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Abstract
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of

residual serial correlation from least squares regression analyses. However, the Durbin-

Watson statistic is only suitable for ordered time or spatial series. If the variables comprise

cross-sectional data coming from spatial random sampling, the test will be ineffectual

because the value of Durbin-Watson’s statistic depends on the sequence of data points.

This paper develops two new statistics for testing serial correlation of residuals from least

squares regression based on spatial samples. By analogy with the new form of Moran’s

index, an autocorrelation coefficient is defined with a standardized residual vector and a

normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two

types of new serial correlation indices are constructed. As a case study, the two newly pre-

sented statistics are applied to a spatial sample of 29 China’s regions. These results show

that the new spatial autocorrelation models can be used to test the serial correlation of

residuals from regression analysis. In practice, the new statistics can make up for the defi-

ciencies of the Durbin-Watson test.

Introduction
Least squares regression can be employed to make models of real systems and to reveal the hid-
den relationships between causes and effects. The major aims of mathematical modeling lie in
explanation and prediction, which are sometimes contradictory [1–3]. By means of regression
modeling, we can explain the causes of an effects or predict the effects with causes. The quality
of a mathematical model depends on its structure. A model must simplify reality to the
moment. As Longley [4] pointed out: “In the most general terms, a ‘model’ can be defined as a
‘simplification of reality’, nothing more, nothing less.” Both oversimplification (e.g., explana-
tory variables are incomplete) and undersimplification (e.g., explanatory variables are redun-
dant) of reality can lead to trustless explanation and unfaithful prediction. The structural
problems of a model can be reflected by residuals, that is, a series of errors between observed
values from the real world and predicted values given by the model. A good model will yield a
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random series of residuals without autocorrelation. The residual series free of autocorrelation
satisfies the normal distribution. Autocorrelation in the residual series suggests an inherent
defect in the model.

The theory of time series analysis can be employed to detect serial correlation of residuals
from linear regression [5]. The time series analysis can be generalized to ordered space series
analysis [6, 7]. However, many scientists do not have enough knowledge of time/space series
analysis. Thus it is necessary to invent a simple statistic for testing serial correlation in least
squares regression. Maybe the simplest approach to residual autocorrelation analysis is the
Durbin-Watson test. Durbin andWatson [8–10] wrote a series of articles on a method of test-
ing for serial correlation in a regression analysis. One of the fruits is the well-known Durbin-
Watson’s statistic, which is easy to understand, calculate, and explain. It is in fact a simple
index, by which residual serial correlation information can be concentrated into a concise
number. Years later, the serial correlation test was advanced by modifying the standard Dur-
bin-Watson assumptions [11]. However, Durbin-Watson’s method and its derivatives have a
significant limitation: that is, they cannot be applied to regression analysis based on cross-sec-
tional data, which is defined in a two-dimensional space. The Durbin-Watson formula is con-
structed with one-order time lag or one-step space displacement. Therefore, it is only
applicable to least squares regressions based on ordered time series or spatial series, which are
defined in a one-dimensional space. An ordered time series or spatial series has exclusive rank
for observed data of a variable, and thus the result of Durbin-Watson statistic is uniquely deter-
mined. However, an array of cross-sectional data can have various arrangement orders. Chang-
ing the rank of elements in an array will result in a different series of residuals and thus lead to
many different values of the Durbin-Watson statistic. In particular, in geographical analysis,
lots of least squares regressions are based on cross-sectional data from spatial random sam-
pling. The Durbin-Watson test is often ineffective in the linear regression of spatial variables.

An effective way of testing the serial correlation of residuals from least squares regression
based on cross-sectional data is to make use of spatial autocorrelation analysis. Actually, the
core of the formula of Durbin-Watson’s statistic is just a one-dimensional autocorrelation coef-
ficient. Using a weight function to replace the time-lag parameter or space-displacement
parameter, the one-dimension spatial or temporal autocorrelation model can be generalized to
a two-dimensional spatial autocorrelation model [12]. There are two basic and important sta-
tistics for spatial autocorrelation analysis: Moran’s index [13] calculated by generalizing Pear-
son’s correlation coefficient, and Geary’s coefficient [14], constructed by analogy with Durbin-
Watson’s statistic. Using residuals and the corresponding spatial contiguity, we can calculate
Moran’s index and thus judge the serial correlation for a regression model [15, 16]. The Mor-
an’s index of spatial residuals is analogous to the autocorrelation coefficient of a time series of
errors. However, the autocorrelation coefficient is not convenient for testing serial correlation
of temporal residuals, and thus we need Durbin-Watson statistic [8]. In like manner, Moran’s
index is not easy for testing serial correlation of random spatial residual series, and thus we
need new spatial statistic measurements. The simple statistics of testing for spatial serial corre-
lation can be defined by means of Moran’s index or by analogy with Geary’s coefficient.

The aim of this study is to develop simple methods to test residuals of regression analysis
based on spatial data from a new point of view. Moran’s index proved to be expressed in a com-
pact equation using a standardized vector and a normalized spatial weight matrix [12, 17].
Based on the new mathematical expression of Moran’s index, a relatively precise formula of the
residual autocorrelation test can be defined. Further, by analogy with Geary’s coefficient, an
approximate expression of the residual autocorrelation measurement can be put forward. The
rest of this paper is organized as follows: In Section 2, the basic expressions of the two-dimen-
sional spatial autocorrelation of residuals are given for measuring serial correlation, and a

Testing for Serial Spatial Auto-Correlation in Regression Analysis

PLOS ONE | DOI:10.1371/journal.pone.0146865 January 22, 2016 2 / 19



residual autocorrelation scatterplot is proposed for making supporting analyses; In Section 3, a
set of case studies shows how to utilize the methods presented in this work to test for serial cor-
relation; In Section 4, the two-dimensional spatial autocorrelation measurement of residuals is
generalized and developed, and the deficiency of these measurements is discussed. Finally, the
paper concludes with summarizing the highlights of this study.

