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Abstract

The notion that the evolution of core reduction strategies involved increasing efficiency in

cutting edge production is prevalent in narratives of hominin technological evolution. Yet a

number of studies comparing two different knapping technologies have found no significant

differences in edge production. Using digital analysis methods we present an investigation

of raw material efficiency in eight core technologies broadly representative of the long-term

evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois,

prismatic blade, punch blade and pressure blade production. Raw material efficiency is

assessed by the ratio of cutting edge length to original core mass. We also examine which

flake attributes contribute to maximising raw material efficiency, as well as compare the dif-

ference between expert and intermediate knappers in terms of cutting edge produced per

gram of core. We identify a gradual increase in raw material efficiency over the broad sweep

of lithic technological evolution. The results indicate that the most significant transition in effi-

ciency likely took place with the introduction of small foliate biface, Levallois and prismatic

blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early

Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency

existed between these species. With prismatic blade technology securely dated to the Mid-

dle Palaeolithic, by including the more recent punch and pressure blade technology our

results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an

increase in efficiency. However, further increases in cutting edge efficiency are evident, with

pressure blades possessing the highest efficiency in this study, indicating that late/epi-

Palaeolithic and Neolithic blade technologies further increased efficiency.

Introduction

Technological efficiency is a key aspect of palaeoanthropological debates surrounding such

topics as cognition, skill, intentionality, modernity, technological organisation and technologi-

cal diversity [1–11]. It is commonly argued that innovations in lithic technology over the

sweep of human evolution were accompanied by greater striking precision, longer reduction

sequences, finer retouch, greater recursion and hierarchical planning, a greater variety of per-

cussive and pressure flaking techniques, more intensive platform preparation, and
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predetermined and more standardised end-products [9, 10, 12–23]. These technological

changes are also often viewed as existing in a feedback loop with biological evolution that

drove dexterity, cognition, and syntactic language [9, 23–33]. Within this narrative, blade and

microblade technologies are often depicted as the pinnacle of evolution in core technology and

a key component of the ‘Upper Palaeolithic Revolution’, involving highly standardised blank

production and careful preparation and maintenance of core volume and efficiency [3, 34–41].

Of particular concern to this study is this pervasive assumption that blades offer greater effi-

ciency in cutting edge production [35, 36, 42–48], underpinned by an early experiment exam-

ining the efficiency in edge production of pressure blade cores [40]. Those who are not

convinced of the gains in efficiency offered by blade production cite the raw-material wastage

involved in selecting high-quality stone required for successful blade manufacture, the higher

risk of critical breakages owing to the thinness of blades, and the fewer opportunities for

retouch events due to the narrowness of blades [49–51].

Stone knapping technologies are often portrayed as evolving in a linear fashion, described

by Clark [52] as a series of ‘modes’. The sequence begins with the single and multiplatform

cobble industries of the Oldowan (Mode 1) at c.2.6 million years ago (mya), developing into

bifacial and discoidal technologies (Mode 2) of the Early Stone Age/Lower Palaeolithic after

c.1.6 mya. These were followed by the first appearance of Levallois (Mode 3) in the Middle

Stone Age/Middle Palaeolithic, the development of blade technology (Mode 4) in the Upper

Palaeolithic, and finally the appearance of the microlithic industries (Mode 5) of the Later

Stone Age and Mesolithic. Despite the popularity of this scheme, it is now clear that technolog-

ical evolution is far from linear, but is instead multidirectional, branching and recursive. For

example, blade technology is securely dated to well before the Upper Palaeolithic [53–57], is

not confined to anatomically modern humans, and appears and disappears in many regions

over time [49, 58–60].

Several experiments over the last four decades have compared raw material efficiency for a

range of core reduction strategies [17, 40, 50, 61–64], most of which consider the efficiency of

blade core reduction. All bar one [40] of these experiments have called into question the sup-

posed advantages in efficiency afforded by blade technology. Despite these findings, these

experiments typically involve a comparison of only two reduction strategies such as biface ver-

sus blade or discoidal versus blade for example. For this reason, this paper compares the effi-

ciency of eight core reduction strategies (bipolar, multiplatform, discoidal, biface, Levallois,

prismatic blade, punch blade and pressure blade), which are common throughout the span of

human evolution. We therefore provide the most comprehensive study of raw material effi-

ciency to date. Previous experiments have also employed varied methodologies, hampering

direct comparison of results. We therefore adopt the method of computer analysis developed

by Eren et al. [61] and refined by Heighway [17] to measure cutting edge to mass ratios.

Cutting Edge Efficiency

A key component of technological efficiency is lithic raw material efficiency, or the extent to

which different knapping technologies and techniques conserve core mass during production.

In this present paper, raw material efficiency is evaluated by calculating cutting edge efficiency,

or the length of possible cutting edge per gram of original core. Sheets and Muto [40] first

explored cutting edge efficiency by demonstrating the efficiency of pressure blades. Their

method for calculating the cutting edge length, by measuring the length of the blade and dou-

bling the result, was inaccurate considering that length measurements do not account for wavy

or tapering blade edges, and their assumption of blade symmetry introduces a high degree of

error.
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More recently, some have sought to experimentally assess the raw material efficiency of

biface reduction [62–64]. Rasic and Andrefksy [64] and Jennings et al. [62] compared blade

cores to bifacial reduction, finding parity in their raw material efficiency. These analyses did

not include a consideration of cutting edge length however, focussing instead on blank count,

size and shape. Cutting edge length was considered in a study by Prasciunas [63], who found

bifacial and multiplatform reduction to be equivalently efficient when considering blanks only

larger than 5g. While each of these experiments highlight the efficiency of bifaces, and bring

into question the supposed advantages in efficiency afforded by blade reduction, the variety of

methods and units of measurement used to assess raw material efficiency hamper comparisons

among these experiments, and between the earlier work of Sheets and Muto [40]. Additionally,

the use of a range of percussor types, such as soft and hard hammers, or hammers of different

sizes, limits the reproducibility of these studies as different percussors can influence core and

flake morphology [65].

