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Abstract
The Amazon River has the largest discharge of all rivers on Earth, and its complex plume

system fuels a wide array of biogeochemical processes, across a large area of the western

tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon

sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns

of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in

the Amazon River Plume, generating a robust dataset (more than 100 million mRNA

sequences) that depicts the metabolic capabilities and interactions among the eukaryotic

microbes. Combining classical oceanographic field measurements with metatranscrip-

tomics yielded characterization of the hydrographic conditions simultaneous with a quantifi-

cation of transcriptional activity and identity of the community. We highlight the patterns of

eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized

to be valuable within forecasting models. An advantage to this targeted approach is that the

database of reference sequences used to identify the target genes was selectively con-

structed and highly curated optimizing taxonomic coverage, throughput, and the accuracy

of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic

anhydrase presumably to support high growth rates and enhance uptake of low levels of

dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fix-

ing symbionts) blooms were common when surface salinity was mesohaline and dissolved
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nitrate concentrations were below detection, and hence did not show evidence of nitrate uti-

lization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen.

These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein

presumably caused by photodegradation under increased light penetration in clearer

waters, and increased expression of silicon transporters as silicon became limiting. Expres-

sion of these genes, including carbonic anhydrase and transporters for nitrate and phos-

phate, were found to reflect the physiological status and biogeochemistry of river plume

environments. These relatively stable patterns of eukaryotic transcript abundance occurred

over modest spatiotemporal scales, with similarity observed in sample duplicates collected

up to 2.45 km in space and 120 minutes in time. These results confirm the use of metatran-

scriptomics as a valuable tool to understand and predict microbial community function.

Introduction
The Amazon River discharges an average of 1.55 × 105 ± 0.13 m3 s-1 at Obidos, Brazil, ulti-
mately resulting in a thin, fresh water layer at the surface called the Amazon River plume
(ARP), which also varies seasonally and covers up to 1.3 × 106 km2 of the western tropical
North Atlantic Ocean [1–4]. The ARP harbors many distinct microbial communities along the
salinity gradient [5]. In lower salinity waters, where dissolved nutrients such as silica, iron,
nitrate and phosphate are abundant, coastal diatom communities flourish once light can pene-
trate the initially turbid plume [4, 6]. Once ammonium and nitrate are depleted in the mesoha-
line portions of the plume, diatom-diazotroph association (DDA) blooms utilize the remaining
silica while endosymbiotic cyanobacteria fix nitrogen and transfer it to the diatoms [4, 7].
There are at least 4 genera of diatoms (Hemiaulus, Rhizosolenia, Chaetocerous, Guinardia)
which form partnerships, or symbioses, with nitrogen fixing heterocystous cyanobacteria
(Richelia intracellularis and Calothrix rhizosoleniae) and collectively these are referred to as
DDAs [8]. These DDA blooms exhibit high rates of nitrogen and carbon fixation worldwide [4,
9]. DDA blooms in the ARP sequester 1.7 Tmol of carbon annually [4], and similar distribu-
tions of DDAs have been reported in the Niger and Congo river plumes as well as the South
China Sea [10, 11]. When silica and phosphate are no longer available, nitrogen-fixing Tricho-
desmium dominate, which have been shown to regulate their buoyancy with gas vesicles to
acquire phosphorus at depth [12].

Metatranscriptomics, the collection and analysis of mRNA from a community of organisms,
allows us to study fluctuations in the molecular response of natural communities to changing
environmental conditions. The first report to describe an environmental metatranscriptome
was that of Poretsky et al. who built primarily prokaryotic mRNA libraries derived from Sapelo
Island Microbial Observatory (SIMO, a tidal creek in a salt marsh) and the Mono Lake Micro-
bial Observatory (MLMO, a hypersaline soda lake) [13]. Metatranscriptomics can elucidate
how communities respond to environmental changes, including, for example, temperature
effects on eukaryotic phytoplankton metabolism [14], oil spill impacts on deep bacterioplank-
ton [15], and differences in free-living or particle-associated habitats [16]. Although much has
been published about river plume communities [6, 17–20], including some findings about indi-
vidual gene expression [21], metatranscriptomic analysis of microbial eukaryotes has not yet
been performed to examine the difference in gene expression as a measure of metabolic activity
along a river plume salinity gradient.
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Reported here are findings from part of two large, multi-investigator research programs: the
River Ocean Continuum of the Amazon (ROCA) and Amazon iNfluence of the Atlantic: Car-
bOn export from Nitrogen fixation by DiAtom Symbioses (ANACONDAS). We have used
metatranscriptomics to show how the expression of 31 genes relates to the nitrogen, silica,
phosphate, and carbon gradients in the ARP. Focusing a large dataset on minimal genes is cru-
cial to make models where the appropriate caluclations can be performed across the entirety of
the tropical Atlantic. In particular, these 31 genes enable inferences to be drawn on the physio-
logic status of communities such as the DDAs. We also demonstrate that replicates taken up to
two hours and 2.4 km apart still show similar patterns of gene expression across the 31 genes
analyzed. Modeling efforts are currently using these data to expand predictive capabilities of
their ARP ecological models [22].