Models and Methods

1. A deficiency in the Durbin-Watson test
It is necessary to explain the ordinary linear regression model and its predicted residuals. Suppose
there arem variables (j = 1, 2, . . .,m) and n spatial elements in a region (i = 1, 2, . . ., n). In this
instance, the sample size is n. The multivariable linear regression equation can be expressed as

yi ¼ aþ
Xm
j¼1

bjxij þ εi; ð1Þ

where xi denotes independent variables (input variables, explanatory variables, arguments), yi
represents a dependent variable (output variable, explained variable, function), a refers to a con-
stant (intercept), bj to regression coefficients (slopes), and εi to residuals (predicted errors). The
residuals are supposed to be a white noise series and must satisfy the following conditions

εi � WNð0; s2Þ; ð2Þ
where “WN”means “white noise”, and σ denotes the standard deviation of the residual series.
That is to say, the average value of the residual series must be 0, and its limited variance is a con-
stant σ2. If and only if the residual series is white noise, it will imply that the errors between the
observed values and the corresponding predicted values of the regression model, Eq 1, come
from random disturbances outside the model. Otherwise, it will mean that the errors result from
the internal structure of the model itself. One approach to judging whether or not the residual
series is white noise is the well-known Durbin-Watson statistic (ab. DW) [8–10], which is
defined as

DW ¼

Xn

i¼2

ðεi � εi�1Þ2

Xn

i¼1

ε2i

¼

Xn�1

i¼1

ðDεiÞ2

Xn

i¼1

ε2i

¼ 2ð1� rÞ; ð3Þ

where Δεi = εi-εi-1, and

r ¼

Xn

i¼2

εiεi�1

Xn

i¼1

ε2i

ð4Þ

denotes the autocorrelation coefficient of the residual series, which must be a time series or an
ordered space series. In Eqs 3 and 4, the difference of i indicates a one-order time lag (k = Δi = 1)
or a one-step space displacement (r = Δi = 1). Because the autocorrelation coefficient ρ comes
between -1 and 1 (i.e., -1�ρ�1), theDW values vary from 0 to 4 (i.e., 0�DW�4). If the residuals
have no serial correlation, then ρ = 0, and thusDW = 2. This suggests that if the Durbin-Watson
statistic is close to 2, the residual series can be regarded as free of autocorrelation at a certain sig-
nificance level (say, α = 0.05).
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However, the Durbin-Watson test is only applicable to the serial correlation of residuals
from the least squares regression based on times series, for example, the US level of urbaniza-
tion from 1790 to 2010, or ordered spatial series like the average urban population density of
the rings from the center of a city to its exurbs [18]. If we perform a regression analysis using
cross-sectional data coming from spatial random samples, the residuals will form a random
space series, and thus the Durbin-Watson method will be ineffective. As indicated by Eq 3, the
DW value is calculated with residuals and the sum of squares of the differences of residuals, but
the sum of squares of the residual differences depends on the arrangement of elements in a ran-
dom sample. For cross-sectional data, the elements can be arranged in a spreadsheet at ran-
dom. The results from different data arrangements will differ from one another. For example,
suppose that for the set of elements (A, B, C), the corresponding array is (1, 2, 3). Thus the vec-
tor of difference is (1, 1), and the sum of squares of the differences is 2. If this is an ordered
temporal or spatial set, the order of A, B, and C cannot be changed. However, for a spatial ran-
dom sampling, the arrangement of the elements is arbitrary. If the elements are permuted and
the result is (B, A, C), the corresponding array will change to (2, 1, 3). Then the difference vec-
tor is (-1, 2), and the sum of squares of the differences is 5. This suggests that, for a spatial ran-
dom sample, the DW value is not certain. It depends on the arrangement of the elements in a
set. In short, the current Durbin-Watson test can be applied to least squares regression based
on time series or ordered space series but cannot be effectively used to test the residual serial
correlation for regression analyses based on random space series.

2. An approach to test random serial correlation
An effective approach to solving this problem is to make proper use of spatial autocorrelation.
Moran’s index is in fact a spatial autocorrelation coefficient. The mathematical expression of
Moran’s index has been simplified by means of standardized vectors and a unitized matrix [12].
Using the normalized form of the formula for Moran’s index, we can construct new statistics for
testing serial correlation of the least squares regression residuals based on spatial random sam-
ples. The series of residuals from prediction of Eq 1 can be standardized with the formula

ei ¼
εi
s
; ð5Þ

where σ refers to the standard deviation of the predicted residuals. If the spatial distance matrix
of the random sampling points has been obtained, we will have an n-by-n unitary spatial weights
matrix (SWM) such as

W ¼ ½wij�n�n: ð6Þ

The three properties of this matrix are as follows: (1) Symmetry, i.e., wij = wji; (2) Zero diag-
onal elements, i.e., wii = 0, meaning that the entries in the diagonal are all 0; and (3) Unitary
condition, that is

Xn

i¼1

Xn

j¼1

wij ¼ 1: ð7Þ

Thus the spatial autocorrelation coefficient of the residuals can be computed by the follow-
ing formula

I ¼ eTWe; ð8Þ
where I denotes spatial autocorrelation index (SAI) of residuals. The SAI is equivalent to Mor-
an’s index of spatial residuals. The index ranges from -1 to 1 (i.e., -1�I�1). If the residuals
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have no serial correlation, we will have I = 0. By analogy with the Durbin-Watson statistic
expressed with Eq 3, the residual correlation index (RCI) of the least squares regression can be
defined as

S ¼ 2ð1� IÞ; ð9Þ
where S indicates RCI. The S value comes between 0 and 4 (i.e., 0�S�4). If I = 0, then S = 2. So,
if the S value is close to 2, we will reach a conclusion that the residuals have no spatial autocor-
relation according to a certain significance level.

