheasternAsia. In this region, there was no sig-
nificant yield penalty for rainfed rice if it is grown in the best local rainfed season. Rainfed rice
would suffer severe drought stress in western parts of South Asia, which implies that rice yield
could not reach 75% of the irrigated rice yield in more than 50% of the best rainfed seasons.

Yield stability of GSR varieties

The TPE type for severe drought stress in the vegetative stage (S1) did not exist for the best
rainfed rice season in Southern Asia (Fig 1). Consequently, S1 was excluded in all succeeding
analyses (Fig 2). The TPE types, S3, M1, and L2 only occurred in a few environments, hence,
were also excluded in the next analysis for yield spatial variation (Fig 2D).

Table 5. Statistical analysis for the calibration and validation datasets of all tested varieties in this study. AGB is above-ground biomass, PB is pan-

icle biomass, and GY is grain yield.

Variable Data pairs R2 α β p(t) RMSEn (%) Meff

Calibration dataset

AGB 102 0.969 284.959 0.919 0.470 8.592 0.998

PB 50 0.973 120.395 0.955 0.492 4.566 0.999

GY 26 0.898 567.020 0.849 0.493 8.987 0.993

Validation dataset

AGB 116 0.955 191.209 0.929 0.425 7.851 0.998

PB 55 0.971 -93.475 0.971 0.357 6.636 0.999

GY 27 0.885 314.758 0.871 0.305 9.282 0.990

doi:10.1371/journal.pone.0164456.t005

Fig 1. The TPE classes of the tested environments in South Asia. The TPE classes of drought stress to rainfed rice at

possible areas and the best rainfed season.

doi:10.1371/journal.pone.0164456.g001
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It was not surprising that the rainfed rice yields increased for all varieties as the drought
stress changed from severe to mild stress among environments (Fig 2A), but the yield penalty
caused by drought and the yield under severe drought stress were significantly different (Fig
2A and 2B). The drought stress at the reproductive stage had a stronger impact on rainfed rice
production than the other two types of drought stresses (vegetative only, and combined vegeta-
tive and reproductive drought stresses) (Fig 2B). Yield variability followed a similar trend of
yield penalty among TPEs (Fig 2C). Similar to yield penalty and variation (Fig 2B and 2C), the
seasonal variation of yield also decreased as drought stress decreased (Fig 2E). However, this
does not hold true for yield spatial variation (Fig 2D), where yield spatial variation was higher
in mild drought stress environments than in moderate drought stress environments. As
expected, the yield spatial and seasonal variations were much higher in severe drought stress
than in moderate and mild drought stress environments because the impact was normally
magnified in severe drought stress environments. This implies that the little changes on
drought severity and/or occurring time would result in large changes in rice production.

Considering the yields and their stability over different TPEs for 3796 environments, the
variety GSR-IR1-1-Y4-Y1 was outstanding among all other varieties due to its significantly
higher GY, relatively lower yield penalty of drought, and relatively good grain yield stability
over locations and seasons (Fig 2C–2E). Varying crop characteristics resulted in the different

Fig 2. The rainfed rice yields, yield variation and stability of tested varieties over different TPEs. Yield and yield

spatial variation.

doi:10.1371/journal.pone.0164456.g002
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performance of all other varieties (Fig 2F). GSR-IR1-8-S6-S3-Y2 was also demonstrated to per-
form better than the check varieties PSBRC82, NSICRc158, and IR74371-70-1-1 and was
found to have good adaptability to all environments. The varieties GSR-IR1-5-S8-D3-SUB1
and GSR-IR1-8-S12-Y2-D1 were similar to the check varieties PSBRC82 and NSICRc158
(Table 6). In severe drought environments, where the yield penalty of drought may reach 85%,
only GSR-IR1-1-Y4-Y1 and GSR-IR1-8-S6-S3-Y2 had better adaptability than or equal to the
check variety PSBRc82 (Table 6). GSR-IR1-1-Y4-Y1, GSR-IR1-5-S8-D3-SUB1, GSR-IR1-
5-S10-D1-D1, GSR-IR1-8-S6-S3-Y2, and GSR-IR1-8-S12-Y2-D1 were relatively more compet-
itive with the check varieties under moderate and mild drought stress environments. Except
for GSR-IR1-1-Y4-Y1 and GSR-IR1-5-S10-D1-D1, the other GSR varieties did not have an
advantage to adapt to drought stresses at reproductive or combined vegetative and reproduc-
tive stages, while most GSR varieties adapted well to drought stress at the vegetative stage.