Materials and Methods
A detailed discussion of sample collection, DNA and mRNA processing, sequencing, and meta-
data collection can be found in a sequence-release announcement [23]. DNA samples were
taken at the same stations, but with different filters. DNA methods are fully described in the
sequence-release announcement [23]. These methods and the location of the metadata used
are briefly summarized below.

Sample Collection
All samples reported here were collected during the May-June 2010 ANACONDAS expedition
onboard the U.S. RV Knorr (KN-197-8; http://www.bco-dmo.org/project/2097). At each of the
six stations selected for metatranscript analysis, near-surface water (upper 3 m) was collected
at about the same time of day (just after local sunrise) by gentle impeller pumping (modified
Rule 1800 submersible pump) through 10 m of Tygon tubing (3 cm diameter) to the ship’s
deck where the water was pre-filtered through a 156 μmmesh into 20 L carboys. The water was
immediately taken to the shipboard laboratory, and gently filtered (using a Masterflex peristal-
tic pump) through a 2.0 μm pore-size, 142 mm diameter polycarbonate (PCTE) membrane fil-
ter (Sterlitech Corporation, Kent, CWA). After< 30 minutes of filtration, membranes were
submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 ml conical tubes, incu-
bated at room temperature for at least 4 hours, stored onboard at -80°C, shipped in liquid
nitrogen, and archived at -80°C until RNA extraction. All filtration and fixation was completed
within 30 min of water collection, and the volume of filtrate passed through each membrane
was recorded. A second (duplicate) sample was collected similarly for each station in the same
general area (within 2.5 km) within two hours of the first sample.

RNA Processing for Eukaryotic Metatranscriptomes
Prior to RNA extraction, filters were thawed, removed from the preservative solution, placed in
Whirl-Pak bags (Nasco, Fort Artkinson, WI), and flash-frozen in liquid nitrogen. A lysis tube
was prepared for each sample consisting of a sterile 50 ml conical tube containing 10 ml of
RLT Lysis Solution and 1.5 ml of 100 μm zirconium beads (OPS Diagnostics, Lebanon, NJ,
USA). The brittle filters inside the bags were broken into small pieces using a rubber mallet
and transferred to the lysis tubes. Tubes were vortexed for 10 min to lyse cells, and RNA was
purified from cell lysate using an RNeasy Kit (Qiagen, Valencia, CA). Following lysis, poly(A)-
tailed mRNA was isolated from total RNA using an Oligotex mRNA kit (Qiagen, Valencia,
CA), and mRNA was linearly amplified with one round of the MessageAmp II aRNA Amplifi-
cation Kit (Applied Biosystems, Austin, TX). mRNA was converted into cDNA using the
Superscript III First Strand synthesis system (Invitrogen, Carlsbad, CA) with random primers,
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followed by the NEBnext mRNA second strand synthesis module (New England Biolabs, Ips-
wich, MA), both according to manufacturer protocols. The 3’ adenine overhang was removed
with T4 polymerase and the cDNA was purified using the DNA Clean and Concentrator -25
Kit (Zymo, Irvine, CA) with five volumes of DNA binding buffer. DNA was resuspended in
100 μL of TE buffer, and stored at -80°C until sample preparation for sequencing.

Sequencing
cDNA was sheared ultrasonically to ~200–250 bp fragments and TruSeq libraries (Illumina
Inc., San Diego, CA) were constructed for paired-end (150 x 150) sequencing using the Illu-
mina Genome Analyzer IIx, HiSeq2000, MiSeq, or HiSeq2500 platforms (Illumina Inc., San
Diego, CA).

Bioinformatics
Paired-end reads were joined using the She-ra program [24] with a quality metric score of 0.5.
Paired reads were trimmed using Seqtrim 20 [25]. Poly(a)-RNA capture methods were not
100% successful, as some rRNA would remain in the sample, so the minimal (0.14–0.33%)
rRNA were removed in silico after sequencing. Remaining rRNA reads in the metatranscrip-
tomes were removed via a Blastn against a database containing rRNA sequences from Gen-
bank. Reads with a bit score>50 to one of the sequences in the database were removed. Reads
representing genes or transcripts of 31 selected proteins (database described below) were iden-
tified using a Blastx search with a bit score cutoff of 40 against a custom database consisting of
multiple reference sequences from diverse taxa for each gene, along with their paralogs to elim-
inate false-positives. Sequences that hit the targeted gene database were subsequently queried
against RefSeq protein database using Blastx to confirm the functional assignment of the reads
and to obtain taxanomic designations.

