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Abstract

Rationale

Rapid diagnosis of pulmonary tuberculosis (TB) is critical for timely initiation of treatment

and interruption of transmission. Yet, despite recent advances, many patients remain undi-

agnosed. Culture, usually considered the most sensitive diagnostic method, is sub-optimal

for paucibacillary disease.

Methods

We evaluated the Totally Optimized PCR (TOP) TB assay, a new molecular test that we

hypothesize is more sensitive than culture. After pre-clinical studies, we estimated TOP’s

per-patient sensitivity and specificity in a convenience sample of 261 HIV-infected pulmo-

nary TB suspects enrolled into a TB diagnostic study in Mbarara, Uganda against MGIT cul-

ture, Xpert MTB/RIF and a composite reference standard. We validated results with a

confirmatory PCR used for sequencingM. tuberculosis.

Measurements and Results

Using culture as reference, TOP had 100% sensitivity but 35% specificity. Against a com-

posite reference standard, the sensitivity of culture (27%) and Xpert MTB/RIF (27%) was
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lower than TOP (99%), with similar specificity (100%, 98% and 87%, respectively). In unad-

justed analyses, culture-negative/TOP-positive patients were more likely to be older

(P<0�001), female (P<0�001), have salivary sputum (P = 0�05), sputum smear-negative

(P<0.001) and less advanced disease on chest radiograph (P = 0.05).M. tuberculosis
genotypes identified in sputum by DNA sequencing exhibit differential growth in culture.

Conclusions

These findings suggest that the TOP TB assay is accurately detectingM. tuberculosis DNA
in the sputum of culture-negative tuberculosis suspects. Our results require prospective val-

idation with clinical outcomes. If the operating characteristics of the TOP assay are con-

firmed in future studies, it will be justified as a “TB rule out” test.

Introduction
Despite recent advances, tuberculosis (TB) remains a major global health problem with 9 mil-
lion new cases and 1.4 million deaths in 2013.[1] Critically, the global incidence is decreasing
by less than 2% per year, far from the 20% decline required to reach the World Health Organi-
zation (WHO) stated goal of eliminating TB by 2050.[2, 3] Patients with pulmonary TB repre-
sent ~75% of the global disease burden and contribute exclusively to transmission. Rapid,
accurate and early detection ofMycobacterium tuberculosis (MTB) in the sputum of TB sus-
pects, and active case finding are key components of the WHO strategy.[4, 5]

For decades, the rapid diagnosis of pulmonary TB has relied on sputum acid-fast bacilli
(AFB) smear microscopy but its yield is low when compared to mycobacterial culture, which is
considered the most sensitive method for diagnosis.[6] Recently developed molecular tests
such as Xpert1 MTB/RIF and GenoType1 MTBDRplus provide a rapid alternative to culture
in patients with high bacterial loads (i.e. sputum AFB smear-positive). However, their overall
sensitivity (~90% against culture) in programmatic conditions has been lower than initially
anticipated,[7] and particularly poor (~50%) in smear-negative/culture-positive individuals.
[8–10] Other TB diagnostics under development suffer the common limitation of being less
sensitive than cultures.[5, 11, 12]

For definitive diagnosis, reliance on cultures as the reference method is problematic because
the process of decontaminating samples prior to culture is inherently detrimental to mycobac-
terial viability. As a result, the overall sensitivity of cultures is only 80–85% compared to a com-
posite reference standard,[6] but significantly lower in clinical conditions where the bacterial
load in sputum is low (i.e. paucibacillary TB disease) such as certain patients with HIV-infec-
tion,[13] children,[14] and extra-pulmonary TB.[15] Other individuals with active disease har-
boring non-culturable organisms in sputum include subjects with unstable latent TB infection
and early sub-clinical disease that have “percolating” organisms,[16] and those with old
untreated TB.[17, 18] In addition, “persistent” organisms after antituberculous therapy may
represent the paucibacillary TB pool for poor treatment outcomes.[17] Without culture confir-
mation, paucibacillary TB is rarely identified leading to empirical treatment, over- or underdi-
agnosis, and increased morbidity and mortality.[19]

