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Abstract

Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic
dysfunction. PPARYy agonist was reported to improve insulin sensitivity by redistributing fat
from visceral fat to subcutaneous fat. The purpose of this study was to investigate the
underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 dia-
betic animal model and through which PPARYy activation modulates aging-related fat tissue
distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2
diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcuta-
neous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous
fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of
genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin
1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than sub-
cutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in
basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to
subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxida-
tion were increased, whereas the mMRNA levels of genes associated with energy expendi-
ture showed no significant change during aging. PPARy agonist treatment in OLETF rats
resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance.
The genes involved in lipogenesis decreased in visceral fat of the PPARYy agonist-treated
rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification
in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation.
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Introduction

Fat tissue is at the nexus of mechanisms and pathways involved in longevity, genesis of age-
related disease, inflammation and metabolic dysfunction. Fat mass and fat tissue distribution
change dramatically throughout life [1,2]. In old age, while the total amount of fat tissue tends
to decline or remain stable, fat distribution changes dramatically. By advanced old age, fat is
redistributed from subcutaneous to intra-abdominal visceral deposits and to ectopic sites,
including muscle, liver and bone marrow [3-5]. These changes are associated with diabetes,
hypertension, cancer, cognitive dysfunction and atherosclerosis [1,2]. Several studies also sug-
gest that insulin resistance and altered glucose homeostasis are more closely related to regional
adipose tissue distribution than total fat mass [6,7].

Visceral fat releases more nonesterified fatty acids into circulation than subcutaneous fat [8],
which is liable to expose the liver to high amounts of nonesterified fatty acids and lead to
increased hepatic glucose production and VLDL secretion [9]. High plasma nonesterified fatty
acids lead to lipid accumulation in nonadipose tissue and interferes with insulin signaling
[10,11]. In addition, enlarged visceral fat deposits secrete a wide range of proinflammatory cyto-
kines that reduce insulin signaling and promote endothelial dysfunction [12]. However, there are
few data about the changes of visceral fat and related adipose tissue metabolism with aging.

Peroxisome proliferator—activated receptor (PPARY) is a ligand-activated nuclear receptor
that is highly expressed in mammalian white adipose tissue (WAT), where it regulates the
expression of a number of genes involved in lipid and glucose metabolism. PPARY agonists of
the thiazolidinedione (TZD) class are currently used for treatment of insulin resistance and
type 2 diabetes. The mechanisms involved in the insulin-sensitizing effect of PPARy agonists
are not completely understood but appear to involve changes in regional adiposity by favoring
lipid accumulation in subcutaneous fat, while reducing or maintaining visceral fat mass
[13,14]. More specifically, PPARy activation in both humans and rodents is associated with an
enhanced ability for subcutaneous fat to take-up and store fatty acids, especially those derived
from lipoprotein-bound triacylglycerol through lipoprotein lipase [15]. Directing fat away
from visceral fat to subcutaneous fat deposits may constitute one mechanism whereby PPARy
agonism prevents the deleterious effects of visceral fat accumulation on the development of
metabolic syndrome and the progression to cardiovascular disease. These depot-specific effects
might be helpful for preventing the changes of adipose tissue metabolism with aging. However,
the PPARY agonism on the aging-related changes of fat metabolism has not been addressed in
detail.

Fat storage represents the balance between accretion (uptake, synthesis and esterification)
and depletion (release of lipolytic products, oxidation and energy-consuming cycling). The
goal of this study was to establish which of these pathways is associated with age-related depot-
specific fat accretion in a rodent model of obesity and type 2 diabetes. To this end, determi-
nants of adipose lipid metabolism were assessed in subcutaneous and visceral fat, including tri-
glyceride-derived fatty acid uptake and retention, lipolysis, fatty acid reesterification, lipid
oxidation and energy expenditure. The levels of expression of major genes associated with
these pathways were quantified, and the effect of PPARy activation in vivo on fat tissue distri-
bution was compared with aging-related changes.