Brantingham and Kuhn [1] applied geometric models to Levallois core reduction and

found that the nature of Levallois reduction is geared towards minimising waste and maximis-

ing productive output. We therefore include Levallois flaking in our experimental sample to

test this hypothesis in relation to the other technologies and situate it in the broad sweep of

technological evolution.

Another methodologically rigorous approach to raw material efficiency was conducted by

Eren et al. [61], who compared the cutting edge length per original core mass of prismatic

blade technology against discoidal technology, finding no significant difference between blade

and discoidal cores. The hypothesis of Chazan [50] that wider flakes can more frequently be

resharpened thereby extending their use-life was also tested by Eren et al. [61], who found that

when the potential for further retouch events is considered, discoidal reduction is more effi-

cient in terms of cutting edge per gram of core than blade reduction. Also of interest to this

present study is the highly precise and reproducible method of Eren et al. [61], who measured

cutting edge length by reducing photographs to complex polygons and employing software to

calculate the edge length. In the interests of reproducibility and comparability of results, this

approach is also adopted here.

While Eren et al. [61] set out to examine the transition to the Upper Palaeolithic using pris-

matic blade technology, more recent dates situate the advent of this technology well before the

Upper Palaeolithic [53–57]. Our sample includes punch and pressure blade technology, which

hitherto have only been dated to the Upper Palaeolithic and onwards. Thus, while Eren et al.

[61] were in effect comparing the Lower to Middle Palaeolithic transition, we offer the first

real examination of cutting edge efficiency beyond the Middle Palaeolithic and into the Upper

Palaeolithic, Epipalaeolithic and Neolithic (also including late Mesoamerican technologies).

Moreover, while all previous attempts at examining raw material efficiency compared no more

than two technologies, we compare eight technologies that broadly represent the evolution of

core technology from the Oldowan to the Neolithic. As these previous studies found raw mate-

rial efficiency to be equivalent among bifaces and prismatic blade cores [62, 64], bifaces and

multiplatform cores [63], and prismatic blades and discoidal cores [61], we seek to test the null

hypothesis that no significant differences in cutting edge per gram occur among the eight dif-

ferent reduction strategies under investigation.

Causes of Variability in Efficiency

A previous attempt at identifying the features of a flake which maximise its usable edge per

unit of volume was conducted by Lin et al. [66], who found that increasing the ratio of length

to width (elongation), decreasing flake thickness relative to surface area, and decreasing
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platform size, could all contribute to maximising the efficiency of individual flakes. Moreover,

they argue that these features can be maximised for flakes by decreasing platform depth and

increasing exterior platform angle (EPA). The large sample produced in this present study

allows for a consideration of the role of these, and other, flake attributes in altering cutting

edge efficiency and the tendency of different common and well-known reduction sequences to

increase cutting edge efficiency by emphasising these features.

Skill

We additionally examine the effect of knapping skill on the efficiency of reduction sequences,

a divergence from previous knapping skill studies which typically focus on core reduction abil-

ity. Previous approaches to knapping skill include considerations of the presence of successes

or failures in the knapping sequence [4, 67, 68], experimental attempts to identify markers of

knapping skill in the individual [69], ethnographic reconstructions of complex knapping

sequences [70], and analyses of the effect of raw material quality on knapping skill [71, 72]. In

experiments and the archaeological record, successive step or hinge terminations, overshot

flakes, flakes with an undesired morphology, percussor marks attempted too far from the plat-

form edge or on platforms of unsuitable angles have all been used as evidence of comparatively

unskilful knapping [4, 8, 68, 69, 72–76]. Of particular interest to this study is that cores

knapped by novice or intermediate knappers tend to have a higher rate of unsuccessful flake

removals and produce flakes of smaller size [8, 11, 73, 74, 76]. The influence of this discrepancy

between intermediate knappers and experts on cutting edge efficiency will be explored in this

study.

Materials and Methods

Knapping Experiments

A total of 44 cores were knapped in this experiment to determine the efficiency of each reduc-

tion strategy. Raw material efficiency was estimated here based on the length of resulting cut-

ting edge relative to original core mass. While the number of blanks, mass of blanks and mass

of waste were all recorded, it is the cutting edge per gram of original core values that offer the

most meaningful comparisons among the different technologies. The length of cutting edge

offers a quantification of the amount of usability possessed by a flake, and by reducing this

edge length to a ratio of core mass any variation in beginning core size is negated. Of course,

the function of this edge length is not limited to cutting alone, as sharp edges afforded by lithic

technology have been used, among other things, for chopping, sawing, scraping and piercing.

As Eren et al. [61] already examined the role of use-life on cutting edge efficiency, we consider

efficiency in terms of cutting edge length per gram of original core for unretouched flakes

only.

The sample of technologies examined in this study includes bipolar, multiplatform, discoi-

dal, bifacial, Levallois, prismatic blade, punch blade and pressure blade technology. These

eight technologies span much of the evolution of lithic technology and encompass many spe-

cies of hominin knappers. While not all hominins may conceive efficiency and optimality

equally, if at all, it is not hominin intentionality we wish to examine. Rather, this method is

aimed at identifying temporal transitions in cutting edge efficiency regardless of whether

improvements in efficiency were deliberate.

As we also seek to evaluate the role of knapping skill on cutting edge efficiency, both expert

and intermediate knappers were involved in most of these reduction sequences. The expert

knapper had approximately two decades of experience in stone knapping, while the intermedi-

ate knapper had only a few years of experience but could adequately reproduce technologies
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like Levallois and prismatic blade reduction. The expert knapper reduced two cores and the

intermediate knapper reduced five cores for the multiplatform, discoidal, biface, Levallois and

prismatic blade technologies. The intermediate knapper did not conduct the bipolar portion of

the experiment as this technology requires such little skill that minimal variation in cutting

edge efficiency was expected. Similarly, punch and pressure blade knapping requires such a

high level of skill that it could be executed only by the expert knapper. For each of these three

technologies, the expert knapper conducted three repetitions.