We have developed the “Totally Optimized PCR (TOP) TB assay”, a new nucleic acid
amplification test (NAAT) that utilizes a combination of efficient sample processing, novel
gene target selection, modern primer design techniques, and an extended PCR for selective tar-
get isolation and amplification. The assay is highly specific for Mycobacteria in the MTB
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complex and therefore is not affected by background genomic noise, which enables detection
with heightened sensitivity. We report here results of in silico and in vitro data. To compare
accuracy of the TOP TB assay with culture and the leading molecular test (e.g. Xpert MTB/
RIF), we then performed a cross-sectional evaluation using specimens from HIV-infected sub-
jects enrolled into an existing prospective diagnostic study in Uganda.

Materials and Methods
Ethical approvals: The studies were approved by the Institutional Review Boards at Boston
University Medical Center, Mbarara University of Science and Technology, and the Uganda
National Council for Science and Technology. Samples were shipped to Boston under a Mate-
rial Transfer Agreement for DNA sequencing.

TOP TB assay
The assay targets a gene (ponA1) involved in the assembly of peptidoglycans in the MTB bacte-
rial wall.[20] The assay’s diagnostic primer set (3-ponA-F/R) targets sequences unique to all
species in the MTB complex (Section IA, Fig A and Table A in S1 File). Amplicons generated
by 3-ponA were detected using a capture-probe colorimetric assay, and the resultant Optical
Densities (OD) provided a semi-quantitative measurement of MTB bacillary load.[21] A more
detailed description of the TOP TB assay and its associated laboratory methods, including sam-
ple processing and DNA extraction, PCR amplification and amplicon detection are provided in
S1 File (Sections IA and IB).

PCR genotyping
To establish the presence of MTB DNA, we tested all specimens with primer set 2-ponA-F/Ra
(used for genotyping), which targets a section of ponA1 that is sufficiently distant (~1,100 bp)
from the 3-ponA target (used for diagnosis) to remain unaffected by amplicons generated with
primer 3-ponA (Section IC, Fig A and Table A in S1 File). 2-ponA PCR products were
sequenced to distinguish among five possible genetic variants of MTB (genotypes 0T, 1T, 2, 3
and 4) (Section IC in S1 File). The sequencing nomenclature (Fig B in S1 File) and the genetic
correspondence of 2-ponA genotypes to other familiar MTB whole genome genotyping meth-
ods are shown in the Appendix (Fig C and Table B in S1 File).

Clinical study
After completing pre-clinical studies, we tested a convenience sample of discarded sputum
specimens obtained from participants enrolled into a cross-sectional TB diagnostic study in
Uganda. Table C in S1 File summarizes: the study design, a description of the subjects, and
methodology (including reference methods).

Setting. The study was conducted at the Epicentre/ Médecins sans Frontières Laboratory
located at Mbarara University of Science and Technology in Mbarara, Uganda. With an esti-
mated TB incidence of 166 cases per 100,000 inhabitants, Uganda is on the WHO list of high
burden TB countries; the prevalence of HIV infection among TB patients is 48%.[1] Mbarara
District is situated in the South Western (SW) zone of the Uganda National Tuberculosis and
Leprosy Programme (NTLP). According to NTLP laboratory activity reports, 8,423 TB patients
were registered in the SW zone (incidence rate 290 per 100,000). Of the 3701 TB suspects from
Mbarara District, 668 (18%) were AFB smear-positive, and 68% were HIV infected.[22]

Study population. Participants for this study were enrolled into a prospective cross-
sectional study designed to independently evaluate the diagnostic accuracy of a new AFB
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smear microscopy method [23] and Xpert MTB/RIF, with liquid media culture (manual MGIT
960) as the reference method.[24] From September 4th 2012 to April 11th 2014, the parent
study enrolled 1,047 (737 HIV-infected and 310 HIV-uninfected) consecutive TB suspects
admitted to the wards or attending any of the outpatient clinics of the Mbarara Regional Refer-
ral Hospital or the Municipality Health Centre in Mbarara city. Eligible participants were adult
(�18 years), TB suspects (�2 weeks of cough + at least one other symptoms of TB) [25] willing
to follow the study protocol. Patients were excluded if they had received antituberculous drugs
within three days, were too ill to consent, or presented with disseminated or extra-pulmonary
TB without cough.