Methods and Procedures
1. Animals

Laboratory animals for all experiments were cared for in accordance with the National Institute
of Health’s guidelines. The animals were maintained according to the ethical guidelines of
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Yonsei University, and the experimental protocol was approved by the Committee on Animal
Investigations of Yonsei University. Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats
(70-80 g initial weight) and their nondiabetic counterparts, male Long-Evans Tokushima
Otsuka (LETO) rats, were supplied by the Tokushima Research Institute, Otsuka Pharmaceuti-
cal (Tokushima, Japan). We used the OLETF rats, as a model for aging because they have age
associated changes to body fat contents and metabolic derangement (16). The LETO rats
showed no significant changes to fat distribution and glucose tolerance in respect to aging (S1
Fig). They were maintained in the Animal Care Center at the University of Yonsei Medical
School, Seoul, South Korea, under controlled temperature (23°C + 2°C) and humidity (55% +
5%) with a 12-hour light/dark cycle. The animals were provided standard rat chow and tap
water ad libitum.

2. Experimental Protocol

The standard rat diet had an energy content of approximately 15.1 kJ/g (3.6 kcal/g) and con-
tained 21% protein, 12.5% fat and 66.5% carbohydrates. The OLEFT rats were randomly
divided into four groups: (1) OLETF rats treated with the PPARY agonist rosiglitazone (4mg/
kg per day) for six weeks at 21 weeks of age (n = 8), (2) OLEFT rats without rosiglitazone treat-
ment at 21 weeks of age (n = 8), (3) OLETF rats at 31 weeks of age (n = 8), (4) OLETF rats at
43 weeks of age (n = 5). The age of the week of the OLEFT rat was selected according to diabe-
tes status [16]. Each group consisted of three to eight animals.

At 15 weeks of age, six OLETF rats were randomly selected for treatment with rosiglitazone.
The allocated diet and drug treatment was maintained for the following six weeks. Rosiglita-
zone, or distilled water as a placebo, was given by oral gavage. Two rats were assigned to each
cage. All animals were allowed free access to food and water throughout the study and were
weighed weekly; food intake was determined every two days. Mean food intake was estimated
as an average for the animals in each cage. After six weeks of treatment, an oral glucose toler-
ance test (OGTT) was performed after an overnight fast. One day after the OGTT, the OLETF
rats were anesthetized with ether and sacrificed. The LETO rats at 21 weeks and the untreated
OLEFT rats at ages 21, 31 and 43 weeks were also sacrificed after OGTT.

Epididymal fat as a representative of visceral fat [17] and abdominal subcutaneous fat were
surgically removed after mid-abdominal incision. Each dissected fat mass was immediately
weighed and stored at —80°C until the assays were performed. A portion of the pancreas was
fixed in 10% neutral buffered formalin.

3. Blood and tissue collection

Blood samples were obtained from the heart at the time of sacrifice and were immediately cen-
trifuged at 5000x g for 5 min. Total cholesterol concentrations were determined using an
ADVIA 1650 (Bayer, West Haven, CT, USA). Plasma triglyceride and glucose concentrations
were measured by a commercial kit (Sekisuil Chemical Company, Osaka, Japan). Free fatty
acid (FFA) levels were measured by enzymatic assay kit from SCIDIA NEFAZYME (Shinyang
Diagnostics, Seoul, Korea). Commercially available ELISA kits were used to measure insulin
(Millipore, Billerica, MA, USA).

4.0GTT

Rats were orally given glucose (2g/kg), and blood samples were collected from the tail at 0, 60
and 120 minutes after glucose load. Glucose levels were measured with a glucose analyzer
(SureStep, Lifescan, Milpitas, CA).
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Table 1. Sequences of primers and PCR reaction parameters used in real-time RT-PCR.