The results produced from both the intermediate and expert knapper are included in all

analyses of cutting edge efficiency in an attempt to capture the broad spectrum of skill among

past hominin knappers. Including only an expert Homo sapiens knapper would not adequately

summarise the millennia of evolution in brain [23, 24, 30, 77] and hand [78–80] morphology

that influences the cognition and skill of different knappers in the past and present.

All nodules used in this experiment were of the same highly cryptocrystalline Texan flint,

possessing very rare and minor impurities. Any nodules with heat damage or critical impuri-

ties were immediately discarded and replaced. The starting nodules weighed approximately

700g (Table 1), with the exception of the three bipolar cores that were far smaller owing to the

fact that bipolar reduction typically occurs only on small cores. A Kruskal-Wallis test reveals

that there is no significant difference between the mean of core masses for any reduction strat-

egy other than bipolar (H = 3.18; df = 6, 34; p = 0.78). All flakes for the multiplatform, discoi-

dal, biface, Levallois and prismatic blade reductions were detached using the same

standardised copper-headed billet weighing approximately 140g. This modern billet was used

in favour of more traditional billets as the mass and hardness of copper is analogous to soft

stone, antler or wood [40, 65, 81, 82], and the copper billet provided a constant and standard-

ised shape throughout all experiments. Refer to S1 Text (as well as S1 Dataset) for a test of the

suitability and efficacy of using copper billets as an analogue for the wide range of soft ham-

mers available to prehistoric knappers. Bipolar knapping was conducted with a hard stone

anvil, and punch and pressure knapping was conducted with different copper headed billets

owing to the specific requirements of these reduction sequences. All knapping debris was col-

lected for later analysis.

Throughout the experiments reduction continued until the cores became exhausted and no

more blanks could be removed, whether due to small core size, high platform angles, accumu-

lated step or hinge terminations, or a combination of these factors. Although Eren et al. [61]

measured only formal blades and discoidal flakes while disregarding the products of core

reshaping, here we define blanks as any removed flake larger than 2cm. We adopted this size

threshold, as flakes larger than 2cm can easily be manipulated in the hand for tool use [83].

Additionally, we sought to avoid complications arising from assuming knowledge about past

knappers’ intentionality, particularly surrounding which removals they desired over which

removals they considered waste. This point is particularly important for the biface iterations of

this experiment, as the core itself is typically the desired end-product, whereas with all other

knapping technologies examined here the core is generally considered waste. However, there is

no a priori reason that prehistoric knappers would not have used the flakes produced from any

form of core shaping. We are therefore measuring the maximum potential efficiency of each

reduction sequence. This arbitrary threshold also allows for greater reproducibility of results,

compared with methods that rely on subjective decisions regarding what constitutes a blank.

Reduction Sequences

In order to maintain experimental control, both the expert and intermediate knappers adhered

to strict reduction sequences, reconstructed from archaeological, ethnographic and
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Table 1. Mass values of the bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade cores, waste and

blanks from each reduction sequence. Initial nodule masses in bold refer to reduction sequences conducted by the expert knapper.

Core Initial Nodule (g) Exhausted Core (g) Waste Chips (g) Total Blanks

Bipolar 119 4.54 12.41 22

134 4.08 16.13 25

152 35.90 29.01 28

Multiplatform 722 13.5 50.8 77

766 17.0 43.7 57

720 67.9 145.7 100

704 37.1 139.3 96

690 12.4 68.1 150

740 23.2 318.5 101

725 24.9 148.1 143

Discoidal 790 17.5 89.5 99

772 9.0 75.2 121

741 46.3 104.6 100

709 39.7 167.1 98

690 44.7 140.2 90

730 137.8 235.8 90

712 55.0 165.4 145

Biface 747 32.42 187.53 226

786 34.77 150.7 220

757 13.19 152.96 172

703 20.92 124.32 198

716 7.83 99.73 156

754 29.15 120.88 172

677 28.01 103.96 194

Levallois 758 10.8 142.7 134

724 15.1 122.5 147

712 76.7 176.9 167

740 48.7 171.8 123

704 172.1 270.8 98

735 41.2 123.9 130

712 40.5 184.7 139

Prismatic Blade 716 11.6 135.7 144

735 15.8 125.2 168

740 192.3 279.9 125

718 78.2 183.2 131

734 78.8 143.1 120

747 72.1 145.8 121

695 76.7 167.3 132

Punch Blade 726 85.35 54.13 156

778 63.35 82.84 214

748 101.62 51.54 175

Pressure Blade 753 48.62 85.74 211

755 74.38 85.33 226

712 30.10 49.94 189

doi:10.1371/journal.pone.0167244.t001
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experimental sources. This section outlines the archaeological correlates of each of the eight

reduction technologies and highlights the methodological aspects key to successfully accom-

plishing these technologies.

Originating in the Oldowan, but with perhaps even older roots at Lomekwi 3 in Kenya [75],

bipolar knapping is one of the oldest stone tool technologies and is executed by positioning a

core on an anvil and striking the exposed platform until a flake is detached. Bipolar knapping

proceeded in this relatively expedient fashion by exposing and striking new platforms until the

cores were exhausted, following archaeological and ethnographic examples [4, 84–90].

Multiplatform reduction was conducted in this experiment via expedient and opportunistic

selection of suitable platforms involving no constraints on the direction from which a flake

can be removed. This sequence was reconstructed from a range of archaeological correlates

[91–94]. With its origins in the Oldowan, the primary aim of multiplatform knapping is the

production of as many large and usable flakes as possible, while not creating too high or too

low edge angles that would inhibit further reduction.

Discoidal knapping involved the formation of a core with a bi-conical morphology, created

via bifacial and radial flake removals. In order to maximise the use-life of the discoidal cores,

both knappers intended each flake to both maintain this specific morphology as well as expose

new suitable platforms. To maximise the utility and applicability of these results, the discoidal

reduction sequences were modelled on well described reduction sequences [61, 95–97], as well

as archaeological examples from a range of regions and time periods [4, 5, 93, 98–102].