A residual autocorrelation scatterplot can be constructed for serial correlation analysis by
analogy with the normalized Moran’s scatterplot. Owing to eTe = n, Eq 8 can be expressed as

eTeI ¼ eTðnWÞe; ð10Þ

This suggests the precondition that Eq 10 comes into existence is as follows

nWe ¼ Ie: ð11Þ

Apparently, Eq 8 can be derived from Eq 11. On the other hand, Eq 8 multiplied left by e on
both sides of the equal sign yields

eeTWe ¼ Ie: ð12Þ

Based on Eq 11, a random variable can be defined for observed values in the form

y ¼ eTeWe ¼ nWe: ð13Þ

Based on Eq 12, a trend variable can be defined for predicted values as below

ŷ ¼ eeTWe ¼ Ie: ð14Þ

Then, using e as x-axis with y and ŷ as y-axis, we can make a serial correlation scatterplot. In
the plot, the relationship between e and y gives the scattered points, and the relationship
between e and ŷ yields the trend line. The slope of the trend line is equal to the SAI value.

3. Developed and alternative mathematical forms
Amathematical model or a statistical measurement has two expressions: one is based on the
population (universe), and the other is based on samples. The former applies to mathematical
transformation or theoretical reasoning, and the latter applies to empirical analyses. For exam-
ple, we have population standard deviation (PSD) and sample standard deviation (SSD). Thus
we have two sets of principal component analysis (PCA): one is based on the PSD, and the
other is based on the SSD [5]. If we are trying to develop PCA theory, we can use the former,
and if we are attempting to do positive research, we should use the latter. Both the theoretical
expression and the empirical expression of a mathematical model can be applied to empirical
studies. If a sample is large enough, the results and conclusions will be the same. However, if a
sample is small, the empirical expression of a mathematical model will be superior to the corre-
sponding theoretical expression. In spatial autocorrelation theory, Moran’s index is based on
the PSD, while Geary’s coefficient is based on the SSD. In other words, to compute Moran’s
index, the variable standardization is based on the PSD; however, to calculate Geary’s coeffi-
cient, the variable standardization is based on the SSD [12]. Of course, it is easy to construct
Moran’s index by means of SSD.

A theoretical definition of RCI and the related analytical process for random spatial serial
correlation have been proposed above. In fact, the RCI can be defined in two forms: one is the
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relatively precise form based on Moran’s index, the other is the approximate form based on
Geary’s coefficient. In theory, the RCI is expressed in the form based on the population; while
in practice, it always takes the form based on a sample. No matter what form it is, a spatial con-
tiguity matrix (SCM) must be constructed [19]. Suppose there are n elements in a geographic
region. A SCM can be expressed as

V ¼ ½vij�n�n ¼

v11 v12 � � � v1n

v21 v22 � � � v2n

..

. ..
. . .

. ..
.

vn1 vn2 � � � vnn

2
666664

3
777775; ð15Þ

where V denotes the SCM, vij is a measure used to compare and judge the degree of nearness or
the contiguous relationships between location i and location j (i, j = 1, 2, . . ., n). The elements
on the diagonal are zeros (i.e., for i = j, vii�0). A sum of SCM entries can be defined as

T ¼
Xn

i¼1

Xn

j¼1

vij: ð16Þ

The SCM can be converted into SWM by the following formula:

wij ¼
vij
T

¼ vij=
Xn

i¼1

Xn

j¼1

vij; ð17Þ

by which the SCM can be made unitary by matrix (completely unitary). In literature, the SCM
is always made unitary by row (locally unitary). This is not desirable because the result will vio-
late the distance axiom [5]. A SWM is actually based on a generalized spatial distance matrix,
which must satisfy the axiom of distance; otherwise it is unacceptable.

Using the ideas from spatial autocorrelation, we can derive a set of new indices for testing
serial correlation in the least squares regression of spatial random samples. Based on popula-
tion, Eq 8 can be developed in detail to yield an expression similar to the formula of Moran’s
index, that is

IP ¼
εTðnWÞε

εTε
¼

n
Xn

i¼1

Xn

j¼1

vijðεi � mÞðεj � mÞ

T
Xn

i¼1

ðεi � mÞ2
¼

n
Xn

i¼1

Xn

j¼1

wijεiεj

Xn

i¼1

ε2i

: ð18Þ

where μ = 0 denotes the mean of residuals. Eq 18 is based on PSD. Thus the RCI based on pop-
ulation can be expressed as

Sp ¼ 2ð1� IpÞ; ð19Þ

which is suitable for theoretical analyses rather than empirical studies. Based on samples, Eq 18
can be revised as

Is ¼
εT½ðn� 1ÞWÞ�ε

εTε
¼

ðn� 1Þ
Xn

i¼1

Xn

j¼1

wijεiεj

Xn

i¼1

ε2i

; ð20Þ
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which indicates a new Moran’s index, which is based on SSD. Accordingly, the RCI based on
samples can be expressed as

Ss ¼ 2ð1� IsÞ: ð21Þ

This formula can be applied to the empirical analyses of least squares regression based on
the smaller spatial samples.

As indicated above, Geary’s coefficient is similar to the Durbin-Watson statistic in mathe-
matical principle. Now, by analogy with the formula of Geary’s coefficient, we can define serial
autocorrelation index in the following form

C ¼
ðn� 1Þ

Xn

i¼1

Xn

j¼1

vijðεi � εjÞ2

2
Xn

i¼1

Xn

j¼1

vij
Xn

i¼1

ðεi � mÞ2
¼

ðn� 1Þ
Xn

i¼1

Xn

j¼1

wijðεi � εjÞ2

2
Xn

i¼1

ε2i

: ð22Þ

Thus an approximate residual correlation index (ARCI) can be defined as

Sa ¼ 2C ¼
ðn� 1Þ

Xn

i¼1

Xn

j¼1

wijðεi � εjÞ2

Xn

i¼1

ε2i

; ð23Þ

which is based on SSD. This formula is suitable for the positive studies by means of the least
squares regression based on the larger spatial samples.