Study design and measurements. Participants had a standardized TB evaluation, HIV
testing and provided three spontaneously expectorated (�2 mL) sputum samples that included
one early morning and two spot samples in a 24-hr period. One of the spot samples (selected
by randomization) [24] was tested for direct AFB smear, Xpert MTB/RIF and culture.

Sample handling prior to TOP processing and testing. Specimens from the last 261
HIV-infected participants enrolled into the parent study were available for this study. TOP
testing was done on the discarded portion of a pellet processed for Xpert MTB/RIF. A ~1mL
aliquot was frozen at -80°C for two to six months prior to TOP testing; after thawing, the pellet
was washed to remove N-acetyl-L-cysteine / sodium hydroxide solution, [26] processed for
TOP and tested in a single batch at the Epicentre laboratory in Mbarara. Study personnel were
blind to routine TB results; coded results were later linked via a study identification number.

Standard Laboratory Methods. The Epicentre/ Médecins sans Frontières Laboratory has
quality assurance (QA) and quality control (QC) protocols, and well-trained personnel with
extensive experience in laboratory based TB research. The appearance of sputa specimens was
classified as purulent, mucopurulent, mucosalivary or, salivary by the microbiology technicians
according to international laboratory guidelines.[27] We used the light-emitting diode-aura-
mine fluorescence technique (FluorescenS1 LED system, Bergman Labora, Danderyd, Swe-
den) for direct AFB microscopy on each specimen and reported the results according to the
WHO grading scale.[28] The specimen was then decontaminated using the N-acetyl-L-cysteine
(0.5%) / sodium hydroxide (1.5%) method.[26] For the reference culture method, we inocu-
lated 500 μl into one manual-testing MGIT 960 (Becton, Dickinson, Franklin Lakes, NJ). We
reported a negative culture result after 56 days of incubation at 37°C. Contamination in MGIT
media was ruled out using Ziehl-Neelsen (ZN) microscopy and culture on blood agar. For all
positive MGIT cultures, we differentiated betweenM. tuberculosis and non-tuberculous myco-
bacteria (NTM) using the SD TB Ag MPT64 Rapid system (SD Bioline, Kyongi-do, South
Korea), following the manufacturer’s instructions. The GenoType Mycobacterium CM/AS
identification kit (Hain Lifescience, Nehren, Germany) was used for identification of NTM.
The Xpert1 MTB/RIF assay (Cepheid, Sunnyvale, CA, U.S.A.) was performed according to the
manufacturer’s instructions.

Analytical strategy
We report the results according to the Standards for Reporting of Diagnostic Accuracy
(STARD) guidelines.[29, 30] We calculated the diagnostic cut-off for TOP OD using a cut-off
value of three standard deviations above the mean of the OD values of negative controls (e.g.
laboratory cut-off). [31] As a sensitivity analysis, we used receiver operating curve (ROC) tools
to determine the cut-off that simultaneously maximized sensitivity and specificity (e.g. ROC
cut-off). We estimated per-patient sensitivity and specificity using culture as the reference stan-
dard, using all available results to adjudicate TB status. We also estimated per-patient sensitiv-
ity and specificity using a Composite Reference Standard (CRS) that included culture, MTB
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sequencing (e.g. 2-ponA genotyping), a NAAT other than TOP (e.g. Xpert MTB/RIF) and AFB
smear, as described. [15, 32–34] We analyzed patient characteristics according to TOP and cul-
ture results using Kruskal-Wallis (for continuous data) and Fisher’s exact test (for categorical
data), and compared groups using Wilcoxon and Fisher’s exact tests. Variables with p< 0.1
and those considered to be clinically significant were included in multivariate logistic and ordi-
nal logistic regression models. In the former we consider correlates with culture+/TOP+ com-
pared to culture-/TOP+ individuals. In the latter, we compare all three outcomes ordinally. For
these models we group X-ray results into two categories: Normal/Minimal versus Moderate/
Far Advanced. The models controlled for age, sex, previous TB treatment, sputum appearance,
sputum volume (only for first model), and X-ray (2 category).