The custom database used contained thirty-one well characterized genes representative of
key biological functionality such as carbon autotrophy and heterotrophy and nitrogen, phos-
phorus, sulfur and silicon cycling. Ten to twenty amino acid sequences covering a broad range
of taxonomy were used as reference sequences for each protein, and sequences representative
of paralogs for the selected genes were also included in the database to eliminate false-positives.
As often as possible, genes were collected directly from physiological papers where the specific
sequences were originally identified and sequenced. This gene-specific reference database was
tested on a subset of Amazon reads using a bit score>40, and a re-analysis of the positive
reads against the RefSeq protein database was used to adjust the composition of the database.

Metagenomic sample collection and processing were performed by collaborators, and
detailed methodology has been previously published [23]. True replicates were utilized at each
station to collect the metagenomics samples. Metagenomic sequences were searched for 18S
rDNA candidates via matching for a 18S reference covariance model using Infernal [26]. A
Blastn [27] search was performed against SILVA [28] (release 115) to identify study-specific
taxa to be included in the reference tree, in addition to a predefined set of core sequences repre-
senting the major eukaryotic lineages. The search was executed on a TimeLogicDeCypher sys-
tem (Active Motif Inc., Carlsbad, CA) with e-value threshold� 1E-100. Reference sequences
were then aligned with MAFFT [29] using the G-INS-i setting for global homology. The gener-
ated multiple sequence alignment was visually inspected and manually edited and refined using
JalView [30]. A maximum likelihood reference tree was inferred under the general time-revers-
ible model with gamma-distributed rate heterogeneity and an estimated proportion of invariant
sites (GTR + Γ + I), implemented in RAxML [31] and the bootstrap support values assessed
with the extended majority-rule consensus tree (autoMRE) criterion [32]. The predicted
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metagenomic 18S rDNA sequences were mapped onto the reference tree using pplacer [33]
with the default settings. The counts of the sequences affiliated with the nodes on the reference
tree were normalized to the total number of sequences from their corresponding samples. The
normalized abundances are visualized as circles mapped on the reference tree such that the
diameters of the circles are proportion to the taxonomic abundances. No corrections were
applied to account for a difference in 18S copy number per species.

Nitrate transporters (NRT) were analyzed by performing hmmsearch [34] for the NCBI
CDD nitrate transmembrane transporter models, PLN00028 and NarK (COG2223) for
eukarya and bacteria, respectively. Similarly, hmmsearch was performed against a comprehen-
sive reference database compiled from NCBI RefSeq [35] (release 60), microbial eukaryotic
genomes from JGI (http://genome.jgi-psf.org/), and the recently released microbial eukaryotic
transcriptomic libraries by MMETSP (http://marinemicroeukaryotes.org/). The sequences
from the reference databases were used to infer a reference phylogenetic tree for the NRTs. Ref-
erence sequences were aligned with MAFFT [29] using the E-INS-i setting for multiple con-
served domains and long gaps. The multiple sequence alignment was visually inspected and
manually refined using JalView [30]. A maximum likelihood reference tree was inferred under
the WAG model for amino acid substitutions [36] with gamma-distributed rate heterogeneity
and an estimated proportion of invariant sites (WAG + Γ + I), implemented in FastTree [37].
The branch confidence values were estimated using the Shimodaira-Hasegawa (SH) test [38]
with 1,000 resampling replicates. The NRT environmental ORFs were mapped onto the refer-
ence tree using pplacer [33] with the default settings. The numbers of ORFs affiliated with the
nodes on the reference tree were normalized to the total number of reads from the correspond-
ing samples. The normalized expression levels are visualized as circles mapped on the reference
tree such that the diameters of the circles are proportional to the expression levels.

Sequence Availability
Sequences are available from the iMicrobe (data.imicrobe.us) database under project number
CAM_P_0001194. The sequences are quality controlled fasta files of joined paired-end reads
following removal of rRNA sequences (metatranscriptomes only). Sequences are also available
from NCBI under accession numbers [SRP039390] (metagenomes) and [SRP039544] (poly
(A)-selected metatranscriptomes). The NCBI sequences are fastq files from which rRNA
sequences (metatranscriptomes only) have been removed prior to deposition.

Metadata
Environmental data (temperature, salinity, beam transmittance, dissolved oxygen, pCO2, etc.)
have been previously published [2, 23], as have nutrient and community structure data corre-
sponding to the stations examined [5, 23, 39, 40]. The abundances of the diazotroph population
was determined by epifluorescence microscopy as previously described [41]. ANACONDAS
and ROCA project data are also available at the BCO-DMO data repository (http://www.bco-
dmo.org/project/2097).