Both the RCI and ARCI can be termed spatial Durban-Watson (SDW) statistics. In theory,
we have

Sa ¼ 2ð1� IsÞ ¼ Ss: ð24Þ

However, in practice, we have

Sa 	 2ð1� IsÞ ¼ Ss: ð25Þ

This can be demonstrated by means of mathematical transformation. Please note that a
mathematical proof is always based on PSD rather than SSD. The derivation is as follows:

S ¼ 2C ¼
n
Xn

i¼1

Xn

j¼1

wijðεi � εjÞ2

Xn

i¼1

ε2i

¼
2n

Xn

i¼1

Xn

j¼1

wijðε2i � εiεjÞ
Xn

i¼1

ε2i

¼ 2½

Xn

i¼1

Xn

j¼1

wijε
2
i

1

n

Xn

i¼1

ε2i

�
n
Xn

i¼1

Xn

j¼1

wijεiεj

Xn

i¼1

ε2i

�

	 2½1� Ip�:

ð26Þ

Here the arithmetic mean value of the squared errors is close to the weighted average of the
squared residuals for a population or a large sample. If the population is replaced by a sample,
the measurement Ip will be substituted with the index Is.
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In fact, the Durbin-Watson statistic is an approximate measure rather than an exact mea-
sure for serial correlation. ARCI is more similar to the DW index than RCI. Comparing Eq 23
with Eq 3 shows that there is a clear analogy between the Durbin-Watson statistic and the
ARCI. The difference rests with that the one-order time lag in Eq 3 is replaced by a spatial
weight function in Eq 23. For an even distribution of n elements and if n is very large, we will
have a weight wij!1/n	1/(n-1). The spatial difference εi −εj is analogous to the temporal dif-
ference εi-εi-1. This suggests the Durbin-Watson formula defined by Eq 3 and the ARCI
defined by Eq 23 are mathematically isomorphic to each other.

Case Study

1. Study area, problems, and the analytical process
The method of spatial serial autocorrelation analysis can be applied to the least squares regres-
sion of the relationship between urbanization and economic development. This relationship can
be modeled with a nonlinear function such as logarithmic function [20], but an approximate
analysis can be made using a linear equation. The study area is the mainland of China, which
includes 31 provinces, autonomous regions, and municipalities directly under the Central Gov-
ernment of China. Two variables are employed to make the regression analysis: one is the level
of urbanization, and the other, per capita gross regional product (GRP). The level of urbanization
refers to the proportion of urban population to total population in a region. The statistical data
of urbanization levels and per capita GRP (2000–2013) are available from the website of
National Bureau of Statistics (NBS) of the People's Republic of China (http://www.stats.gov.cn/
tjsj/ndsj/). In order to implement the spatial serial correlation test, we need a spatial contiguity
matrix. The matrix can be generated with the distances by train between any two capital cities of
regions. The railroad distance matrix can be found in many traffic atlases of China. Because the
cities of Haikou and Lhasa are not connected to the network of Chinese cities by railway from
2000 to 2013, only 29 regions and their capital cities are taken into consideration, and thus the
size of each spatial sample is n = 29 (Table 1). The datasets of urbanization level, per capita
GRP, and railway distance are attached (datasets in S1 File). For the sample analysis, the num-
ber, n, should be replaced by the total degree of freedom, n-1 = 28 [12]. Since the number of
independent variable ism = 1, the residual degree of freedom is df = n-m-1 = 27.

The analytical process consists of two operations: the first is the regression modeling of the
levels of urbanization and economic development, which yields a series of predicted residuals;
the second is the serial correlation test of residuals, which is based on spatial autocorrelation
analysis. Using per capita GRP as an independent variable and the level of urbanization as a
dependent variable, we can make a regression analysis easily. The regression results include
residuals (εi) as well as standardized residuals (ei). Then, the three-step calculation method,
which is designed for computing Moran’s index [12], can be utilized to calculate the SAI. In
order to figure out RCI with SAI, the three-step calculation method should be replaced by the
four-step calculation method. The process comprising four steps is as follows. Step 1: Stan-
dardize the residual vector. The residual vector ε has been turned into the standardized vector
e using Eq 5. In fact, the standardized residuals can be directly provided by MS Excel and SPSS.
Step 2: calculate the normalized SWM. The railway distance matrix can be turned into a SCM
with a weight function such as vij = 1/rij, where rij refers to the railway distance between city i
and city j, and vij to spatial contiguity of the two cities [19]. Then by means of Eqs 16 and 17,
the SCM can be transformed into a unitary SWM,W. Step 3: compute SAI. In terms of Eq 8,
the SWMW is first left multiplied by the transposition of e, and then the product of eT andW
is right multiplied by e. The final product of the continued multiplication is the SAI value. Step
4: work out RCI. It is very easy to calculate the RCI value by using Eq 9.
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2. Testing for serial correlation of linear regression analyses
The correlation between the level of urbanization and the level of economic development is
currently a hot topic in China. Linear regression analysis can be employed to study the rela-
tionship between urbanization and economic development. Using the per capita GRP indica-
tive of economic development level as an argument (G) and the proportion of urban
population indicative of the level of urbanization as a response variable (L), we can build a sim-
ple linear regression model. Take the data of the year 2012 as an example. Suppose that the 29
Chinese regions are arranged in conventional order, which is in fact an official order appearing
in various yearbooks of China. Using the least squares calculation, we will have a linear model

Table 1. The datasets of per capita GRP, level of urbanization, and the standardized residuals from linear squares regression of 29 Chinese
regions (2012).