Results

Preclinical studies
In the preclinical phase, TOP TB’s primer set 3-ponA (used for diagnosis) demonstrated: i)
excellent analytical sensitivity when clinical sputum samples were “spiked” withMycobacte-
rium bovis Bacille Calmette-Guérin (Fig D, top in S1 File); ii) semi-quantitative detection capa-
bility over a range of MTB loads (Fig D, bottom in S1 File); iii) high analytical specificity,
testing negative against a panel of 18 common respiratory bacteria and other microorganisms
(Fig E in S1 File), and; iv) high specificity against non-tuberculous mycobacteria (Fig F in S1
File). The 2-ponA primer set (used for sequencing) demonstrated a ~8–10% lower analytical
sensitivity but similar analytical specificity in the preclinical phase of testing (data not shown).

Clinical study
We then evaluated the TOP TB assay in 261 HIV-infected pulmonary TB suspects enrolled
into the parent study between October 2, 2013 and April 11, 2014 (Fig 1). Table 1 shows char-
acteristics of the study cohort according to culture and TOP TB assay results.

As shown in Fig 2, 48/261 (18%) patients were culture-positive, all of which were also TOP-
positive. Seventy-four (28%) were culture-negative (N = 64) or contaminated (N = 10) and
were TOP-negative; 139 (53%) were culture-negative (N = 137) or contaminated (N = 2) but
TOP-positive (Fig 2a). The distribution of TOP ODs by culture and AFB smear are shown in
Fig 2b and 2c, respectively. Of the 139 culture-negative/ TOP-positive samples, 2-ponA
sequencing confirmed the presence of MTB DNA in 128 (92%). The sensitivity and specificity
of TOP and Xpert MTB/RIF compared to culture or a CRS are shown in Table 2; the break-
down of results included in the CRS is shown in Table D in S1 File. We were unable to
sequence MTB from 11/139 (8%) culture-negative/ TOP-positive specimens with low TOP OD
values (median 0.13, IQR 0.11–0.34).

In univariate analyses that compared culture-positive/TOP-positive vs. culture-negative/
TOP-positive patients (Table 1), the latter were more likely to be older (P<0�001); women
(P<0�001); have a salivary sputum (P = 0�05); have a previous history of TB disease (P = 0�05),
and have early TB disease as measured by sputum AFB smear grade (P<0�001) and chest radio-
graph (P = 0�05). In amultivariate analysis comparing culture+/TOP+ to culture-/TOP+ patients,
age (p = 0.003) and gender (p = 0.002) remained statistically significant. In a comparison of all
three TOP/culture categories from Table 1, multivariate results revealed that age (p = 0.02) and
gender (p<0.001) were statistically significant and previous TB treatment was marginally signifi-
cant (p = 0.10).

The cut-off for TOP OD values was determined to be 0.0854 using the laboratory criterion
(e.g. +/- three standard deviations criterion). When we used ROC analysis with 100 random
observations, we found the cut-off to be 0.088 leading to reclassification of only 4 individuals
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(Table E in S1 File). The area under the ROC curve was 0.86 for culture and 0.95 for the CRS
using TOP OD as the diagnostic test (Fig G in S1 File).

M. tuberculosis sequencing results
The relative frequency and distribution of 2-ponA genotypes differed significantly according to
TOP OD values (Fig 3 and Table 2; P = 0�005); in particular, genotype 4 strains were mostly
restricted to culture-negative samples with low ODs (Fig 3). As shown in Fig 4, 2-ponA geno-
types had variable growth in culture (P = 0�002).