Results and Discussion

Hydrographic Conditions and Community Structure
The eukaryotic population in the>2.0 μm size fractioned surface water (156 μm pre-filtered)
was examined at six unique stations (duplicate samples at each location, total of 12 samples).
Of the 6 stations we sampled (Fig 1; Table 1), one (Sta. 10) was in the coastal plume on the shal-
low continental shelf (lowest salinity of 21.7 PSU), two (Sta. 3 and 23) were in the near outer
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plume (salinity of 26–30 PSU), two (Sta. 2 and 25) were in the mesohaline zone (salinity of 31)
expected to favor DDAs, and one (Sta. 27) was in the far outer plume or oceanic zone (salinity
>35). Stations 2 (surface salinity 31.4 PSU) and 23 (surface salinity 26.2 PSU) were sampled
geographically near each other, but about three weeks apart, illustrating the dynamic nature of
the plume by their salinity difference.

Transcript counts were normalized by sample-size. Duplicates at each station were analyzed
to determine variation in gene expression over distance and time sampled. A direct comparison
of normalized transcript counts between duplicates were very similar (R = 0.922) over all the

Fig 1. Salinity map of the May/June 2010 Amazon River Plume cruise aboard the RV Knorr. Salinity (PSU) from the
underway system along the ship track was augmented with National Oceanographic Data Center profiles in regions of low
coverage then interpolated and contoured.

doi:10.1371/journal.pone.0160929.g001
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stations (S1 Fig). The average difference between duplicate transcript counts was 11.43%. The
similarity in duplicates over space and time suggests that expression levels of microbial eukary-
otic communities can be stable over distances of up to 2.45 km (station 23) and time intervals
of up to 2 h (station 10), when environmental factors such as salinity, temperature, illumina-
tion, and nutrient concentrations are also similar. This is an important result, because previous
work has only demonstrated a stability in transcription abundance in environmental samples
within eight minutes [42]. Had there been large transcriptional differences in the 31 examined
genes, without commensurate environmental change, these data would be difficult to link to
biogeochemical cycling or model development. These data suggest that, for at least a subset of
genes, transcripts that relate to the local environmental conditions can be used to assess the
role of the eukaryotic microbial communities in biogeochemical cycles. Replicates also have
been shown to provide greater transcript detection power compared to an increased sequence
depth, highlighting the importance of replicates in measuring differences in transcript activity
among genes with low mRNA copy number [43]. Duplicate sample values are presented as the
average of the duplicates in the ensuing analysis described below.

Eukaryotic community structure varied across the six stations (Fig 2, S2, S3, S4, S5, S6 and
S7 Figs). Despite the 156 μm prefilter, larger cells were still observed due to the filtering process
breaking chains and lysing cells. Over all six stations, the 18S rDNA recovered was 19.2% ±
2.5% diatom, 18.04% ± 4.3% dinoflagellate, and 38.50% ± 3.8% metazoan origin. Since the 18S
rDNA gene has variable copy numbers per genome, relative abundance using 18S results do
not represent absolute community abundance [44]. Station 10, with the lowest surface salinity
and the only detectible dissolved inorganic nitrogen concentration (0.18 μmol L-1), contained a
large diatom bloom consisting principally of the centric diatoms Thalassiosira and Cyclostepha-
nos (S5 Fig), according to best Blastn hit. The thick patches of Chl a in conjunction with ele-
vated inorganic nitrogen levels agrees that this station had a large mixed population of diatoms
[5].Hemiaulus sp., a diatom, which often forms a DDA with the endosymbiotic cyanobacteria
Richelia intracellularis, was found in the 18S rDNA sequences at stations 2, 10 and 25. R. intra-
cellularis was also confirmed in these stations due to the elevated concentrations of PE-2
phycobilipigments [5]. This Hemiaulus sp. population was confirmed by epifluorescence
microscopy at only stations 2 and 25 (Table 1), suggesting that the limit of detection is lower
for the metagenome and that low abundances of DDAs may occur even when inorganic nitro-
gen is available. Station 25 had more abundant Hemiaulus cells (3.71 x 105 cells L-1) than sta-
tion 2 (1.64 x 105 cells L-1). Epifluorescence microscopy observations indicated a healthy DDA
community at station 2, as the DDAs had brightly fluorescent chloroplasts and formed long
chains, while DDA chains from station 25 were short and/or broken and had weak fluores-
cence, suggesting bloom senescence.

Low levels of Hemiaulus were also found at stations 3 and 23, and the phytoplankton com-
munities displayed the salinity transition from station 10 to stations 2 and 25. One exception to
this is that the diatom Leptocylindrus danicus (a typically estuarine diatom)[45] was numerous
as station 3 and Chaetocerous decipiens (a typically coastal diatom)[46] was most abundant at
station 23. These intermediate plume stations contained the largest metazoan population,
largely consisting of Bestiolina similis, a copepod known to be at high abundance in nearshore
waters [47] (S3 and S5 Figs). Since this organism should have been captured in the prefiltering
process, this signal is likely eggs or nauplii larvae to that passed through [48].