Arrangement in conventional order Arrangement in alphabetical order

Region per capita GRP Level of urbanization Residual Region per capita GRP Level of urbanization Residual

Beijing 87475 86.20 0.9550 Anhui 28792 46.50 0.4496

Tianjin 93173 81.55 -0.9400 Beijing 87475 86.20 0.9550

Hebei 36584 46.80 -0.6196 Chongqing 38914 56.98 1.3671

Shanxi 33628 51.26 0.8315 Fujian 52763 59.60 -0.0564

Inner Mongolia 63886 57.74 -2.1058 Gansu 21978 38.75 -0.3268

Liaoning 56649 65.65 0.7591 Guangdong 54095 67.40 1.5320

Jilin 43415 53.70 -0.0399 Guangxi 27952 43.53 -0.1066

Heilongjiang 35711 56.90 1.8165 Guizhou 19710 36.41 -0.5305

Shanghai 85373 89.30 1.9705 Hebei 36584 46.80 -0.6196

Jiangsu 68347 63.00 -1.5549 Heilongjiang 35711 56.90 1.8165

Zhejiang 63374 63.20 -0.7830 Henan 31499 42.43 -0.8760

Anhui 28792 46.50 0.4496 Hubei 38572 53.50 0.6216

Fujian 52763 59.60 -0.0564 Hunan 33480 46.65 -0.2006

Jiangxi 28800 47.51 0.6793 Inner Mongolia 63886 57.74 -2.1058

Shandong 51768 52.43 -1.5500 Jiangsu 68347 63.00 -1.5549

Henan 31499 42.43 -0.8760 Jiangxi 28800 47.51 0.6793

Hubei 38572 53.50 0.6216 Jilin 43415 53.70 -0.0399

Hunan 33480 46.65 -0.2006 Liaoning 56649 65.65 0.7591

Guangdong 54095 67.40 1.5320 Ningxia 36394 50.67 0.2927

Guangxi 27952 43.53 -0.1066 Qinghai 33181 47.44 0.0236

Chongqing 38914 56.98 1.3671 Shaanxi 38564 50.02 -0.1726

Sichuan 29608 43.53 -0.3484 Shandong 51768 52.43 -1.5500

Guizhou 19710 36.41 -0.5305 Shanghai 85373 89.30 1.9705

Yunnan 22195 39.31 -0.2305 Shanxi 33628 51.26 0.8315

Shaanxi 38564 50.02 -0.1726 Sichuan 29608 43.53 -0.3484

Gansu 21978 38.75 -0.3268 Tianjin 93173 81.55 -0.9400

Qinghai 33181 47.44 0.0236 Xinjiang 33796 43.98 -0.8571

Ningxia 36394 50.67 0.2927 Yunnan 22195 39.31 -0.2305

Xinjiang 33796 43.98 -0.8571 Zhejiang 63374 63.20 -0.7830

DW statistic 2.2463 DW statistic 1.9071

RCI 2.1830 RCI 2.1830

ARCI 2.1435 ARCI 2.1435

Note: The unit of the level of urbanization is percent (%), and the unit of GRP is yuan of Renminbi (RMB).

doi:10.1371/journal.pone.0146865.t001
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as below:

Li ¼ aþ bGi þ εi ¼ 26:1393þ 0:0006388Gi þ εi:

The goodness of fit is R2 = 0.8944 (Fig 1). It is easy to obtain other statistics using mathemat-
ical or statistical software.

In order to appraise the model, a test for serial correlation of residuals must be performed.
Based on the standardized value of the residuals εi, the Durbin-Watson statistic can be
obtained using Eq 3 and the result is about DW = 2.2463. Then, by means of Eqs 8 and 9 and
the abovementioned four-step method of calculation, we can compute SAI and RCI, and the
results are SAI = -0.0915 and RCI = 2.1830. Note that the sample size n is substituted with
degree of freedom n-1. The basic process and main results of calculation are attached (one cal-
culation in S2 File). However, if we rearrange the elements of the spatial sample, the RCI value
will not change, but the DW value will be different. For example, arranging the 29 regions in
alphabetical order, we will have DW = 1.9071 and RCI = 2.1830. The RCI value is constant, but
the DW value depends on the arrangement of regions (Table 1). The corresponding computa-
tion process and results are attached (another calculation in S3 File). Using e as the x-axis, and
eeTWe and (n-1)We as the y-axis, we can draw a normalized autocorrelation scatterplot of
residuals as follows (Fig 2). The slope of the trendline is just equal to the SAI value, -0.0915.

The above method can be applied to the datasets of different years, from 2000 to 2012, and
thus we will have 10 study cases (The statistical data of the level of urbanization from 2001 to
2004 are absent from the website of China’s NBS). The weight functions are adopted to gener-
ate spatial contiguity matrixes. One is the inverse power function, vij = 1/rij, and the other is a
negative exponential function in the form vij = exp(-2rij/�r), where �r denotes the average dis-
tance. This study relies heavily on the inverse power function. The calculations based on the
negative exponential function are for reference only. All the results are tabulated in Table 2.
The RCI values are independent of order of the 29 regions, but they are dependent to a degree
on the spatial weight function. However, the Durbin-Watson statistic values depend to a great
extent on the order of sample data. For example, for the year of 2000, the Durbin-Watson sta-
tistic based on conventional order of regions is DW = 1.5758, while the result based on

Fig 1. The regression model of the linear relationship between urbanization and economic
development of the 29 Chinese regions (2012).

doi:10.1371/journal.pone.0146865.g001
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alphabetical order is DW = 2.4939; for 2008, the two DW values are 1.4310 and 1.9203, respec-
tively. The alphabetical order and conventional order are two examples. There are various
other arrangements for the 29 regions. Generally speaking, for n geographical elements (cities
or regions), we have n! permutations. This suggests that we can get about 29!	8.8418
1030

DW values. Sometimes the differences between the numerical values of the Durbin-Watson
statistic based on different permutations are considerably large. However, for a given weight
function, the RCI value is uniquely determined. Changing the weight function yields different
RCI values. But generally speaking, there is no significant difference between the RCI values

Fig 2. The normalized scatterplot with a trendline of serial autocorrelation for the relationship
between urbanization and economic development of the 29 Chinese regions (2012).

doi:10.1371/journal.pone.0146865.g002

Table 2. The Durbin-Watson statistics, RCI values, and ARCI values of residual series from linear squares regression of 29 Chinese regions
(2000–2012).