Target gene

LPL
aP2
Lipin1
DGAT1
PEPCK
ATGL
PDK2
mCPT1
LCAD
GAPDH

doi:10.1371/journal.pone.0148141.t001

Forward Reverse AT (°C)
AACCTTTGTGGTGATCCATGGA CGAAATCCGCATCATCAGGA 60
ATGTGTGATGCCTTTGTGGG CCCAGTTTGAAGGAAATCTC 55
TCACTACCCAGTACCAGGGC TGAGTCCAATCCTTTCCCAG 55
TATTACTTCATCTTTGCTCC AAAGTAGGTGACAGACTCAG 45
TGGGTGATGACATTGCCTGG ACCTTGCCCTTATGCTCTGCAG 60
CATTTTAGCTCCAAGGATGA TGGTTCAGTAGGCCATTCCT 55
GGGGTGTCCCCTTGAGGAAGAT TTCTTGGGCTCTGTGCTGGG 55
CGGAAGCACACCAGGCAGTA GCAGCTTCAGGGTTTGTCGGAATA 60
AGCTCCCACAGGAAAGGCTT CTCGAGCATCCACGTAGGCT 55
TGAACGGGAAGCTCACTGG TCCACCACCCTGTTGCTGTA 60

5. Real-time reverse transcriptase polymerase chain reaction (RT-PCR)

Total RNA was isolated from cells and tissues with the use of a PureLink RN A Mini Kit (Invi-
trogen). Reverse transcription was performed using a High-Capacity RNA-to-cDNA kit
(Applied Biosystems, Foster City, CA, USA) per the manufacturer's instructions. mRNA
expression was quantified by real-time PCR (LightCycler 480 system; Roche, Indianapolis, IN,
USA). Synthesized cDNA was mixed with LightCycler 480 Probes Master Mix (Roche) and
with a gene-specific primer and probe mixture (Universal ProbeLibrary system and UPL;
Roche; Table 1). Individual reactions for target and glyceraldehyde-3-phosphate dehydroge-
nase (Gapdh) were carried out separately with negative controls lacking cDNA. Reaction con-
ditions were as follows: 95°C for 10 min, followed by 40 cycles of denaturation (95°C for 10 s)
and annealing/extension (60°C for 20 s). The cycle number for the threshold of detection was
determined by LightCycler 480 software (Roche). mRNA expression of each target was normal-
ized to that of the Gapdh gene and expressed as a fold-change relative to the controls (primers
listed in Table 1).

6. Histologic analysis and adipocyte cell size distribution

Adipose tissues were fixed overnight in 10% (vol./vol.) zinc formalin, dehydrated in a graded
series of alcohol washes, cleared in toluene and embedded in paraffin. Using a microtome,

5 um sections were generated, collected on slides, and then stained with hematoxylin and
eosin. Samples of subcutaneous and epididymal adipose tissues were fixed in 10% formalin and
embedded in paraffin. Multiple sections (separated by 100 pm each) were obtained from each
sample and stained with hematoxylin and eosin. Digital images of each section were acquired
using a BX51TRF microscope (Olympus, Japan), and cell areas were traced manually for at
least 100 cells per field by an investigator blinded to the sample identity, using the Image]J soft-
ware program (available at http://rsb.info.nih.gov/ij/). Two fields from each section of adipose
tissue depot were analyzed to derive the mean cell area per animal (n = 3 animals per group).

7. Statistical analyses

All statistical analyses were performed using PASW Statistics 18 (SPSS Inc., Chicago, IL, USA).
Data are expressed as mean+SEM. We used 2-way ANOVA with turkey posthoc analysis to
assess the effects of aging (at 21, 31, and 43 weeks old) and/or fat depots (subcutaneous fat vs.
visceral fat) on the adipose tissue metabolisms in the OLETF rats. We performed 1-way
ANOVA with posthoc analysis to compare the effects of rosiglitazone on the metabolic genes
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in each fat depot among the different groups at 21 weeks of age. Statistical significance was
defined as P<0.05.

Results
1. Changes in glucose metabolism and fat distribution with age

At 21 weeks of age, the OLETF rats had a significantly higher body weight compared with the
LETO rats. Serum levels of glucose, insulin, triglyceride and FFA increased in the OLETF rats
compared to the LETO rats. From 21 to 43 weeks of age, body weight significantly increased
with age in the OLEFT rats. Aging also contributed to increased fasting glucose, fasting insulin,
triglyceride and FFA levels in the OLETF rats (Table 2).

The ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) was higher in the
OLETF rats than in the LETO rats (Fig 1A, Table 2). In terms of area under the curve (AUC)
during the OGTT, the OLETF rats showed decreased glucose utilization compared to the
LETO rats (Fig 1A-1C). As the OLETF rats aged, V/S ratio increased as did the AUC for the
OGTT (Fig 1A-1C, Table 2). Compared with OLETF rat at the same age, adipocyte size were
smaller in LETO rats in both subcutaneous fat and visceral fat. Aging also brought about the
shift in adipocyte size distribution toward larger cell diameters in both types of fat depots (Fig
1D and 1E). PPARY2 expression levels in visceral fat were higher in the OLEFT rats than in the
LETO rats and increased with age (Fig 1F).

2. Determinants of adipose fatty acid uptake, esterification, and
triacylglycerol synthesis

The expression of genes involved in fatty acid utilization and triacylglycerol synthesis were
examined to gain insight into the mechanisms that influence the effects of aging on adipose tis-
sue remodeling. Compared with the visceral fat of LETO rats at age 21 weeks, gene expression
of the triglyceride-hydrolyzing enzyme lipoprotein lipase (LPL) significantly increased in
OLETF rats of the same age (Fig 2A). The fatty acid binding protein aP2 is a major PPARy tar-
get during adipogenesis, long-chain fatty acid uptake, and retention [18], and mRNA levels of
this protein also increased in the visceral fat of OLETF rats compared to LETO rats (Fig 2B).
Lipin 1, which has been identified as phosphatidate phosphatase-1 (PAP1), catalyzes the
conversion of phosphatidate to diacylglycerol during triacylglycerol and phospholipid

Table 2. Comparison of metabolic parameters measured in rats with aging or PPARy agonist treatment.

LETO rats OLETF rats
21 weeks (n=4) 21 weeks(n=8) 31weeks(n=8) 43 weeks (n=>5)

Body weight (g) 463.3+14.7 * 586.6+11.0 614.2+19.2 620.0+40.0 608.9+38.3
Subcutaneous fat (% body weight) 0.7+0.1 * 2.6+0.7 4.8+0.3* 4.7+0.8* 3.240.3
Visceral fat (% body weight) 0.8+0.1 * 3.310.5 11.041.2% 12.9 +1.2% 2.410.5%
V/S ratio 1.1+0.1 * 1.320.1 2.3+0.1 * 2.810.4*% 0.8+0.1 *
Glucose (mmol/l) 7.1£0.7% 11.6+0.4 12.1+0.3 16.9+0.1* 9.84+0.5 *
Insulin (ng/ml) 155.8+68.3*% 511.8+75.7 566.0+356.6 708.6+383.4* 409.9+20.1*%
Free fatty acid (mmol/l) 524.0+90.6 * 944.1162.5 958.7+30.2 1053.3+51.5* 517.8+52.8 *
Triglyceride (mmol/l) 0.2+0.0* 1.61£0.3 2.310.6 2.0£0.2 0.3£0.0*

Data are summarized in mean + SEM.
*P<0.05, compared with OLETF rats at 21 weeks.

doi:10.1371/journal.pone.0148141.t1002

21 weeks PPARYy agonist (n = 8)
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subcutaneous fat in the same group.)

doi:10.1371/journal.pone.0148141.g001

biosynthesis [19]. Diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the terminal, rate-limit-
ing step in triglyceride synthesis, and its overexpression favors fat gain [20]. Both lipin-1 and
DGAT-1 mRNA were more highly expressed in the visceral fat of OLETF rats than LETO rats
at 21 weeks of age (Fig 2C and 2D). On the other hand, there were no significant differences in
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doi:10.1371/journal.pone.0148141.9002

mRNA expression of LPL, aP2, lipin 1 or DGAT-1 in subcutaneous fat when comparing LETO
and OLETF rats (Fig 2A-2D).

To evaluate the significant effects either of aging and/or fat depots on the mRNA expression,
the data were further assessed by 2-way ANOVA. In OLETF rats, both aging and fat distribu-
tion have significant effects on the mRNA levels of LPL, fatty acid binding protein aP2, lipinl,
and DGAT]1 (all P<0.05).