Discussion
Our study provides strong evidence that the TOP TB assay accurately detects trace amounts of
MTB DNA in the sputum of HIV-infected TB suspects who otherwise may yield a negative cul-
ture. Currently a culture diagnosis is the optimal reference standard for diagnosis. In the
absence of culture to determine specificity, we established the validity of positive diagnosis
using a composite reference standard and, most importantly, we sequenced MTB from culture-
negative specimens. We used a reproducible genotyping method that is supported by the

Fig 1. Study profile.

doi:10.1371/journal.pone.0158371.g001
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Table 1. Characteristics of 261 HIV-infected pulmonary tuberculosis suspects in Mbarara, Uganda byM. tuberculosis culture and TOP TB assay
results.

Characteristic Overall Culture positive Culture negative P value

TOP positive TOP positive TOP negative Overall1 Two-way2

N 261 48 139 74

Age (years) 39.0 [30.5–47.0] 33.5 [28.0–40.0] 42.0 [33.0–49.0] 38.5 [31.0–48.8] 0.002 <0.001

Female sex 138 (53) 12 (25) 78 (56) 48 (65) <0.001 <0.001

Previous TB treatment* 33 (13) 3 (6) 23 (17) 7 (9) 0.04+ 0.05+

Years since previous TB treatment 9.3 [5.9–10.9] 5.4 9.3 [5.9–10.9] 11.9 [10.3–12.0] 0.28# 0.16#

N = 13 N = 1 N = 9 N = 3

CD4 (cells/mL)* 322 [104–495] 182 [54–338] 343.5 [93–457] 355 [158–590] 0.06 0.13

N = 172 N = 22 N = 92 N = 58

Sputum volume (mL) 3 [2–5] 4 [3–5] 3 [2–4.5] 3 [2–5] 0.33# 0.16#

Sputum appearance^ <0.001+ 0.05+

Purulent 69 (27) 20 (42) 36 (26) 13 (18)

Mucoid 36 (13) 10 (25) 23 (17) 3 (4)

Salivary 156 (60) 18 (33) 80 (58) 58 (78)

Chest radiograph* 0.04+ 0.05+

Normal 29/103 (28) 2/17 (12) 14/47 (30) 13/39 (33)

Minimal 17/103 (17) 1/17 (6) 8/47 (17) 8/39 (21)

Moderate 46/103 (45) 8/17 (47) 21/47 (45) 17/39 (44)

Far advanced 11/103 (11) 6/17 (35) 4/47 (9) 1/39 (3)

Cavitation present 18/104 (17) 5/17 (29) 7/48 (15) 6/39 (15) 0.37+ 0.27+

Sputum AFB smear* − <0.001+

Negative 222 (85) 11 (23) 137 (99) 74 (100)

Scanty 9 (3) 8 (17) 1 (1) 0 (0)

1+ 10 (4) 10 (21) 0 (0) 0 (0)

2+ 7 (3) 6 (13) 1 (1) 0 (0)

3+ 13 (5) 13 (27) 0 (0) 0 (0)

Sputum MGIT culture

Positive 48 (18) 48 (100) 0/139 (0) 0/74 (0) - -

Contaminated 12 (5) − 2/139 (1) 10/74 (14)

MGIT DTP (days) 19 [13–33] 19 [13–33] NA NA -

Xpert Mtb/RIF *

Positive 50/259 (19) 45/47 (96) 3/139 (2) 2/73 (3) <0.001+ <0.001+

Indeterminate 4/259 (2) 1/47 (2) 1/139 (1) 2/73 (3)

M. tuberculosis 2-ponA genotype

0T 5 (2) 4 (8) 1 (1) 0 - 0.005+

1T 6 (2) 3 (6) 3 (2) 0

1 2 (1) 0 2 (1) 0

2 40 (15) 16 (33) 24 (17) 0

3 93 (36) 18 (38) 74 (53) 1 (1)

4 27 (10) 3 (6) 24 (17) 0

Neg 88 (34) 4 (8) 11 (8) 73 (99)