With its roots in the Acheulean, bifacial knapping is an enduring and widespread techno-

logical innovation. However, in the interests of maintaining similar original nodule size and

allowing the knapper to exploit the core until near exhaustion, as was the case with all other

technologies, more recent and more heavily reduced bifacial technology is examined in this

study. Reduction proceeded following archaeological examples of small foliate bifaces from the

African Middle Stone Age [103–106] and the European Middle Palaeolithic [107–111]. Thin

and invasive flakes were removed from both faces of the core, maintaining a sharp plane of

intersection between the equivalent hemispheres.

Recurrent Levallois knapping, ubiquitous in the Middle Stone Age or Middle Palaeolithic,

was conducted via establishing with radial flaking two asymmetrical hemispheres, one rela-

tively flat upper hemisphere and one more protruding lower hemisphere. Meanwhile, the final

platform was carefully faceted on the lower hemisphere. Following known reduction

sequences [1, 19, 96, 97, 112–115], and archaeological examples [71, 116–123], convexities

were rigorously maintained on the upper surface in order to control the morphology of the

recurrent Levallois flakes. These convexities were steepened or flattened with short dihedral

flakes or invasive flakes respectively, with the intention of allowing the applied force to the fac-

eted platform to remove a large portion of the upper surface without overshooting the core.

This process of establishing two hemispheres and a faceted platform was repeated until no

more recurrent Levallois flakes could be removed.

Prismatic blade core production in this experiment involved establishing a strong and flat,

or slightly concave, platform from which to remove as many long and thin blades as possible.

Following several archaeological examples [55–57, 97, 124–126], blades were removed by strik-

ing the platform above a long and strong ridge on the core surface. Each successive blade

removal created two new ridges at the intersection of flake scars, from which subsequent

blades could be removed. Owing to the desire for long and thin flakes in blade reduction, over-

hang removal and abrasion is a particularly important aspect of this type of core reduction and

was frequently conducted by the knappers. While this experiment involves unidirectional pris-

matic blade core knapping, bidirectional removals were at times used to maintain the core sur-

face morphology or correct and straighten any haphazard ridges.
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A variation of blade technology that occurred in the Upper Palaeolithic and onwards is the

punch blade technique, in which one end of an intermediary tool, or ‘punch’, is placed on the

core’s platform while the other end is struck by the percussor. This form of indirect percussion

allows the knapper to situate the punch very close to the platform edge immediately above a

ridge, thereby ensuring the precise placement of each blow. Reduction proceeded in this exper-

iment using a copper-tipped punch and by following experimental and archaeological exam-

ples from Mesoamerica, Europe and the Near East [65, 81, 127–133].

Another blade technology of the Upper Palaeolithic and onwards is pressure blade manu-

facture, involving applying pressure from an indentor rather than using direct or indirect per-

cussion. Like punch blade technology, the indentor can be very accurately placed, allowing

greater control of blade production. The pressure blade component of this experiment

involved a chest crutch and was conducted following extensive experimental and archaeolog-

ical correlates [40, 132, 134–137].

Flake Measurements

Due to the varied morphology of flakes, calliper measurements of cutting edge can be highly

inaccurate. Therefore, cutting edge length was determined by measuring the outline of digital

photographs of flakes placed ventral side down on a flat surface. Following the methodology of

Eren et al. [61] and Heighway [17], each blank larger than 2cm was photographed alongside a

scale-bar using a digital camera. These images were imported to Adobe Photoshop CC and

scaled to actual blank size, then reduced to a polygon in Adobe Illustrator CC (Fig 1). This soft-

ware was used to automatically trace the polygon’s perimeter and calculate the edge length in

millimetres. Platforms and broken or dull edges were excluded from the perimeter measure-

ment as they do not serve as a suitable cutting edge.

Finally, in order to explore the possible reasons for any variation in the efficiency of the

eight reduction sequences under examination, all complete and formal blanks were collected

from each of the expert’s reduction sequences. These flakes were then weighed and measured

using digital scales, callipers and a goniometer. The mass, dimensions (including length, mean

Fig 1. Demonstration of the method used to measure cutting edge length, showing a photograph of

an original blank (a), and two stages in the process of reducing the photograph to a measurable

polygon (b and c). Note the platform is excluded in the polygon measurement so as to measure possible

cutting edge only.

doi:10.1371/journal.pone.0167244.g001
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width, mean thickness, platform width and bulb thickness), exterior platform angle (EPA),

platform type, termination type, initiation type and platform preparation type were recorded

for each flake. Mean flake width was calculated by averaging three equally spaced width mea-

surements, proximal width, medial width and distal width, in order to encompass any irregular

edge morphology. Similarly, flake thickness was assessed by averaging five thickness measure-

ments taken at regular intervals on the flake. Bulb thickness was measured by subtracting the

thickness of the flake at the apex of the bulb of percussion by the thickness of the flake immedi-

ately below the bulb of percussion, while accounting for any amorphous dorsal morphology.

These measurements were taken to allow an exploration of the effects of flake size and shape

on the cutting edge efficiency.

Cutting Edge Efficiency

Throughout the 44 reduction sequences, a total of 30.40kg of flint was knapped, producing

5930 blanks with a cumulative cutting edge length of 613.53m. Table 2 shows the total values

for each reduction strategy, summarising mass, count and cutting edge results, with a Kruskal-

Wallis test for equal medians exploring the variability among the different reduction

sequences.