Compared with the 21-week-old OLETF rats, the mRNA levels of LPL significantly
increased at 43 weeks of age (Fig 2A). At 31 and 43 weeks of age, OLETF rats had increased
mRNA expression of aP2, lipinl and DGAT1 than those at 21 weeks of age (Fig 2B-2D). The
fat distribution also had statistically significant effects on the expression of these genes. The
mRNA levels of the LPL and aP2 linearly increased in visceral fat deposits with aging, but not
in subcutaneous fat deposits (Fig 2A and 2B). The mRNA expressions of lipinl and DGAT1 in
both subcutaneous and visceral fat deposits were increased, and the changes were more dra-
matic in visceral fat. The mRNA expressions of lipinl and DGAT1 in subcutaneous and vis-
ceral fat showed a 2.7- vs. 3.2-fold and 2.2- vs. 2.7-fold difference, respectively (Fig 2C and 2D).

3. Determinants of glycerol and fatty acid cycling

There was no difference between the mRNA levels of phosphoenolpyruvate carboxykinase
(PEPCK), which is related to glyceroneogenesis [21], in subcutaneous and visceral fat deposits
of the OLETF and LETO rats. Also, aging and fat deposits had no significant effects on the
mRNA expression of PEPCK in the OLETF rats (Fig 3A). Adipose triglyceride lipase (ATGL)
mRNA expression, considered an important determinant of basal lipolysis [22], was highly
expressed in the visceral fat of the OLETF rats at 21 weeks compared to the LETO rats. The
mRNA levels of ATGL significantly increased in 31 and 43 weeks-old OLETF rats compared to
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the rats at 21 weeks of age. The fat redistribution also had significant effects on the changes of
ATGL mRNA levels during aging. The mRNA levels of ATGL increased more in visceral fat
than in subcutaneous fat (Fig 3).

4. Determinants of fatty acid oxidation and energy expenditure

Pyruvate dehydrogenase kinase-2 (PDK2) phosphorylates and inactivates the pyruvate dehy-
drogenase complex and thereby facilitates fatty acid oxidation. PDK-2 mRNA expression in
visceral fat was significantly higher in the OLETF rats than in the LETO rats, though there
were no significant differences in subcutaneous fat between LETO and OLETF rats at 21 weeks
of age (Fig 4A). Muscle-type carnitine palmitoyltransferase 1 (mCPT-1), the limiting enzyme
in fatty acid transport to mitochondria, significantly increased in visceral fat of OLETO rats
than LETO rats at 21 weeks of age (Fig 4B). Expression of long-chain acyl-CoA dehydrogenase
(LCAD), which plays an important role in B-oxidation, also increased in the visceral fat of
OLETF rats compared to LETO rats of the same age (Fig 4C).

Among the genes associated with fatty acid oxidation and energy expenditure, aging had
effects on PDK-2 but not on mCPT1 and LCAD mRNA levels. Compared to rats at 21 weeks
of age, the mRNA levels of PDK-2 at 43 weeks were increased. Additionally, the PDK-2,
mCPT1, and LCAD mRNA levels were all significantly different between the fat depots (Fig
4A-4C).

5. PPARYy agonist might modify age-related fat distribution

Six weeks of rosiglitazone treatment in OLETF rats tended to increase body weight and rate of
body weight gain. Compared with untreated OLETF rats at the same age, rosiglitazone treat-
ment had no influence on body weight and food intake. At 21 weeks of age, the V/S ratio was
significantly lower in the rosiglitazone-treated OLETF rats than in the untreated OLETF rats.
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Fig 4. The effects of aging on the genes involved in fatty acid oxidation and energy expenditure. The effects of aging on the gene expression were
analyzed by 2-way ANOVA (*P <0.05 vs. OLETF rats at 21 weeks of age). The effects of rosiglitazone on the metabolic genes in each fat depot were
evaluated among the different groups at 21 weeks (1P <0.05 vs. the same deposit in OLETF rats at 21 weeks; RGZ, rosiglitazone treated).