Values are median [interquartile range] or number (percentage), unless otherwise specified

MGIT = Mycobacterial Growth Indicator Index (BACTEC 960, Becton Dickinson, U.S.A.); DTP = Days-to-positive; AFB = Acid-fast bacilli
1 P overall = Comparison between three groups
2 P two-way = Comparison between culture-positive/ TOP-positive vs. culture-negative/ TOP-positive

*Missing information: Previous TB treatment (1); CD4 cell count (85); Time since previous TB treatment (20); Chest X-ray extent of disease (154), cavitation

(153); Sputum AFB smear (1); Xpert MTB/RIF (2)

^ Purulent sputum category includes purulent and muco-purulent; Mucoid category includes mucoid and muco-salivary
+ Fisher’s exact test.
# Kruskal-Wallis test or Wilcoxon test.

doi:10.1371/journal.pone.0158371.t001
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genetic signature of a global collection of MTB clinical isolates representing all major phyloge-
netic lineages.

The natural history of pulmonary TB in HIV-uninfected adults is traditionally viewed as a
sub-acute or chronic illness whose progression is accompanied by increasing bacterial loads in

Fig 2. TOP TB assay results in 261 HIV-infected TB suspects fromMbarara, Uganda. (a) Vertical line denotes the laboratory cut-off TOP OD
(0.0854) for a positive test. Histograms represent the number of subjects with culture-positive (black), culture-contaminated (white) and culture-
negative (grey) results, by TOPOD values. The X-axis is zoomed-in at the lower end of TOP OD values (0.100 to 0.300) to show the large number
of subjects in this section of the graph. (b)Group TOP OD values according to culture (Cx) and TOP results (group means are 0.67, 0.19, and 0.05,
from left to right). The mean TOP OD of culture-positive/TOP-positive (0.67) samples was higher than in culture-negative/TOP-positive (0.19,
P<0.0001), suggesting a low bacterial load content in many HIV-infected TB suspects. (c)Median TOPODs paralleled sputum AFB grades
(P<0.0001), demonstrating the semi-quantitative performance of the TOP TB assay. One subject with a scanty AFB reading and a contaminated
culture was excluded (TOP OD 0.103). A smoothing spline fit to the data is shown.

doi:10.1371/journal.pone.0158371.g002
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sputum, paralleling worsening disease severity on chest radiography.[4, 6] The paradigm states
that patients with early TB are often smear- and culture-negative, and with an increase in
severity, most patients become smear-negative/culture-positive first, and eventually, smear-
and culture-positive. However, a variety of epidemiologic studies including household contact
investigations, molecular epidemiology and TB screening studies have demonstrated that the
rate of disease progression in humans can be highly variable, perhaps as a consequence of low
or stagnant MTB bacterial loads in sputum.[4, 35, 36] Furthermore, effective diagnostic and
treatment programs that seek out cases to identify patients with most advanced disease (i.e.
AFB smear- and culture-positive) may produce an epidemiological shift that results in the
remaining populations with suspected TB of having a higher prevalence of early TB disease
(i.e. smear-negative/culture-negative), that are the most difficult to confirm bacteriologically.
[4] For example, in the U.S. during the 1980s, 90% of TB cases were confirmed by culture but
this proportion decreased to 77% by 2013; [37] in some settings (e.g. Boston, MA and Alberta,
Canada), ~50% of notified TB cases are culture-negative.[38, 39] Therefore, culture-negative
TB disease is a global problem resulting from both biological and epidemiological factors, for
which there are currently limited solutions beyond the initiation of empirical antituberculous
treatment based on clinical algorithms.[40]