The 18S rDNA data at Station 25 also suggest a large embryophyte (land plants) signature
(51.09% of 18S rDNA). The sequences align weakly with theMucuna genus, which consists
of climbing vine and shrub vascular plant. Rafts of terrestrial plant debris were occasionally
observed in the plume, so it is possible we collected some of that material. Chlorophytes have
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very similar 18S rDNA sequences, however, and due to short sequence length, these “embryo-
phytes”may have instead represented an uncultured chlorophyta.

Oceanic station 27 was the most oligotrophic station, with the highest surface salinity
(35.3), undetectable dissolved inorganic nitrogen, and the lowest eukaryotic phytoplankton cell
counts (Table 1). Here, the DDAs observed by epifluorescence microscopy had empty frustules.
The 18S phylogenetic data suggests this station was the station with the largest proportion of
dinoflagellates, with Gyrodinium rubrum and Apicoporus parvidiaboli as the most abundant

Fig 2. Metagenomic profiling of 18S rDNA for all six stations.Nuclear small subunit 18S rDNAmaximum likelihood tree with the
placement of environmental sequences. Each circle represents one branch, and sizes are proportional to the normalized taxonomic
abundances. Individual trees for each station can be found in Supplemental Materials (S2, S3, S4, S5, S6 and S7 Figs).

doi:10.1371/journal.pone.0160929.g002
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species. The dinoflagellate population has been reported to exist in much smaller numbers
throughout the plume compared to the other phytoplankton groups [5].

Expression of Key Biogeochemically-Relevant Genes
Station 10 had the highest number of total transcripts for 16 of 31 genes (Table 2), and also had
the highest chlorophyll a concentration and the only measurable dissolved inorganic nitrogen
(Table 1). This outcome is likely a function of the thriving coastal diatom bloom fueled by riv-
erine nutrients (e.g., nitrate, phosphate, silicate). At all the stations, glyceraldehyde-3-phos-
phate dehydrogenase (GADPH, carbon heterotrophy) was the most highly expressed in terms
of transcript number of all 31 genes. At Station 10, the eukaryotic nitrate transporter (NRT)
was also expressed, along with two carbon autotrophy genes (delta carbonic anhydrase and
transketolase). At stations 3 and 23, NRT was less abundant than at Station 10 and the ammo-
nium transporter (amtB) increased in its relative importance. Stations 2 and 25 were unique in
their high expression of photosystem II D1 protein (psbA) and a silicon transporter (SIT). Two
of the three most abundant genes at station 27 were acetoacetyl-CoA reductase and polyhy-
droxybutyrate biosynthesis (consisting of both beta-ketothiolase and NADPH-linked acetoace-
tyl coenzyme A reductase), and the relative contribution of autotrophic genes were minimal,
signifying that at this nutrient-poor station, carbon heterotrophy was dominating.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a key enzyme for carbon
fixation, and the different forms of RuBisCO yield important information on the carbon fixing
populations present. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase
(rbcL) is a gene found in the chloroplast of many phytoplankton, where transcripts are not
usually poly(A)-tailed. The poly(A)-tailed rbcL transcripts found are likely the result of post
transcriptional modification, where chloroplast transcripts are polyadenylated to accelerate
exoribonucleolytic degradation [49]. Form IB rbcL from Streptophyta, Chlorophyta, and
Euglenozoa [50] was more strongly expressed at stations 3, 10 and 23, whereas Form ID, found
in diatoms [50], and was most abundant at stations 2, 10 and 25, where diatom blooms were
observed. As might be expected, a correlation occurred between diatom abundance (from
microscope counts) and log RuBisCO form ID transcript abundance (R = 0.956; Fig 3A).

Photosystem II protein D1 (psbA) is responsible for binding chlorophylls, quinones and
metal ligands in the photosystem II reaction center. This protein undergoes rapid, light-depen-
dent turnover (the “photosystem II repair cycle”). Under illumination psbA degrades, and
repair or re-synthesis of the D1 protein is necessary to limit the accumulation of photoda-
maged photosystem II proteins [51]. Photodegradation of the D1 protein occurs under any
illumination at a rate roughly proportional to the transfer of excitation energy to the reaction
center [51]. The eukaryotes at DDA stations had higher concentrations of psbA transcripts
than other stations. At the mesohaline DDA stations, there was less chromophoric dissolved
organic matter; with the high CDOM from the river being diluted by low-CDOM oceanic
water [52, 53], increasing light transmittance (Table 1). The upregulation of psbAmay be a
repair mechanism for photosynthetic blooms in clearer waters to combat high incident irradi-
ance penetration, especially for a rapidly photosynthesizing community. Bloom senescence at
station 25 may explain the slightly lower psbA transcript counts recovered from that environ-
ment. We might expect to see it also expressed well at station 27, but we did not; likely this is
because there are so few diatoms there.