While significant differences occur among the blank counts (H = 28.69; df = 6, 34;

p< 0.001), Mann-Whitney tests with Bonferroni corrections (counteracting the increased risk

of a type-I error during multiple comparisons) reveal that, excluding the bipolar reductions,

the only significant difference is that the biface reduction sequences produced significantly

more blanks on average than the multiplatform and discoidal repetitions (U = 24.5; p = 0.045

for both). This discrepancy is likely explained by the typically higher fragmentation rates that

accompany biface reduction. Bifacial knapping involves the concerted production of very thin,

expanding flakes called thinning flakes, which increases the likelihood of breakage. This means

however, that the number of flakes produced is unlikely to be an adequate representation of

raw material efficiency. Instead we turn to the length of cutting edge produced per gram of

Table 2. Mean mass, counts and cutting edge values for each reduction strategy. Kruskal-Wallis tests were conducted for each variable based on the

values of the three or seven repetitions of each reduction method. Variables containing significant differences among the eight different technologies at the α =

0.05 level are represented in bold. *The bipolar values were not included in the first five statistical comparisons, as significantly smaller cores were used

owing to the typically small size of bipolar cores.

Reduction

Method

Mean initial nodule

mass (g)*
Mean number of

blanks*
Mean mass of all

blanks (g)*
Mean mass of

waste (g)*
Mean cutting

edge (mm)*
Mean cutting edge per

gram of core (mm/g)

Bipolar (N = 3) 135.14 25.00 101.11 34.02 1404.33 10.36

Multiplatform

(N = 7)

723.86 103.43 565.28 158.60 12167.06 16.90

Discoidal (N = 7) 734.86 106.14 545.17 189.69 12995.91 17.69

Biface (N = 7) 734.29 191.14 576.45 158.05 14244.75 19.39

Levallois (N = 7) 726.43 134.00 498.09 228.34 15857.12 21.83

Prismatic Blade

(N = 7)

726.43 134.43 482.76 243.67 16303.79 22.46

Punch Blade

(N = 3)

750.67 181.67 604.38 146.28 17236.65 22.95

Pressure Blade

(N = 3)

740.00 208.67 615.24 124.70 18875.14 25.91

Kruskal-Wallis H = 3.18 H = 28.69 H = 10.53 H = 9.55 H = 16.33 H = 22.92

df = 6, 34 df = 6, 34 df = 6, 34 df = 6, 34 df = 6, 34 df = 7, 36

p = 0.78 p < 0.001 p = 0.10 p = 0.15 p = 0.012 p = 0.0018

doi:10.1371/journal.pone.0167244.t002
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core to assess raw material efficiency among the sample of eight knapping technologies.

Table 2 shows the total cutting edge per gram for each reduction strategy, with an ascending

trend through this order of reduction sequences. Fig 2 explores this pattern further, by plotting

the total cutting edge per gram for each repetition. This ascending trend is further accentuated

when considering the expert reduction sequences only (closed circles). The implications of

this pattern will be discussed in the ‘Skill’ section below.

A Kruskal-Wallis test reveals that significant differences occur among the different reduc-

tion strategies in terms of cutting edge per gram (H = 22.92; df = 7, 36; p = 0.0018), however

the subsequent Mann-Whitney pairwise post-hoc analysis with Bonferroni corrected p-values

returned no significant results. This means that no individual knapping strategy was signifi-

cantly more efficient than another. With the original Kruskal-Wallis test suggesting that signif-

icant differences do occur among the samples, the variability among the eight different

technologies was examined further by combining each technology into broad time periods

reflecting their first documented production in the archaeological record. These were the Old-

owan (bipolar, multiplatform and discoidal), Middle Palaeolithic (biface, Levallois and pris-

matic blade) and Upper Palaeolithic and onwards (punch blade and pressure blade) (Fig 3).

Fig 2. Bar chart, with one standard error bars and each data point superimposed, showing the cutting

edge per gram values for each repetition of bipolar (N = 3; μ = 10.36), multiplatform (N = 7; μ = 16.90),

discoidal (N = 7; μ = 17.69), biface (N = 7; μ = 19.39), Levallois (N = 7; μ = 21.83), prismatic blade (N = 7;

μ = 22.46), punch blade (N = 3; μ = 22.95) and pressure blade (N = 3; μ = 25.49) knapping. Open circles

represent the results from the intermediate knapper and closed circles represent the expert knapper.

doi:10.1371/journal.pone.0167244.g002
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Lithic technologies are not produced in isolation of course. Prehistoric toolkits would have

consisted of varying proportions of the available technologies at the time, depending on raw

material availability and prospective function. Therefore, combining these eight technologies

into broad time periods will allow for more meaningful comparisons of broad-scale temporal

trends in cutting edge efficiency. Ascribing these technologies to different time periods is done

cautiously however, as our knowledge of evolution in lithic technology is being constantly

revised. It is also acknowledged that lithic technologies often disappear and reappear at certain

times, as well as undergo modification. That is why we ascribed particular technologies to

these time periods according to their earliest known use. If certain technologies receive older

or younger dates, then the following analysis could easily be updated to reflect any changes.

Significant differences occur among these three grouped samples (H = 17.13; df = 2, 41;

p< 0.001), with a Mann-Whitney pairwise test with Bonferroni corrected p-values revealing

that the Middle Palaeolithic and Upper Palaeolithic reduction sequences produced a signifi-

cantly greater length of cutting edge per gram of original core compared with the Oldowan

technologies (U = 64; p = 0.0025 and U = 6; p = 0.0055 respectively). Despite a difference of

more than 3mm/g of cutting edge length per gram of core between the Middle and Upper

Fig 3. Bar chart, with one standard error bars and each data point superimposed, of the eight

technologies grouped into their corresponding time periods, showing the Oldowan, consisting of

bipolar, multiplatform and discoidal technologies (N = 17; μ = 16.07), the Middle Palaeolithic,

consisting of biface, Levallois and prismatic blade technologies (N = 21; μ = 21.23), and the Upper

Palaeolithic and onwards, consisting of punch blade and pressure blade (N = 6; μ = 24.22). Open

circles represent the results from the intermediate knapper and closed circles represent the expert knapper.

doi:10.1371/journal.pone.0167244.g003
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Palaeolithic and onwards technologies, this difference is not significant (U = 30; p = 0.17).