doi:10.1371/journal.pone.0148141.9004

In the rosiglitazone-treated OLETF rats, serum levels of fasting glucose, fasting insulin, triglyc-
erides and FFA were significantly lower than in the untreated OLETF rats (Table 2). As
expected, the rosiglitazone-treated OLETF rats showed improved glucose utilization compared
to untreated OLEFT rats using the AUC during the OGTT. Rosiglitazone administration
induced smaller adipocyte size in both subcutaneous and visceral fat deposits compared with
untreated rats (52 Fig).

After confirming major fat deposit-specific differences in fatty acid handling and triacylgly-
cerol synthesis with aging, this study then investigated whether this specificity was modified by
PPARy action. Compared with untreated rats at 21 weeks of age, rats treated with rosiglitazone
exhibited significantly decreased mRNA expression of key enzymes in visceral fat, including
LDL, aP2, lipinl and DGAT1 (Fig 2). In contrast, levels of mRNA expression in these genes
remained the same or slightly increased in the subcutaneous fat of rosiglitazone-treated
OLETEF rats (Fig 2). Rosiglitaonze had no significant effects on the PEPCK expression in both
fat depots (Fig 3A). The mRNA expressions of ATGL increased with rosiglitazone treatment in
visceral fat (Fig 3B). In addition, rosiglitazone did not affect the expression of genes involved in
fatty acid oxidation or energy expenditure (PDK2, mCPT-1 and LCAD) in any of the fat depos-
its (Fig 4).

Discussion

This study demonstrated the effect of aging on the deposit-specific regulation of lipid storage
and energy expenditure genes in a type 2 diabetic animal model. Aging led to changes in fat dis-
tribution by increasing lipid uptake and esterification and altering energy expenditure in vis-
ceral fat compared to subcutaneous fat. Conversely, the PPARY agonist rosiglitazone may
affect adipose tissue distribution to subcutaneous deposits by changing several pathways of adi-
pose lipid metabolism. These results suggests that the deleterious effects of fat distribution with
aging might be partially modulated by PPARy agonists such as rosiglitazone.

Aging increased cell size and led to a substantial redistribution of fat tissue in this type 2 dia-
betic animal model. Serum levels of glucose, insulin and FFA also increased with aging, which
might result from aging-increased visceral fat pads and the associated adipocyte metabolism
pathways of lipogenesis and lipolysis [23]. In this study, there were similar trends in genes
involved in lipogenesis. The expression of PPARy and its target genes were increased predomi-
nantly in visceral fat with aging. The mRNA levels of LPL increased in visceral fat due to the
effects of aging. Genes such as aP2, lipinl and DGAT1 also increased to a greater extent in vis-
ceral fat deposits than in subcutaneous fat deposits. However, there were no significant changes
in the expression levels of PEPCK, which is associated with fatty acid recycling [21], during
aging. Higher lipolysis is counteracted by increased fatty acid reesterification into triglycerides,
as well as by increased fatty acid reuptake by adipocytes [24,25]. Together, these results show
that ATGL mRNA expression was significantly higher in visceral fat than in subcutaneous fat,
and aging increases this gene expression. Elevated FFAs were recently shown to be associated
with an increase in PEPCK-mediated glyceroneogenesis in WAT [21]. These data suggest that
aging is related to a cycle between lipogenesis and lipolysis in adipose tissue metabolism in vis-
ceral fat. Aging might remodel the adipose tissue, suggestive of increasing fatty acids by lipoly-
sis taken up in visceral fat for esterification [20.26]. These changes may constitute an
important component of fat redistribution with aging.
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In the current study, changes in gene expression related to lipid oxidation and energy
expenditure were induced during aging. Gene expression of PDK2, which lowers glucose utili-
zation and facilitates fatty acid oxidation [27], increased in both types of deposits with age,
whereas there was no change in mCPT1 and LCAD. However, fat distribution had a significant
impact on the expression of all these genes. These discrepant patterns among the genes associ-
ated with energy expenditure might be due to different mechanisms and roles played by indi-
vidual genes during aging. Ravaglia et al. demonstrated that increased PDK2 might be a
compensatory mechanism to increase fat mass during aging [28]. The observed difference in
the mRNA expressions of mCPT1 and LCAD between the fat depots during aging is likely
associated with altered energy expenditures, leading to fat deposition in visceral fat. Therefore,
the net balance between the two fat deposits in lipid oxidation and energy expenditure may be
altered by aging and therefore might contribute to age-related fat accretion in visceral fat. How-
ever, the mechanisms by which aging regulates lipid/glucose metabolism in different adipose
tissue, fat redistribution and especially energy expenditure remains unclear. Additionally, the
effects of aging on the protein levels and/or enzyme activity of the genes associated with adi-
pose lipid metabolism were not evaluated in this study. Thus, further work is needed to eluci-
date these questions. To the best of the author’s knowledge, this is the first study to evaluate
aging-related changes in lipid metabolism using two different fat depots in a type 2 diabetic
animal model.