Carbonic anhydrase (CA) is responsible for the interconversion of bicarbonate and carbon
dioxide and is a critical component of carbon concentrating mechanisms of photoautotrophs.
Chlorophytes contains α-CA [54], which was most highly expressed at stations 3 and 10, where
rbcL Form IB was also highly expressed signifying chlorophyta populations. δ-CA, which is
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commonly found in diatoms [55], was highly expressed at stations 2 and 10 relative to the
other stations, and this same pattern was detected with rbcL Form ID, which is the form used
in haptophytes, rhodophyta and heterokonts (including diatoms) [50]. There was a strong
inverse correlation between DIC concentration and total CA transcripts (R = 0.802, Fig 3B). As

Table 2. Sample size-normalized gene counts for the 31 biogeochemically-relevant genes. Values are
the average of the duplicate samples, per 10 million sequences. Bolded/underlined numbers highlight the
highest expression for that gene.

Gene
Abbreviation

Gene Name Station
2

Station
3

Station
10

Station
23

Station
25

Station
27

rbcL_IB RuBisCO form IB 7 46 24 16 8 1

rbcL_ID RuBisCO form ID 24 15 75 2 27 1

psbA Photosystem II protein D1 9005 350 1487 106 8493 78

a-CA Carbonic anhydrase (alpha) 216 367 332 266 179 161

d-CA Carbonic anhydrase (delta) 740 484 2388 498 461 466

tkt Transketolase 1117 697 2082 269 620 180

casE Chitinase 277 565 110 182 385 171

Chs3p Chitin synthase III 2 17 552 1 2 0

bglA Beta-glucosidase 516 413 313 491 386 345

GADPH Glyceraldehyde-
3-phosphate
dehydrogenase

12782 6869 16908 6043 12237 6931

GPI Glucose-6-phosphate
isomerase

229 339 584 192 249 231

metF Methylene tetrahydrofolate
reductase

379 148 175 106 287 130

phaB Acetoacetyl-CoA reductase 1676 1734 1883 1258 1478 1141

phaA Beta-ketothiolase 1125 1294 898 1079 876 1063

AA_Permease Amino acid permeases 236 188 536 100 287 64

AAP Alanine aminopeptidase 106 116 236 62 70 54

LAP Leucine aminopeptidase 370 684 557 442 282 251

amtB Ammonium transporter 340 170 217 211 263 144

ProAP Proline aminopeptidase 213 294 297 246 169 144

UT Eukaryotic urea transporter 128 204 661 171 96 51

MetAP Methionine aminopeptidase 417 503 613 456 363 355

NAT Eukaryotic nitrate
transporter

563 212 7960 175 325 27

pitA Low affinity phosphate
transporter

484 72 216 153 182 80

ppk2 Polyphosphate kinase 2 82 112 66 73 54 102

cysK Cysteine synthetase A 294 353 447 278 246 217

Xsc Sulfoacetaldehyde
acetyltransferase

63 62 48 85 53 42

SiR-beta Sulfite reductase (beta
subunit)

118 104 370 68 137 37

SIT Silicon transporter family 2046 400 1053 280 1666 215

pdxH Pyridoxamine 5'-phosphate
oxidase

89 74 29 45 109 199

pdxK Pyridoxinal (pyridoxine,
vitamin B6) kinase

30 10 19 9 10 22

thiC Phosphomethylpyrimidine
synthase

1 2 61 0 0 0

doi:10.1371/journal.pone.0160929.t002
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CO2 becomes depleted due to high rates of photosynthesis, organisms expressing CA genes will
be more successful in supplying CO2 to their carbon fixation machinery. Transcript abundance
for transketolase (tkt), part of the reductive Calvin-Benson-Bassham Cycle, showed a similar,
although weaker, inverse relationship with DIC (R = 0.58).

Available nitrogen plays a large role in determining the abundance and composition of
marine phytoplankton populations globally [8]. Since ammonium requires less energy to
assimilate than other forms of nitrogen in seawater, it often is the preferred nitrogen source for
phytoplankton growth. Nitrate is usually used by phytoplankton if other forms of reduced
nitrogen (ammonium, urea) are absent and there is an appreciable amount of nitrate to support
high growth rates [56, 57]. A large phytoplankton bloom made up of chain-forming diatoms,
was present at Station 10, where eukaryotic nitrate transport (NRT) expression was highest.
Station 10 was also the only station with measurable dissolved nitrogen (Table 1). If an appre-
ciable amount of ammonium is available, it strongly downregulates NRT expression [58], signi-
fying that ammonium concentrations (not measured) were not high enough to support this
diatom bloom. A phylogenetic analysis of expressed NRT genes revealed that most of the tran-
scription was carried out by the diatom Chaetoceros and the chlorophyteMicromonas (S8 Fig),

Fig 3. Transcriptomic versus biogeochemical data. Panel A: The correlation between diatommicroscope counts and log RuBisCO
Form ID transcripts counts. Panel B: The inverse relationship of carbonic anhydrase transcript abundance to DIC concentration. Panel C:
The inverse relationship between polyphosphate kinase transcript abundance and phosphate concentration. Station 2 and 25 had little or
no phosphate, due to the diatom bloom, however ppk was not upregulated.