These results reveal that the transition from Lower to Middle Palaeolithic toolkits was accom-

panied by an increase in the efficiency of cutting edge production per mass of core. On the

other hand there appears to be no inherent increase in cutting edge efficiency at the transition

from the Middle to Upper Palaeolithic. Again, this pattern is accentuated when considering

expert knappers only (closed circles), with little difference observable at the Middle to Upper

Palaeolithic transition.

Interestingly, pressure blades outperformed all other core technologies tested in this experi-

ment. While the technologies examined here that formed a component of the Upper Palaeo-

lithic and onwards are by no means significantly more efficient than the preceding period, it

would appear that the evolution of cutting edge efficiency that is evident by the ascending trend

in Fig 2 continued during the Upper Palaeolithic, Epipalaeolithic, Mesolithic and Neolithic.

Causes of Variability in Efficiency

Having examined the broad temporal trend in cutting edge efficiency, we now turn to the indi-

vidual flake attributes which contribute to this variability. Based on measurements from the

sample (N = 488) of complete and formal flakes produced by the 19 experimental reduction

sequences conducted by the expert knapper, we can identify features of flakes which maximise

flake economy. Fig 4 plots cutting edge length per gram against nine flake attributes, most of

which reveal power relationships between the axes. To present these trends more clearly, both

axes for all nine charts were transformed to linear relationships using the natural log (ln).

From these charts, it is clear that minimising flake mass (R2 = 0.898), flake thickness (R2 =

0.935), bulb thickness (R2 = 0.462), flake width (R2 = 0.727), platform depth (R2 = 0.611) and

platform width (R2 = 0.557) all strongly contribute to maximising the cutting edge length per

gram of individual flakes. These results partly confirm the findings of Lin et al. [66], who

found reducing flake thickness, bulb thickness and platform size had a positive effect on flake

economy.

Where our findings diverge is in the role of elongation (length divided by width) and EPA.

Lin et al. [66] used geometric models and flake measurements to hypothesise that increasing

the ratio of length to width and EPA should maximise the economy of flakes. Our findings

suggest, however, that flake length (R2 = 0.168) and elongation (R2 = 0.136) had very little

influence on the efficiency of the flakes. Increasing length relative to width had only a very

weak impact on cutting edge length per gram, which was far superseded by other size attri-

butes like minimising thickness and width. It is interesting therefore that the three blade tech-

nologies, all of which maximise elongation, were the most efficient at cutting edge production.

This could largely be credited to the production of narrow and thin blades within these knap-

ping schemas, rather than the elongate nature of blades. The weakly positive relationship

between elongation and cutting edge per gram is likely explained by what Lin et al. [66] iden-

tify as the ‘square cube principle of proportional solids’, whereby increases in the surface area

of an elongate flake results in a lesser increase in volume compared with a more circular flake.

Lastly, EPA, which was identified as a fundamental component of flake economy by Lin et al.

[66], appears in this present study to have a negligible (R2 = 0.0096) impact on cutting edge

efficiency. Lin et al. [66] used EPA as a proxy measure for efficiency as it influences flake mor-

phology. Interestingly, our results suggest that optimising EPA is only one of several ways of

increasing cutting edge efficiency.

In terms of the qualitative features of flakes, Fig 5 shows boxplots of the cutting edge length

per gram of each flake according to different platform, termination and platform preparation

types. A Kruskal-Wallis test for equal medians reveals that platform type has a significant
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Fig 4. Scatter plots with both axes transformed using the natural log (ln) examining the influence of mass, thickness, bulb

thickness, length, width, elongation, platform depth, platform width and exterior platform angle (EPA) on the cutting edge

length per gram of core for individual flakes. The sample size of each scatter plot is 488, except for the platform depth, platform width

and EPA scatter plots, which had sample sizes of 460 owing to the presence of some crushed platforms.

doi:10.1371/journal.pone.0167244.g004
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impact on the production of cutting edge length per gram of core (H = 125.5; p< 0.001).

Mann-Whitney tests with Bonferroni corrections reveal that flakes with focalised platforms

have significantly greater cutting edge length per gram than those with dihedral (U = 2080;

p< 0.001) or plain (U = 14820; p< 0.001) platforms. Termination type also significantly influ-

ences cutting edge efficiency (H = 22.9; p< 0.001), with feather terminations facilitating higher

cutting edge per gram of core than plunging (U = 2517; p = 0.002), or step and hinge

(U = 8426; p = 0.001) terminations. Finally, platform preparation strategies are similarly effec-

tive at increasing cutting edge efficiency (H = 74.22; p< 0.001), with the use of either overhang

removal or faceting resulting in significantly higher cutting edge per gram than flakes without

platform preparation (U = 8803; p = 0.044). Additionally, flakes exhibiting both overhang

removal and faceting performed significantly better than those without preparation (U = 4627;

p< 0.001), as well as those with only one type of preparation (U = 10550; p< 0.001). Attri-

butes like platform, termination and platform preparation type are all associated with the

quantitative associations above. For example, focalised platforms, feather terminations and

extensively prepared platforms all contribute to producing flakes with low thickness, bulb

thickness and flake width values.

These analyses offer a holistic identification of the features that make a flake efficient in

terms of the cutting edge length produced per gram of original core. In summary, it appears

that the efficiency of flakes are negatively impacted by areas of mass on a flake that do not con-

tribute to the cutting edge, such as a bulb or amorphous dorsal surface, as well as portions of

the flake perimeter that do not contribute to the cutting edge, such as platforms or steep bro-

ken edges. The most efficient flakes, therefore, are those that are thin and narrow, with diffuse

bulbs, small platforms, feather terminations and extensive platform preparation.

Throughout the evolution of lithic technology there is a broad trend of decreasing blank

size. As flake size plays such a significant role in cutting edge efficiency, we can therefore begin

to explain the trend observed in Fig 2. It is important to note however, that not all aspects of

blank size determine variation in efficiency. Rather, specific morphological attributes such as

thickness, width and platform size appear to be the key variables.