PPARYy agonists remodeled adipose tissue by changing the genes involved in lipogenesis and
fatty acid cycling. The effects of PPARy agonists on insulin sensitivity are mediated by fat redis-
tribution from visceral fat to subcutaneous fat [20,26]. In this study, rosiglitazone resulted in
fat redistribution and improved glucose intolerance in a type 2 diabetic animal model. Consis-
tent with previous findings [29-31], in this study rosiglitazone also increased adipocyte cell
numbers and reduced gene expression involved in lipogenesis at visceral fat deposits, thus
inducing favorable conditions for fat redistribution. These changes are contrary to the aging-
related changes in adipose lipid metabolism. Of note is the fact that the PPARy agonist
enhanced ATGL expression in visceral fat deposits, though it reduced plasma FFA levels.

There is evidence that it also stimulates adipocyte lipolysis [22,32,33]. Because of increased
fatty acid esterification, PPARy might increase lipolysis; however, FFA release was lower mag-
nitude than fatty acid reesterification [22,31]. It was also reported that PPARY agonists may be
associated with increased lipid oxidation and energy expenditure [18,29]. Previous studies have
shown that PPARy agonist increases glyceroneogenesis and inhibits pyruvate dehydrogenase
in white adipose tissue through enhanced expression of PEPCK and PDK [21,31]. In contrast,
others reported PDK2 was not affected by rosiglitazone, which was consistent with our results
[34]. In the present conditions, however, the rosiglitazone had no significant effects on the
PEPCK gene expression and tended to have little effect on the genes involved in lipid oxidation
and energy expenditure. It is not clear why there were such differences in functional deposit
specificity, but it may be linked to differences in animal models, aging, metabolic conditions,
and duration of PPARy agonist treatment or other unknown factors. Therefore, in this model,
fat redistribution by the PPARY agonist is the consequence of concerted changes in multiple
pathways of adipose lipid metabolism. These data suggest that PPARy agonists might modulate
age-induced changes by remodeling adipose tissue by changing the genes involved in lipogene-
sis and fatty acid cycling. However, this study was limited because of the lack of data about
genetic manipulation of PPARy with aging, although this genetic manipulation may explain
the direct effect of PPARY on fat distribution during aging. The administration of PPARy ago-
nists might be more applicable in clinical practice. The present study extends previous findings
by demonstrating the role of PPARY agonists in adipose lipid metabolism compared with
changes in age-related fat remodeling.
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The mechanisms underlying age-related fat distribution are not yet fully understood. In the
current study, various pathways of lipid metabolism changed with age in a rat model of type 2
diabetes. Aging stimulates lipogenesis and fatty acid cycling in visceral fat and alters lipid oxi-
dation and energy expenditure, which leads to visceral fat deposition. Therefore, these changes
might contribute to systemic metabolic dysfunction [35]. The PPARYy agonist redistributed fat
mass by modifying several genes involved in age-related fat distribution. These results suggest
that aging-related effects on adipose tissue distribution might be modulated by PPARy action
in a type 2 diabetic animal model.
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