doi:10.1371/journal.pone.0160929.g003
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which were also observed to be highly abundant through epifluorescent microscopy. The lack
of detectable nitrate at the other stations explains low abundance of NRT transcripts at these
stations since slower growth rates can be supported by ammonia utilization. Cell-surface
ammonium transporter (amtB) expression levels were highest at the DDA stations, where the
extracellular endosymbionts (residing between the plasmalemma and silica wall) fix nitrogen
and transfer it to diatoms [7], possibly in the form of ammonium [58]. Urea occurs frequently
in nature as a result of release of nitrogenous wastes and is considered “recycled N”. Urease,
synthesized by almost all organisms, is used to hydrolyze urea to carbon dioxide and ammonia.
This conversion provides an important nitrogen source in otherwise nitrogen-limited environ-
ments. However, the Richelia and Calothrix symbionts in the DDAs lack both urease and urea
transporters [59]. We observed that the urea transporter (UT) showed the highest transcript
abundance at stations closest to the mouth of the river, most likely caused by the terrestrial
input of urea.

The low affinity phosphate transporter (pitA) is highly expressed at station 2, consistent
with a thriving phytoplankton bloom with available inorganic phosphate (Pi). PitA is expressed
when Pi is plentiful, but when concentrations of Pi are low, the high affinity phosphate trans-
porter is induced instead [60]. Station 25 was the only station without detectable Pi, and
consequently had low expression of pitA. Polyphosphate kinase (ppk) catalyzes the reversible
transfer of the terminal phosphate of ATP to form a long chain polyphosphate [61]. A bio-
chemical characterization of ppk in eukaryotes has not been reported, and with the reaction
being reversible, interpreting the differing levels of expression is problematic. Nonetheless,
with the removal of data from the DDA stations 2 and 25, there was a correlation of ppk tran-
script abundance and phosphate concentration (R = 0.975, Fig 3C). These stations have little or
no measureable phosphate and are likely using some other method for acquiring phosphorus.
This strong correlation at the other four stations suggests that cleavage of a terminal phosphate
from a polyphosphate may be a scavenging technique for microbial eukaryotes under phos-
phate depleted (impoverished) conditions [62].

Silica transport is required for the synthesis of diatom frustules. Diatoms need to maintain
an intracellular concentration of soluble silica sufficient for complete cell wall synthesis, which
generally occurs within an hour [63]. Regulation of synthesis is necessary to prevent polymeri-
zation prior to deposition [63]. Consequently, all silica transporter proteins (SIT) are induced
at once, just prior to the maximum incorporation of silica into the cell wall [63]. High expres-
sion of SIT signifies a rapidly dividing diatom population, as observed at the diatom abundant
stations 2, 10 and 25. Station 27, with the smallest diatom population and the lowest silica con-
centration had the lowest SIT expression.

The abundance of chitinase (casE) and chitin synthase (Chs3p) transcripts together can
account for the fate of chitin in the microeukaryotes in the ARP. Chitin synthase can be found
in both copepods and diatoms, however since copepods were only minimally represented in
station 10, due to the prefilter, the measured chitin synthase expression is likely from diatoms
containing this gene, such as Thalassiosira and Cyclotella [64, 65]. Diatoms produce chitin to
decrease sinking rates by increasing buoyancy with extruding chitin fibers from the frustule
pores [65, 66]. These chitin fibers can account for up to 40% of the total cell biomass [67].
Another role for chitin in diatoms is as a substitute constituent of cell walls during long-term
silicic acid starvation [68]. However this is unlikely to be the case in our samples because the
station with the highest Chs3p expression (Station 10) had the highest silica concentration
(39.30 μmol L-1). Some diatoms at station 10 were very large (>150 μm), and likely were using
Chs3p to decrease sinking rates. Chitinase expression was highest at Station 3, and then also rel-
atively high in stations 2 and 25, possibly in response to metabolizing the chitin produced by
the larger diatoms.
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Patterns of Gene Expression
Our hypothesis is that relative magnitude of transcription of certain important biogeochemical
gene functions in seawater samples often reflects or correlates with biogeochemical processes
taking place at the point and time of sampling, and these data support this hypothesis. For
example, high expression of psbA co-occurred in surface phytoplankton populations in clear
water (Stations 2 and 25). Furthermore both SIT and Form ID rbcL are diagnostic of healthy
diatom populations. High expression of NRT signified that nitrate was utalized to fuel high
growth rates, as observed at station 10. Using a combination of these predictable differences
of transcript abundances, or ‘patterns of gene expression’, biogeochemical processes can be
related to the transcripts observed.