Identification of potential adaptation regions for outstanding varieties

The performance of GSR-IR1-1-Y4-Y1 was outstanding among all other GSR and check varie-
ties in all types of TPEs, hence, having a high potential for wide dissemination in Southern
Asia. The suitability of this variety in different regions in Southern Asia should be explored
(Fig 3), with a high suitability found in Southeast Asia and a low suitability in some western
parts of South Asia (i.e. Pakistan and West India).

Discussion

The consistency between field experiment and simulation

ORYZA (v3) well represented the biomass accumulation and final GY at site-specific condi-
tions (Table 5, S2 and S3 Tables, and S1 Fig). The difference in rice yield was not statistically
significant between the model predictions and the actual observations in the field experiments,
which confirmed that ORYZA (v3) is able to provide a reliable estimation of rice yield in vari-
ous environments.

Using these reliable rice yield predictions, the performance of GSR varieties was evaluated
across a large number of environments in comparison with check varieties. The same evalua-
tion was also conducted using data from field experiments under limiting environments.
The evaluation results from the simulated data were inconsistent with the results from the

Table 6. Adaptability ranking of the varieties to different levels of drought stress. Severity can be severe (S), moderate (M), and none to mild (L)

which can occur at vegetative (V), reproductive (R), and combined vegetative and reproductive (V+R) timing.

VARIETY Drought severity Drought timing Sum

S M L V R V+R

FFZ 4 5 4 5 3 5 5

GSR-IR1-1-Y4-Y1 1 1 1 1 1 1 1

GSR-IR1-5-S8-D3-SUB1 5 3 2 2 3 2 3

GSR-IR1-5-S10-D1-D1 5 3 2 2 2 3 4

GSR-IR1-5-S14-S2-Y2 5 4 3 3 3 3 4

GSR-IR1-8-S6-S3-Y2 2 2 3 4 2 2 2

GSR-IR1-8-S12-Y2-D1 5 3 2 2 3 2 3

GSR-IR1-12-D10-S1-D1 4 4 3 4 3 4 4

IR-74371-70-1-1 3 5 4 5 3 5 5

NSIC Rc158 3 3 3 4 3 3 3

PSBRc82 2 4 3 3 3 2 3

doi:10.1371/journal.pone.0164456.t006
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measured GYs (Table 7). The key parameters were not comparable between the results from
the field experiments in limited environments and the simulation in a large number of environ-
ments in terms of average yield, variation, and penalty of yield in drought-prone environments,
resulting in a different performance ranking of the tested varieties (Table 7,METorder vs. Porder).
This result suggests that the sampled environments of the field experiments did not cover the

Table 7. Results derived from field experiments in limited environments and simulations under a large number of environments.

ID Field experiment Large simulation

N Yield CV Yield penalty METorder Sorder N Yield CV Yield penalty Porder

FFZ 2x2 4.16 0.83 81.8 5 5 3796x14 4.42 0.29 39.0 5

GSR IR1-12-D10-S1-D1 2x3 3.84 0.84 82.0 8 6 3796x14 4.58 0.23 35.6 4

GSR IR1-1-Y4-Y1-Y1 2x1 4.23 0.45 61.9 4 3 3796x14 6.11 0.22 35.3 1

GSR IR1-5-S10-D1-D1 2x2 4.12 0.66 70.9 6 8 3796x14 3.31 0.27 39.1 9

GSR IR1-5-S14-S2-Y2 2x1 5.07 0.47 64.3 2 2 3796x14 3.17 0.25 37.4 11

GSR IR1-5-S8-D3-Sub1 2x1 6.29 0.59 74.5 1 1 3796x14 3.58 0.28 47.9 8

GSR IR1-8-S12-Y2-D1 2x2 3.16 0.91 86.8 11 9 3796x14 3.78 0.26 40.6 7

GSR IR1-8-S6-S3-Y2 2x1 4.68 0.49 66.0 3 4 3796x14 5.25 0.28 39.2 2

IR74371-70-1-1 2x2 3.87 0.65 71.4 7 7 3796x14 4.25 0.24 38.8 6

NSIC Rc158 3x1 3.67 0.38 91.6 10 11 3796x14 5.16 0.30 43.9 3

PSBRc82 2x1+3x1 3.73 0.68 69.0 9 10 3796x14 3.26 0.26 42.6 10

METorder is the varietal performance rank of all 11 varieties from the best (1) to the worst (11) ranked by the data from MET field experiment, Sorder is the

varietal performance rank using simulation data under MET site-specific condition, and Porder is the varietal performance rank using simulation data under

numerous environments. The N is number of environments while CV presents the coefficient of variation of yields among environments.

doi:10.1371/journal.pone.0164456.t007

Fig 3. The potential dissemination areas of GSR-IR1-1-Y4-Y1. The potential dissemination regions of the identified

outstanding variety GSR-IR1-1-Y4-Y1 in Southern Asia.

