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Abstract

Biogeography studies that correlate the observed distribution of organisms to environmental

variables are typically based on local conditions. However, in cases with substantial translo-

cation, like planktonic organisms carried by ocean currents, selection may happen upstream

and local environmental factors may not be representative of those that shaped the local

population. Here we use an individual-based model of microbes in the global surface ocean

to explore this effect for temperature. We simulate up to 25 million individual cells belonging

to up to 50 species with different temperature optima. Microbes are moved around the globe

based on a hydrodynamic model, and grow and die based on local temperature. We quantify

the role of currents using the “advective temperature differential” metric, which is the opti-

mum temperature of the most abundant species from the model with advection minus that

from the model without advection. This differential depends on the location and can be up to

4˚C. Poleward-flowing currents, like the Gulf Stream, generally experience cooling and the

differential is positive. We apply our results to three global datasets. For observations of

optimum growth temperature of phytoplankton, accounting for the effect of currents leads

to a slightly better agreement with observations, but there is large variability and the

improvement is not statistically significant. For observed Prochlorococcus ecotype ratios

and metagenome nucleotide divergence, accounting for advection improves the correlation

significantly, especially in areas with relatively strong poleward or equatorward currents.

Introduction

Understanding the mechanisms underlying the spatial distribution of organisms is a key part

of ecology and evolution [1–3]. Microbes are major players in the global carbon and climate

systems, and understanding the present biogeography is a prerequisite for predicting how it
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may change in the future [4]. For microbes in the surface ocean, both selection by various envi-

ronmental factors, as well as neutral evolution coupled with dispersal limitation, have been

shown to affect the biogeography. However, environmental selection typically exerts a stronger

influence [5–8]. There are numerous environmental factors that affect microbe ecology and bio-

geography, including various nutrients, temperature, light and grazing. Of these, temperature is

often invoked to explain ocean microbe biogeography [9–13]. The importance of temperature

is also evidenced by its inclusion in models of microbe distribution in the global ocean [14–16].

Here we focus on temperature selection of microbes in the surface ocean. A number of studies

have explored the role of temperature in the biogeography of marine microbes by correlating the

observed distribution of microbes to temperature [9–13, 17]. One potential limitation with these

studies is that they are based on local temperatures. The inherent assumption is that the local tem-

perature is representative of that which led to the selection of the local dominant species or strain.

However, ocean currents move water around, which means that the historical conditions experi-

enced by the water at a certain location may be very different from the conditions at that location.

For example, microbes in the poleward flowing Gulf Stream off the east coast of the USA experi-

ence rapidly decreasing temperatures as they move northward, and the local population may

have been shaped by the warmer temperatures of the Gulf of Mexico and Caribbean Sea.

The role of currents and water history have been shown to be important factors in shaping

ocean microbe biogeography [18–21]. Early studies of phytoplankton biogeography invoked

current transport to explain observations of species at locations with temperatures outside of

their native regime [22]. The effect of historical (vs. contemporary) environmental factors has

also been explored in the context of light adaption of phytoplankton and found to affect pri-

mary productivity in some cases (e.g., turbid coastal waters) [23, 24]. Phytoplankton models

that include transport from hydrodynamic models have the effect of currents built in [15, 25].

The role of ocean currents on the temperature record incorporated into the shells of planktic

foraminifera has been recognized and quantified using modeling [26, 27]. Over several genera-

tions, currents can move microbes across different temperature regions, which increases the

range of temperatures they experience by up to 10˚C, compared to the seasonal fluctuation at

one location [28]. Therefore, the role of currents in ocean microbe biogeography is well-recog-

nized. However, we are not aware of any studies that systematically explored and quantified

the effect of ocean currents on temperature selection of microbes and the effect on the

observed correlation between microbe distribution and temperature.