TOP TB enables enhanced detection of MTB in the sputum of TB suspects with HIV/AIDS,
perhaps one of the largest and most vulnerable (together with children) populations with pau-
cibacillary TB disease. In the early phase of assay development, our in vitro results suggested an
analytical sensitivity of 1–4 colony-forming units (CFU) of MTB per mL, a level of detection
greater than culture (e.g. 10–100 CFU/ml). With nullification of culture as the reference
method, we anticipated challenges in validating the accuracy of our results. Several analytical
methods have been recommended when dealing with imperfect reference methods such as
mycobacterial cultures.[15, 32, 33, 41] The use of one of these—“discrepant analysis”, or the
use of a third test, is limiting because usually it is not applied consistently across all the speci-
mens that are being examined, only the ones where the new test result conflicts with the “gold
standard”.[32, 33, 41] Our methods minimize the limitations of using discrepant analysis to
evaluate NAATs because we tested all specimens, and because of the complete lack of overlap

Table 2. Per-patient sensitivity and specificity of the TOP TB assay, Xpert MTB/RIF and culture in 261 HIV-infected tuberculosis suspects accord-
ing to a reference standard established byM. tuberculosis culture or a Composite Reference Standard (CRS) in Mbarara, Uganda.

Diagnostic
Method

MTB
detected

(N)

MTB not
detected

(N)

Sensitivity Specificity PPV NPV

n/N % (95% CI) n/N % (95% CI) n/N % (95% CI) n/N % (95% CI)

48 2131 Culture reference standard

Xpert MTB/RIF 2 50 209 45/47 96% (84, 99) 207/212 98% (94, 99) 45/50 90% (77, 96) 207/209 99% (96, 100)

TOP TB assay 187 74 48/48 100% (93, 100) 74/213 35% (28, 41) 48/137 26% (20, 33) 74/74 100% (95, 100)

177 84 Composite reference standard 3

Culture 48 213 48/177 27% (21, 34) 84/84 100% (96, 100) 48/48 100% (93, 100) 84/211 40% (33, 47)

Xpert MTB/RIF 50 209 48/176 27% (21, 35) 81/83 98% (91, 100) 48/50 96% (85, 99) 81/209 39% (32, 46)

TOP TB assay 187 74 176/177 99% (97, 100) 73/84 87% (77, 93) 176/187 94% (89, 97) 73/74 99% (93, 100)

Definition of abbreviations: CI = Confidence interval; CRS = Composite reference standard; MTB =Mycobacterium tuberculosis; NPV = Negative predictive

value; PPV = Positive predictive value
1 Includes 12 patients with contaminated culture results
2 Two Xpert MTB/RIF results were missing and 4 had indeterminate result (N = 259)
3 Composite Reference Standard (CRS) includedM. tuberculosis culture,M. tuberculosis sequencing (e.g. 2-ponA genotyping), a NAAT other than TOP

(e.g. Xpert MTB/RIF), and AFB smear.[15] The breakdown of CRS results is shown in Table S4 (Appendix)

doi:10.1371/journal.pone.0158371.t002
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(lack of ‘dependence’) between the 3-ponA (diagnostic) and 2-ponA (genotyping) primers.
Furthermore, the use of both clinical and epidemiologic data to act further as a referee, the lat-
ter demonstrating variability of genotypes according to TOP ODs add strength to the interpre-
tation of a positive TOP in the face of a negative culture. Our results may be novel in the TB
diagnostic field but the development of molecular tests with sensitivity superior to culture is
not new in clinical settings.[42] Based on our results, the inclusion of 2-ponA genotypes into a
composite reference standard to evaluate the performance of TOP follows standard practices
in the TB diagnostic field [5, 15, 34], and beyond. [43] Importantly, because the sensitivity of
the primer used for sequencing is ~8–10% lower that the diagnostic primer, 11/139 (8%) cul-
ture-negative/ TOP-positive specimens were adjudicated as false-positive TOP results, lower-
ing the specificity of the assay in this study. In other ongoing studies with non-HIV sputum
samples, the specificity of TOP has been 93% to 100% (data not shown).