Fig 5. Boxplots of qualitative variables. Platform type plot (a) compares dihedral (N = 178; Mdn = 25.99), plain (N = 182; Mdn = 30.52)

and focalised (N = 100; Mdn = 65.81) platforms. Termination type plot (b) compares plunging (N = 22; Mdn = 17.45), step or hinge (N = 58;

Mdn = 23.02) and feather (N = 408; Mdn = 36.45) terminations. Platform preparation plot (c) compares no preparation (N = 105;

Mdn = 19.49), either overhang or faceting (N = 202; Mdn = 26.44) and both overhang and faceting (N = 181; Mdn = 44.67).

doi:10.1371/journal.pone.0167244.g005
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Skill

Finally, we seek to examine the role of knapping skill on the cutting edge efficiency of each

reduction sequence. As mentioned in the methods section, bipolar reduction was conducted

by the expert knapper only due to the extremely low skill required, and punch and pressure

blade reduction was conducted by the expert knapper only owing to the high level of skill

required. In this section therefore, we examine the influence of skill level on the cutting edge

efficiency of multiplatform, discoidal, biface, Levallois and prismatic blade core reduction

(Table 3).

In all bar one reduction sequence (biface), the expert knapper produced much less waste

debitage compared with the intermediate knapper. However, this represents only a relative

assessment of raw material efficiency. Therefore, two-sample t-tests were used to explore any

significant variation between the cutting edge per gram output of the expert and intermediate

knappers for each of the four reduction strategies. There was no significant difference between

the cutting edge per gram efficiency of multiplatform (t = -1.86; df = 1, 5; p = 0.12), discoidal

(t = 0.25; df = 1, 5; p = 0.82), biface (t = 1.12; df = 1, 5; p = 0.31) or Levallois (t = 0.43; df = 1, 5;

p = 0.69) knapping. Comparatively, the expert knapper produced significantly more cutting

edge per gram for the blade core iterations compared with the intermediate knapper (t = 4.76;

df = 1, 5; p = 0.005).

This does not mean that the intermediate knapper necessarily executed the multiplatform,

discoidal, biface and Levallois reduction strategies as effectively as the expert knapper however.

For example, general observations of Levallois flake size and shape as well as the number of

recurrent Levallois flakes successfully removed suggest that the expert knapper more effectively

performed the Levallois experiments. What can be concluded is that the cutting edge efficiency

of multiplatform, discoidal, biface and Levallois technology is less sensitive to reductions in

knapper skill compared to prismatic blade technology. In other words, equivalent cutting edge

is produced from these knapping strategies regardless of whether a less skilful knapper imper-

fectly executes the reduction sequence and produces less technologically typical flakes, such as

broad dihedral flakes for discoidal knapping, or thin and large Levallois flakes. It is possible

that prismatic blade knapping was more efficiently performed by the expert knapper because

the desire for thin and long flakes in this technology increases the likelihood of snaps and

hinge or step terminations, the correction of which can waste valuable raw material. The elon-

gate core face typical of prismatic blade reduction also makes remedying such mistakes more

difficult and costly in terms of raw material usage, as these mistakes tend to be further from

Table 3. Number of blanks, mass of waste and cutting edge per gram values between the expert knapper (N = 2 for all five technologies) and inter-

mediate knapper (N = 5 for all five technologies) for each technology.

Reduction Method Skill Level Mean number of blanks Mean mass of waste (g) Mean cutting edge per gram (mm/g)

Multiplatform Expert 67 62.5 12.43

Intermediate 118 197.04 18.69

Discoidal Expert 110 95.6 18.23

Intermediate 104.6 227.32 17.48

Biface Expert 223 202.71 21.06

Intermediate 178.4 140.19 18.73

Levallois Expert 140.5 145.55 22.68

Intermediate 131.4 261.46 21.50

Prismatic Blade Expert 156 144.15 26.09

Intermediate 125.8 283.48 21.01

doi:10.1371/journal.pone.0167244.t003
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the platform. The significant difference in output between intermediate and expert prismatic

blade knappers also raises the possibility that prismatic blade technology lends itself to greater

craft specialisation compared with the other technologies examined.

When considering the blade reductions performed by the expert knapper only, Fig 3 shows

that all three versions of blade reduction possessed approximately equivalent cutting edge effi-

ciency. Therefore, it appears that gains in efficiency are offered by any blade reduction technol-

ogy as long as they are conducted by expert knappers. This discrepancy between intermediate

and expert also serves to further reinforce the interpretation that little change in efficiency

occurred at the Middle to Upper Palaeolithic transition.

Discussion and Conclusions

This study investigated the raw material efficiency of eight different lithic core technologies

by measuring the ratio of cutting edge length to original core mass. The results garnered

from the 5930 blanks produced in the experiments revealed a gradual upward trend in cut-

ting edge efficiency through the sequence of bipolar, multiplatform, discoidal, biface, Leval-

lois, prismatic blade, punch blade and pressure blade technologies (Fig 2). Interestingly, no

statistically significant differences occurred among the individual reduction strategies. Any

changes in cutting edge efficiency occurring throughout the evolution of stone tool technol-

ogy therefore appear to be gradual. These changes were only perceptible when viewing pre-

historic tool-kits on a broader-scale, by grouping each technology into their broad time

periods. This revealed a significant difference between the raw material efficiency of the tech-

nologies typically made in the Lower Palaeolithic and those typically made in the Middle

Palaeolithic. In contrast, no significant difference occurred among the Middle Palaeolithic

technologies and those in this sample that were made in the Upper Palaeolithic, Epipalaeo-

lithic, Mesolithic and Neolithic.

The fact that the cutting edge lengths per gram of all eight technologies were statistically

indistinguishable highlights the shortfalls of comparing only two lithic technologies at a time

as was done in all previous comparisons. An experimental comparison of two technologies is

likely to confirm the null hypothesis that no significant difference in cutting edge efficiency

exists. By examining eight technologies which broadly span the evolution of lithic technology

from the Oldowan to the Neolithic, we identified statistically significant trends in cutting edge

efficiency over time. The null hypothesis, that no significant differences in cutting edge per

gram of core occur among the eight examined technologies, can therefore be rejected as the

technologies ascribed to the Middle Palaeolithic were more efficient than those ascribed to the

Lower Palaeolithic.