Year Arrangement in conventional order Arrangement in alphabetical order

Power law based Exponential law
based

Power law based Exponential law
based

DW statistic RCI ARCI RCI ARCI DW statistic RCI ARCI RCI ARCI

2000 1.5758 1.7576 1.7945 1.7493 1.7105 2.4939 1.7576 1.7945 1.7493 1.7105

2005 1.4621 1.7984 1.6745 1.8112 1.6243 1.9905 1.7984 1.6745 1.8112 1.6243

2006 1.5054 1.8135 1.6855 1.8352 1.6472 1.9345 1.8135 1.6855 1.8352 1.6472

2007 1.6049 1.8390 1.7364 1.8610 1.7029 1.9613 1.8390 1.7364 1.8610 1.7029

2008 1.4310 1.9045 1.7797 1.9168 1.7441 1.9203 1.9045 1.7797 1.9168 1.7441

2009 1.6044 1.9986 1.8986 1.9953 1.8635 1.8789 1.9986 1.8986 1.9953 1.8635

2010 1.8956 2.0418 1.9807 2.0240 1.9570 2.0448 2.0418 1.9807 2.0240 1.9570

2011 2.1046 2.1363 2.1068 2.0921 2.0565 1.9245 2.1363 2.1068 2.0921 2.0565

2012 2.2463 2.1830 2.1435 2.1329 2.0829 1.9071 2.1830 2.1435 2.1329 2.0829

2013 2.2524 2.2142 2.1755 2.1656 2.1055 1.8315 2.2142 2.1755 2.1656 2.1055

Note: “Power law based” means that the spatial contiguity matrix is generated with the inverse power function indicating of power-law decay. “Exponential

law based” means that the contiguity matrix is generated with a negative exponential function indicating exponential decay.

doi:10.1371/journal.pone.0146865.t002
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based on different weight functions. In short, the RCI value depends to some extent on weight
functions but is independent of the arrangement of elements.

3. Testing for serial correlation of log-linear regression analyses
It is possible that the relationship between the level of urbanization and the level of economic
development is not a real linear relationship. The reason for this is that the proportion of
urban population has a clear lower limit (0) and a strict upper limit (1 or 100%). If a sample size
is large enough, the distribution trend of the level of urbanization dependent on per capita
GRP will be a sigmoid curve instead of a straight line and can be described with a squashing
function. Three equations can be employed to describe the relationship between urbanization
and economic development. The first is the single logarithmic linear relation, which can be
modeled with a logarithmic function [21, 22]; the second is the double logarithmic linear rela-
tion, which can be modeled with a power function [23, 24]; and the third is the logit linear rela-
tion, which can be modeled with a logistic function [25]. In fact, the urban-rural ratio of
regional population conforms to the logit transform. Therefore, the relationship between the
level of urbanization and per capita GRP of the 31 Chinese regions satisfies a logistic function
[25], which can be expressed as

Li ¼
Lmax

1þ Ae�kGi
; ð27Þ

which can be transformed into a logarithmic linear relation, namely, ln(Lmax/Li-1) = lnA-kGi,
where Li and Gi denote the level of urbanization and per capita GRP of the ith regions, A, k,
and Lmax are parameters. Among these parameters, Lmax is the capacity of the level of urbaniza-
tion in a region. For simplicity, let Lmax equal 100%. A least squares calculation using the
2012’s datasets consisting of 29 elements yields the following model

lnð100
Li

� 1Þ ¼ 1:1201� 0:00003022Gi þ εi:

The goodness of fit is about R2 = 0.8699, which is less than the coefficient of determination
of the linear model (Fig 3). The logarithmic linear regression can be applied to all the available
datasets from 2000 to 2013 (Table 3). From 2000 to 2008, the goodness of fit of the logistic
model is greater than that of the linear model, but from 2009 to 2013, the R square of the linear
model exceeds that of the logistic model. This suggests a complicated and evolving correlation
between urbanization and economic development.

The method of spatial autocorrelation analysis can be applied to the residuals from the
logistic models for different years. The results are tabulated below (Table 4). The cases are simi-
lar to those of linear models (Table 2). The Durbin-Watson values depend on the permutation
of the 29 regions. For example, for 2000, the DW value based on the conventional order is
about 1.5870, but the result based on the alphabetical order is around 2.4902. There is a signifi-
cant difference between the two numerical values. However, without exception, the RCI value
and ARCI values are free from the influence of the arrangement order of the members in the
datasets. This implies that the new approach of serial correlation test applies to least squares
regression based on the linearized expressions of nonlinear models.
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Discussion

1. Basic framework of methodology
This paper is devoted to developing a methodology of serial correlation test for the predicted
residuals from regression models based on spatial random samples. The study’s aim is method
development rather than empirical analysis. Mathematical modeling is not the main task of
this work, but regression analysis can be employed to show how to apply spatial autocorrela-
tion approaches to testing for serial correlation in least squares regression. Differing from the
conventional Durbin-Watson statistic, the spatial DW statistics based on Moran’s index and
Geary’s coefficient, RCI and ARCI, are independent of the permutation of elements in a data-
set. This indicates that the new method is effective for testing residuals from least squares
regression associated with spatial modeling. The merits of this method are as follows. First, the
mathematical principles are simple and easy to understand; second, the calculation is simple
and convenient to implement. We can calculate RCI with MS Excel (instruction in S4 File). Of
course, we can write computer programs for RCI and ARCI in Matlab (programs in S5 File).