Direct comparisons by ratios between the patterns of gene expression at the three stations
which were abundant in diatoms illustrates how these data reveal the deviations between
the stations (Fig 4). Station 10 shows high expression of chitin synthase III, perhaps for buoy-
ancy or defense [69], and NRT due to the nitrate availability. Despite being sampled 238.3 km
and 25 days apart, the DDA stations 2 and 25 show very little deviation between transcript
counts, with the average difference between transcript abundance being 9.33%. This evidence
supports the notion that patterns of gene expression are stable in similar microbial eukaryote

Fig 4. Ratios of transcript abundance at stations 10:2 (black bars) and 25:2 (white bars). Station 10 has very high levels of eukaryotic
nitrate transporter as well as chitin synthase compared to station 2. Note log scale. Stations 2 and 25 perform similar functions in the ARP.
Thus the plot of the ratio of Station 25: Station 2 has smaller values than the ratio of stations 10 and 2.

doi:10.1371/journal.pone.0160929.g004
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communities living in similar environments and thus suggests that the biogeochemistry and
microbial communities are intricately linked.

Conclusions
This study demonstrates that metatranscriptomic analysis of 31 pre-selected biogeochemically-
relevant genes allowed for a reliable analysis of eukaryotic planktonic communities and their
physiological status in the ARP. A stability in patterns of gene expression of similar planktonic
communities over space and time was demonstrated, allowing for better resolution through
replicates. Phylogenetic information from 18S rDNA enabled taxa to be assigned to the short
length transcript sequences collected from these environments and transcription was related
to environmental conditions, supporting that a metatranscriptomic study can be used to
describe the biogeochemistry. This study showed that DDA blooms are capable of upregulating
expression for their photosystem II D1 protein and in acquiring silica. The small differences
between their expression at exponential growth phase and senescing populations can be further
explored in culture. In lower salinity, non-DDA diatom blooms, nitrate transporters are acti-
vated to use nitrate to support their high growth rates, and carbonic anhydrase (carbon con-
centrating mechanism) allowing these diatoms to thrive in low-CO2 waters. Finally, chitin
synthase was hypothesized to be a mechanism used by diatoms in lower-salinity plume waters
to decrease their sinking rates, as light is also limiting in these young plume waters. These
results, in conjunction with ongoing modeling efforts, will help us understand the river plume
microbial communities in this globally important ecosystem. Future research will involve
sampling the ARP in different seasons, comparing the different patterns of gene expression
between seasons, and using those data to ground-truth the ecosystem models.

Supporting Information
S1 Fig. Log replicate 1 versus log replicate 2 plot of transcript counts at all six stations. The
dotted line represents the 1:1 line of identity. The 186 data points represent the 31 genes mea-
sured at 6 stations. The average difference between replicate transcripts was 11.43%.
(TIF)

S2 Fig. Metagenomic profiling of 18S rDNA for Station 2.Nuclear small subunit 18S rDNA
maximum likelihood tree with the placement of environmental sequences. Circle sizes are pro-
portion to the normalized taxonomic abundances.
(TIF)

S3 Fig. Metagenomic profiling of 18S rDNA for Station 3.Nuclear small subunit 18S rDNA
maximum likelihood tree with the placement of environmental sequences. Circle sizes are pro-
portion to the normalized taxonomic abundances.
(TIF)

S4 Fig. Metagenomic profiling of 18S rDNA for Station 10. Nuclear small subunit 18S
rDNA maximum likelihood tree with the placement of environmental sequences. Circle sizes
are proportion to the normalized taxonomic abundances.
(TIF)

S5 Fig. Metagenomic profiling of 18S rDNA for Station 23. Nuclear small subunit 18S
rDNA maximum likelihood tree with the placement of environmental sequences. Circle sizes
are proportion to the normalized taxonomic abundances.
(TIF)
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S6 Fig. Metagenomic profiling of 18S rDNA for Station 25. Nuclear small subunit 18S
rDNA maximum likelihood tree with the placement of environmental sequences. Circle sizes
are proportion to the normalized taxonomic abundances.
(TIF)

S7 Fig. Metagenomic profiling of 18S rDNA for Station 27. Nuclear small subunit 18S
rDNA maximum likelihood tree with the placement of environmental sequences. Circle sizes
are proportion to the normalized taxonomic abundances.
(TIF)

S8 Fig. Metatranscriptomic profiling of nitrate transporters (NRT) at the 6 six stations
along the ARP. Amaximum likelihood tree was used with the placement of metatranscrip-
tomic predicted open-reading frames. Bootstrap support values� 50% are shown. Circle sizes
are proportion to the normalized expression levels. Branch lengths are log10-transformed.
(TIF)

S1 Table. Sequencing Data. Compiled data of all the sequences obtained and analyzed at the
six stations. Duplicate samples were pooled to account for variations in the data that may occur
from only taking one sample.
(TIF)

S2 Table. Background data for genes analyzed.
(TIF)
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