While Eren et al. [61] sought to examine the Middle to Upper Palaeolithic transition using

discoidal and prismatic blade core technology, more recent dates of prismatic blades situate

their emergence long before the Upper Palaeolithic [54–57]. Meanwhile, discoidal technology

is better situated in the Lower Palaeolithic [4, 5, 93]. Therefore, while they found prismatic

blades to be no more efficient than discoidal flakes, what was really being compared was the

Lower and Middle Palaeolithic. We can therefore, for the first time, conclude that it is unlikely

that the Middle to Upper Palaeolithic transition was accompanied by an increase in the raw

material efficiency of the available toolkits.

It should of course be noted that there are far more than eight lithic technologies, but with

all other comparisons of core efficiency comparing no more than two technologies, we offer a

step in the right direction. By selecting representative technologies from different periods, we

aimed to capture much of the variation occurring over the sweep of human evolution. Ascrib-

ing certain lithic technologies to certain time periods, as we have attempted here, is a difficult
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task as the picture of evolution in lithic technology becomes increasingly branching and multi-

directional. This was done in order to provide a broad-scale picture of changes in efficiency,

but should be considered with caution as new sites and dates arise. Similarly, we do not wish

to give the impression that the ascending trend observed in Fig 2 in any way suggests cutting

edge efficiency evolved in a linear fashion. Rather, much like our biological evolution, it is

likely that the evolution of lithic technology and cutting edge production rates was equally

complex, branching and recursive. Any apparent linear trend is merely an artefact of taking

such a chronologically broad view of lithic technology. We hope this present study offers a

broad and exploratory assessment that could be used as a platform for more focussed and site-

specific comparisons of raw material efficiency.

We additionally sought to identify attributes of individual flakes which maximise their ratio

of cutting edge to flake mass. The measurements and qualitative attributes of 488 complete

flakes revealed that the most efficient flakes are those that are small, thin and narrow, with dif-

fuse bulbs, small platforms, feather terminations and extensive platform preparation. Interest-

ingly, elongation and exterior platform angle had minimal to negligible effects on raw material

efficiency. It is therefore no surprise that the pressure blade cores performed the most effi-

ciently of all eight technologies under investigation, as pressure blade manufacture involves

taking the notion of platform preparation and isolation, key factors in minimising flake thick-

ness, width and bulb thickness, to the extreme. These findings also have significant implica-

tions for assemblages with flakes possessing these optimal attributes. Microblade and

microlithic technologies, sometimes made via the pressure technique, typically possess these

traits and may therefore represent an optimisation of lithic technology geared towards maxi-

mising efficiency, whether a conscious attempt or a persistent behavioural adaptation. For

example, microliths have been linked to periods of environmental, demographic or social

stress, making such technologies likely strategies for offsetting risk in scenarios of raw material

scarcity or environmental stress [138]. Further research is required to investigate this possible

association between lithic raw material scarcity and strategies which optimise the cutting edge

efficiency of flakes.

These results suggest that throughout our biological and cognitive evolution, the major evo-

lution in cutting edge efficiency likely occurred around the transition from the Lower Palaeo-

lithic to the Middle Palaeolithic. The transition from the Middle to Upper Palaeolithic on the

other hand, does not appear to be accompanied by a toolkit-wide increase in cutting edge effi-

ciency. This means that the toolkits of the Neanderthals and their contemporaneous Homo
sapiens exhibited comparable degrees of raw material efficiency. However, we demonstrated

that pressure blade technology involved the highest cutting edge efficiency of the eight technol-

ogies investigated. Therefore after this transition, during parts of the Upper Palaeolithic, Epi-

palaeolithic, Mesolithic and Neolithic, Homo sapiens continued developing their blade core

technology to produce more efficient blank technologies. Minimising flake thickness, bulb

thickness and flake width was achieved via specialised blade knapping techniques like pressure

knapping, rather than direct percussion. While this technique requires greater investments in

preparatory time, through pressure indentor manufacture as well as more intensive platform

preparation, it allows for heightened raw material efficiency. Future research is needed to

investigate the relationship between heightened investment and raw material efficiency, and

model whether these strategies represent an optimisation of the knapping process.
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102. Peresani M. La variabilité du débitage discoïde dans la grotte de Fumane (Italie du Nord). Paléo.
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çaise. 1972; 69(5):134–9.

134. Desrosiers PM, editor. The Emergence of Pressure Blade Making: From Origin to Modern Experimen-

tation. New York: Springer; 2012.

135. Flenniken JJ, Hirth KG. Handheld prismatic blade manufacture in Mesoamerica. In: Hirth KG, editor.

Mesoamerican Lithic Technology: Experimentation and Interpretation. Salt Lake City: The University

of Utah Press; 2003. p. 98–107.

136. Pelegrin J. Blade-making techniques from the Old World: insights and applications to Mesoamerican

obsidian lithic technology. Hirth KG, editor. Salt Lake City: The University of Utah Press; 2003.

137. Titmus GL, Clark JE. Mexica blade making with wooden tools: recent experimental insights. In: Hirth

KG, editor. Mesoamerican Lithic Technology: Experimentation and Interpretation. Salt Lake City: Uni-

versity of Utah Press; 2003. p. 72–97.

138. Hiscock P, Clarkson C, Mackay A. Big debates over little tools: ongoing disputes over microliths on

three continents. World Archaeol. 2011; 43(4):653–64.

Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates

PLOS ONE | DOI:10.1371/journal.pone.0167244 December 9, 2016 23 / 23

http://dx.doi.org/10.1006/jhev.1997.0167
http://www.ncbi.nlm.nih.gov/pubmed/9467778
http://dx.doi.org/10.1371/journal.pone.0065185
http://www.ncbi.nlm.nih.gov/pubmed/23762312