Our results suggest that the TOP assay is sufficiently sensitive to overcome well-recognized
difficulties with sputum procurement, such as inadequate specimen volumes and/or poor qual-
ity of specimens (e.g. excess saliva)–a problem that is thought to diminish diagnosis of TB in
women disproportionately.[44–47] This also raises the possibility of using sputum to diagnose
paucibacillary TB when non-pulmonary clinical specimens (blood, gastric aspirates, urine,
stool) have otherwise been thought necessary to establish the diagnosis.[5, 12, 48] Interestingly,

Fig 3. Distribution of 2-ponA genotypes (sequencing results) in 261 HIV-infected pulmonary TB
suspects in Mbarara, Uganda according to TOP TB assay OD values.Results are shown for all subjects
(top), and then separated by those that were culture-positive (middle) and culture-negative (bottom). The X-
axis is divided into groups of subjects with similar bacterial loads as measured by TOP OD values. The first
group (far left) includes 74 subjects that were culture-negative and TOP-negative (3-ponA primer). N denotes
the number of subjects in each TOPOD group; n denotes the number of subjects with a positive 2-ponA
genotype in each group. A 2-ponA genotype could not be identified in 8% (4/48) culture-positive/TOP-positive
samples and 8% (11/139) culture-negative/TOP-positive samples. A 2-ponA genotype was identified in 1%
(1/74) of culture-negative/TOP-negative samples.

doi:10.1371/journal.pone.0158371.g003
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our sequencing data establish a potential link between diagnosis, epidemiology and pathogenic
behavior of MTB in humans. In particular, a high frequency of genotype 4 MTB isolates was
noted in HIV-infected patients with low TOP ODs in Uganda. We had rarely observed this var-
iant in the global collection of clinical isolates before these studies were started, raising the pos-
sibility that genotype 4 strains are uniquely adapted to HIV-infected hosts and cause
predominantly culture-negative TB disease.

Our study has limitations. Our results were obtained by testing a convenience sample of
low-volume, discarded, stored sputum specimens from an existing diagnostic clinical study;
therefore, performance of the TOP assay may have been underestimated. The selection of the
study population was solely based on when the TOP TB assay was ready for clinical testing
(October 2013) rather than selection bias, as shown by the results of the parent study that
included the entire population of HIV-infected patients. [24] The lack of clinical follow-up of
subjects limits the clinical interpretation of certain results. For example, TOP was positive in
numerous patients with a current or past history of treatment for TB, which complicated the
clinical interpretation of negative cultures; interestingly, a similar phenomenon has recently
been described with Xpert MTB/RIF, although a discrepant analysis was not performed.[49,
50] A positive TOP result likely represented either residual (dead) MTB DNA, viable but non-
culturable organisms or bacterial persistence after treatment, the latter a potential harbinger of
TB recurrence and/or risk of drug resistance.[17, 51, 52] Admittedly, detection of trace
amounts of MTB DNA may be due to bacterial “spillage” from a dormant lung foci or low level

Fig 4. Distribution of 2-ponA genotypes by culture results. Each histogram represents 100% of strains for each
2-ponA genotype. N denotes the number of strains in each group. The proportion of samples that were culture-positive
decreased with the number of Proline codon deletions (e.g. Genotype 4 = 4 Proline deletions) in the poly-Proline track
in the ponA1 region targeted by the 2-ponA primer (see Fig B in S1 File) (P = 0.002).

doi:10.1371/journal.pone.0158371.g004
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bacterial replication that may not require treatment. The colorimetric readout uses a study-spe-
cific cut-off value to establish the “Limit of Blank”, a key assay parameter.[31] Finally, in its
current embodiment, the TOP TB assay does not include provisions for detecting drug-resis-
tant TB. However, the primary global need is for a rapid and reliable triage test.[5, 12]

Conclusions
Culture-negative TB is widespread, resulting from several biologic and epidemiologic factors.
By shifting diagnostic emphasis to early detection, the TOP TB assay broadens sensitive and
accurate detection of MTB across the entire clinical spectrum of TB disease. Our findings will
require validation with clinical outcomes obtained prospectively. If the operating characteris-
tics of the TOP assay are confirmed in future studies, it would be justified as a triage or “TB
rule out” test.
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