Fig 3. The linear regression of the logistic relationship between urbanization and economic
development of the 29 Chinese regions (2012).

doi:10.1371/journal.pone.0146865.g003

Table 3. The coefficients and goodness of fit of the regression models of the correlation between urbanization and economic development of 29
Chinese regions (2000–2013).

Model Parameter
/Statistic

2000 2005 2006 2007 2008 2009 2010 2011 2012 2013

Linear
model

a 20.1216 24.3466 25.1037 25.7844 24.6789 25.3256 25.1019 25.1020 26.1393 27.1009

b 2.2724E-03 1.3107E-03 1.1510E-03 9.8978E-04 9.1474E-04 8.5882E-04 7.8448E-04 6.9522E-04 6.3884E-04 5.9096E-04

R2 0.8358 0.8931 0.8925 0.8969 0.9068 0.9048 0.9172 0.9063 0.8944 0.8889

Logistic
model

k 1.0616E-04 6.1488E-05 5.3919E-05 4.6466E-05 4.2704E-05 4.0097E-05 3.6911E-05 3.2750E-05 3.0217E-05 -2.8144E-05

A 3.8269 3.1806 3.0773 2.9992 3.1543 3.0745 3.1538 3.1791 3.0651 2.9713

R2 0.8656 0.9126 0.9109 0.9142 0.9081 0.9002 0.9057 0.8858 0.8699 0.8611

doi:10.1371/journal.pone.0146865.t003
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The processes of testing for serial correlation on a spatial random sample can be illustrated
using a flow chart (Fig 4).

In fact, preliminary progress was made forty years ago, but the result failed to catch people’s
attention. Cliff and Ord [15] once employed Moran’s index to test the regression residuals for
autocorrelation [16]. However, the method was not developed further. Several advances are
presented in this article. First, both Moran’s index and Geary’s coefficient are adopted to evalu-
ate autocorrelation of regression residuals; Cliff and Ord [15] only used Moran’s index. Second,
two new statistics are defined by analogy with the Durbin-Watson statistic, and the application
can be associated with the ordinary Durbin-Watson test. Based on Moran’s index and Geary’s
coefficient, the statistics termed RCI and ARCI for short are constructed, and, the Durbin-Wat-
son significance tables can be utilized to make a judgment. Third, the relationships between dif-
ferent statistics are revealed by mathematical transformation. In this manner, it is easy to
understand these statistics. Fourth, the new statistics are expressed with a matrix and a vector.
The weight matrix is unitized, and the vector is standardized. So the expressions are normal-
ized and it is convenient to compute the newly defined statistics. Fifth, typical case studies are
made to demonstrate the analytic processes, and readers can follow these examples to make
serial autocorrelation tests for the regression residuals based on spatial datasets.

Scientific innovation includes substantive innovation and formal innovation. The former is
to discover, invent, or present new things (e.g., phenomena, relations, laws, principles, models,
theories, methods, and so on), and the latter is to improve, reconstruct, develop, or simplify the
existing things (models, theories, methods, etc.). The substantial innovation has been attracting
people’s attention, but the formal innovation seems not to receive due attention from general
researchers. However, the formal innovation is very significant in many cases. For example, the
Hindu-Arabic numerals are a type of formal innovation, compared with the Roman numerals
and other numerals [26]. The former makes arithmetical calculations easier. For the least
squares regression, the p-value is a kind of formal innovation, compared with the t-statistic
[27]. The former makes t-test of regression coefficients simpler [5]. For the logistic regression
[28], Nagelkerk’s coefficient of strength of association is a sort of formal innovation [29], com-
pared with Cox-Snell’s index of strength of association [30]. The former makes the association
strength clearer [5]. This study presents mostly formal innovation, including both intensive

Table 4. The Durbin-Watson statistics, RCI values, and ARCI values of residual series from linearized logistic models of 29 Chinese regions
(2000–2013).

Year Arrangement in conventional order Arrangement in alphabetical order

Power law based Exponential law
based

Power law based Exponential law
based

DW statistic RCI ARCI RCI ARCI DW statistic RCI ARCI RCI ARCI

2000 1.5870 1.7934 1.8068 1.7765 1.7322 2.4902 1.7934 1.8068 1.7765 1.7322

2005 1.3898 1.8706 1.8061 1.8782 1.7742 1.9284 1.8706 1.8061 1.8782 1.7742

2006 1.4574 1.8935 1.8448 1.9032 1.8215 1.8541 1.8935 1.8448 1.9032 1.8215

2007 1.5653 1.9246 1.9013 1.9331 1.8851 1.8928 1.9246 1.9013 1.9331 1.8851

2008 1.5630 2.0557 2.0749 2.0303 2.0297 1.9364 2.0557 2.0749 2.0303 2.0297

2009 1.7473 2.1454 2.1954 2.1034 2.1462 1.8958 2.1454 2.1954 2.1034 2.1462

2010 1.9178 2.1946 2.3054 2.1288 2.2451 1.9866 2.1946 2.3054 2.1288 2.2451

2011 2.0921 2.2599 2.3915 2.1765 2.3067 1.8872 2.2599 2.3915 2.1765 2.3067

2012 2.2132 2.2788 2.3946 2.1977 2.3067 1.8714 2.2788 2.3946 2.1977 2.3067

2013 2.2334 2.2998 2.4204 2.2219 2.3274 1.8127 2.2998 2.4204 2.2219 2.3274

doi:10.1371/journal.pone.0146865.t004
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innovation (e.g., reconstruction of the mathematical expressions, simplification of analytical
process) and extensive innovation (e.g., construction of new indices). However, this work also
possesses substantive innovation. In methodology, a set of SDW statistics are defined based on
Moran’s index and Geary’s coefficient. Compared with the common Durbin-Watson statistic,
the SDW statistic can be used to test spatial serial correlation of residuals; compared with the
Cliff-Ord method based on Moran’s index [15], the SDW statistics are simpler, clearer, and
more convenient to apply. In technique, a complete computer program based on Matlab has
been written and is attached as supporting materials. Using this Matlab program, students can
readily calculate RCI and ARCI.