doi:10.1371/journal.pone.0164456.g003
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highly diverse environments across the region in simulation. While the varietal performance
ranking was constrained only for experimental sites and 14 best rainfed seasons (S4 Table), the
METorder and Sorder still did not completely agree with each other, but the ranking difference
between them was insignificant (Table 7). However, Sorder of the top performing varieties corre-
sponds significantly to METorder (R2 = 0.86, p<0.0001) in this case. In other words, with site
specific soil and weather information, the ORYZA (V3) model was able to correctly evaluate
the varietal performances in the MET experiments for specific sites. However, the accuracy in
evaluating varietal performances using the model approach was still constrained by the quality
of input information on weather and soil. Further study should be conducted to assess how
these kinds of information cause inconsistency of varietal performances, particularly under
extreme (good and bad) environments. In practice, any variety should be definitely considered
promising, provided it had a top ranking in grain yield in both field experiments under a lim-
ited number of environments and simulation results from a larger number of environments. In
this study, the GSR IR1-1-Y4-Y1-Y1 and GSR IR1-8-S6-S3-Y2 were confirmed to be the most
promising varieties for the rainfed areas using this approach, as they showed 10–20% and 20–
40% grain yield advantages over the advanced check NSICRC158 and drought tolerant check
IR74371-70-1-1, respectively, across large number of environments.

Evaluation from GEI to TPE

In the ORYZA (V3) model, the genotype is characterized by a series of quantitative parameters,
including the weather, soil, and crop management information. These parameters are inputs
for simulations, in which the genetic parameters for a rice variety are constant and the environ-
ment parameters constantly change. As a result, GEI, which was simply quantified by the simu-
lated varietal yields through a series of eco-physiological processes in the model, may vary
considerably due mainly to various environments. Consequently, environments can be classi-
fied using the GEI results represented by the simulation yields in this case. Similar approach
has been proven as an effective and widely used method to classify environments of crop
growth [28, 29, 30, 31]. It was used as classification of TPE for rice growth [32, 33]. In this
study, the quantification of GEI by the ORYZA (V3) model used a set of variables for produc-
tion environments as well as the number of environments and seasons [34], for classifying the
TPEs of the rainfed ecosystems. However, the number and types of genotypes could signifi-
cantly affect the classification of TPE (Fig 4). Thus, the number of different genotypes to be
used in the model should not be less than ten in order to accurately define the types of TPE
from GEI.

It was evident that the variation of genotypes also affected the confidence levels pertaining
to the definition of TPE types. In this study, all genotypes were assumed to have some degree
of drought tolerance. The proportion of TPE with severe drought would increase when more
drought-sensitive genotypes were used. Moreover, the best rainfed seasons used in the classifi-
cation of TPE may differ to local rice farming seasons, introducing bias in the classification,
which should be addressed in future studies. On the other hand, the defined TPE, as in severe
drought, would be very useful in the selection of drought tolerant varieties. The drought toler-
ance of a new line would be better than the varieties used in this study if it performed better in
a typical drought TPE.

Conclusions

ORYZA (v3) was able to reliably predict the total above-ground and panicle biomass, as well
as the final grain yield of rice. The uncertainty of around 10% on grain yields was comparable
to the coefficient of variation of the field measurements on these variables. In this study,
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calibration and validation were carried out in multiple environments. The reliable predictions
on grain yield ensure the capacity of ORYZA (v3) to evaluate the performances of these cali-
brated varieties in a large number of environments. The crop modeling approach was demon-
strated to effectively evaluate varietal performances over large numbers of environments with
minimal costs and time. High quality evaluation on varietal performance using the modeling
approach can be achieved with improved soil and weather information. The developed
approach can also be used for other rice growing regions whenever the crop, soil, and weather
data are available. Logically, this approach can also be applied on other crops by replacing the
ORYZA (v3) rice model with the corresponding crop models and following the stepwise
process.

Upon integration of the predicted grain yields of all the tested varieties, the environments
involved in this study were classified into different drought stress TPEs. In Southern Asia, 86%
of the current rice cultivated areas experiencemild drought stress, of which 75% occurs at the
vegetative stage and only 15% during the whole season if the cropping season was adjusted
according to the local soil-climatic condition. Severe drought stress at the reproductive stage
could possibly occur in 5.4% of the total area, located mainly in the North Western part (i.e.
Pakistan and North West India) of Southern Asia. The TPE classification would be reliable
only if the number of tested genotypes was ten or larger. Two GSR varieties, GSR-IR1-1-Y4-Y1
and GSR-IR1-8-S6-S3-Y2 consistently performed better than others across all types of TPE,
particularly in TPEs with severe drought stress or drought stress at reproductive stage.
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