2. Deficiency in the method
Any measure has its shortcomings, and any method has its flaws. The incompleteness of the
SDW statistics and the corresponding test method rests with SCM. First, the RCI values and

Fig 4. A flow chart of the two spatial autocorrelation approaches to testing residuals from least
squares regression based on spatial random samples.

doi:10.1371/journal.pone.0146865.g004
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ARCI values depend on the form of the spatial weight function. Different spatial weight func-
tions yield different SCMs, and different SCMs result in different SDW values. In geographical
analysis, we have four types of spatial weight functions, including inverse power function, nega-
tive exponential function, staircase function, and semi-staircase function [17, 19]. The inverse
power function is for the spatial processes based on globality, i.e., the whole of a geographical
system, associated with action at a distance; the negative exponential function is for those based
on localization or quasi-globality; the staircase function is for those based on locality, i.e., the
parts a geographical system; and the semi-staircase function is for those based on quasi-locality
[19]. In many cases, it is difficult to select a weight function. In order to choose a proper weight
matrix, it is necessary to know the mathematical properties and physical meanings of different
functions and the geographical features of study areas. Second, the RCI values and ARCI values
rely on the definition of spatial contiguity. Different contiguity definitions yield different
SWMs, and different SWMs lead to different SDW values. The spatial contiguity can be mea-
sured by spatial relationships and distances, and the spatial relationships and distances can be
considered from different points of view. There exist corresponding relationships between spa-
tial weight functions and the definitions of contiguity, which are displayed in Table 5. The two
kinds of problems above-mentioned cannot be solved at present and require much more study
before the effective solutions are finally found for spatial autocorrelation analysis.

The main limitation of this study rests with data quality. The numerical materials are statis-
tical data rather than so-called big data. The quality of statistical data cannot be guaranteed in
many cases because a sampling is a process of selection in a top-down way. On the contrary,
big data are collected through a bottom-up approach. What is more, the analytical results of
this work are not efficiently represented and displayed by spatial technology such as geographi-
cal information system (GIS). A shortage of a research is just the future directions of improve-
ment. The SDW test can be applied to the spatial analysis based on GIS and big data.

Conclusions
A well-known issue in spatial analysis is testing for serial correlation in least squares regression
based on spatial random samples in a simple way. The aim of this paper is to solve the follow-
ing problems: the conventional Durbin-Watson statistic test is simple, but it cannot be effec-
tively applied to the random spatial serial correlation. Moran’s index or Geary’s coefficient can
be applied to testing spatial serial correlation, but it is not easy to popularize spatial autocorre-
lation to general students, like the autocorrelation coefficient of the time series analysis cannot
be popularized among common researchers. In this work, a simple methodology for testing
autocorrelation of residuals is illustrated, including mathematical models, statistical principles,
calculation processes, and sample cases. In addition, a complete Matlab program is attached
for application and practice. The main conclusions follow.

Table 5. The relationships between spatial contiguity functions and the definitions of contiguity.

Spatial weight function Mathematical expression Spatial measurement Geographical meaning

Inverse power function vij ¼ 1
rb
ij

Spatial distances Action at a distance

Negative exponential function vij ¼ expð�2rij �r Þ Spatial distances Semi-locality or quasi-action at a distance

Semi-staircase function
vij ¼

1; rij � �r

0; rij > �r

(
Spatial distances and relationships Semi-locality

Staircase function
vij ¼

1; if i borders j

0; others

(
Spatial relationships Locality

doi:10.1371/journal.pone.0146865.t005
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First, spatial autocorrelation analysis can be simplified to test the serial correlation of
residuals from least squares regression. The formula of the Durbin-Watson statistic is a
mathematical expression based either on one-order time lag for time series or on one-step spa-
tial displacement for ordered space series. If we make a regression analysis using cross-sectional
data from spatial random sampling, the Durbin-Watson test will be ineffective because the
results depend on the arrangement order of elements in arrays. Rearranging the data sequences
in the independent variable(s) and dependent variables will yield a range of DW values. In
many cases, these DW values are significantly different from one another. If we use the spatial
weight function to replace the parameter of time lag or space displacement, the problem of ran-
dom results will be well solved. Based on Moran’s index and Geary’s coefficient, a set of spatial
Durbin-Watson statistics can be defined to test for serial correlation of random spatial
residuals.

Second, the new statistics for testing residual correlation of spatial random series can be
constructed in two related ways.One is by analogy with Moran’s index, and the other is by
analogy with Geary’s coefficient. By way of Moran’s index, we can get a spatial autocorrelation
coefficient of spatial residuals. One minus the autocorrelation coefficient (SAI) is equal to half
of the Durbin-Watson statistic of residual series (RCI) in a spatial sense. In other words, dou-
bling the difference between 1 and the SAI yields the precise RCI value. By way of Geary’s coef-
ficient, we can obtain another spatial correlation index (SAI). Doubling this index gives an
approximate RCI (ARCI), which really corresponds to the Durban-Watson statistic, and can
be called SDW statistic in spatial analysis. The RCI can be applied to small spatial samples,
while the ARCI is suitable for large spatial samples.

Third, the common Durbin-Watson significance tables can be adapted for testing spa-
tial serial autocorrelation. The common Durbin-Watson statistic is based on a time-lag
parameter, while the spatial Durbin-Watson measurements are based on a weight matrix.
Using the spatial weight function to replace the time-lag parameter, and using the weighted
average to replace the arithmetic mean, we derive a set of new statistics that can test for serial
correlation of predicted residuals of least squares regression models. Compared with the com-
mon Durbin-Watson statistic, the SDW statistics do not differ mathematically. Thus, the Dur-
bin-Watson significance tables in common use can be employed to determine the upper and
lower bounds for the critical values of SDW statistics and make confidence statements based
on certain significance levels (α) and degrees of freedom (df = n-m-1).
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