We aim to understand and quantify the effect of currents on temperature selection using an

individual-based model, where individual microbes with different optimum temperatures are

transported based on a hydrodynamic model and compete against each other. We quantify the

results using the “advective temperature differential”, the difference between the optimum

temperature of the most abundant species of simulations with and without advection. Our

results suggest that this differential depends on the location and growth rate and that it corre-

lates with the historical temperature of the water. We apply the results to three global datasets.

For observations of optimum growth rates of phytoplankton we find a small but not statisti-

cally significant improvement between model and observations when advection is included in

the model. For Prochlorococcus ecotype ratios and metagenome nucleotide divergence,

accounting for currents significantly improves the correlation.

Methods

Overview

We model a population of microbes using a general and relatively simple framework that can

be applied to phytoplankton and heterotrophic bacteria. Microbe ecology and biogeography is
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a function of numerous environmental factors (e.g., nutrients, light), but here we are focused on

the role of temperature, so other factors are not considered in the model. The model simulates

individual cells using an individual-based (a.k.a. agent-based, Lagrangian) approach [29–31].

The individual-based approach can produce substantially different results compared to the

more traditional Eulerian approach in many cases. One example is when growth of a heteroge-

neous population is based on the intracellular nutrient content in a nonlinear manner [30].

Here, growth (division) and death are based on extracellular parameters and for this formulation

the individual-based approach produces the same results (i.e., concentration and optimum tem-

perature of the most abundant species) as the Eulerian approach (see SI). However, using indi-

viduals allows us to track the temperature history of individuals, which helps to interpret the

results. The following summarizes key aspects of the model, with full details provided in S1 File.

A number of global ocean microbe models have been presented [15, 29, 32]. Here, individ-

ual cells are transported in the surface layer (top 50m, approximately the depth of the euphotic

zone, [33]) on a 2˚×2˚ grid based on advective velocities from a hydrodynamic model [34] and

diffusion. Ambient temperatures are taken from the hydrodynamic model, averaged for each

2˚×2˚×50m grid box at 3-day intervals (see S1 File).

The cells grow (divide) and die, with rates depending on the local population size and tem-

perature (Tloc, from the hydrodynamic model). The growth rate is limited by the local population

size using a logistic approach, where the carrying capacity is assigned in a spatially and tempo-

rally uniform manner, which results in a population with a relatively constant concentration

across the globe [29]. This is an implicit way of simulating resource competition, where species

“compete for carrying capacity” in place of a resource. We simulate multiple species with differ-

ent optimum temperatures (see next paragraph for growth rate vs. temperature function).

Growth rate vs. temperature function

For the temperature-dependence of the growth and death rates, we adopt the model of Thomas

et al. [9]. The growth rate vs. temperature function, illustrated in Fig 1 for two species, is com-

monly applied to ocean phytoplankton and well supported by theory and observations [35–37].

Fig 1. Growth rate vs. temperature. Optimum temperature (Topt) = Red: 18, Blue: 21. See S1 File for parameter

values.

doi:10.1371/journal.pone.0167010.g001
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The maximum growth rate corresponds to the optimum temperature of the species (Topt, see

Table 1 for a summary of the various temperatures used throughout the paper and S1 File for its

full formulation). There are a couple of important features of this model. First, the maximum

growth rate increases exponentially with optimum temperature (see Eq S7), so that a species

with an optimum temperature equal to the local temperature (Topt = Tloc) is actually outcom-

peted by a species with a slightly larger optimum temperature. For example, compare the

growth rates of the red and blue species at the optimum temperature of the red species (dashed

line in Fig 1). Second, the curve is asymmetrical with steeper slope above the optimum tempera-

ture. That means that, in a variable environment, local temperatures above the optimum are

penalized more and it is beneficial to avoid this by having a higher optimum temperature.

These features of the growth equation have an important consequence for the effect of tem-

perature on the community composition. Specifically, we generally expect the winning species

(i.e., the one with the highest growth rate and abundance) to have an optimum temperature

slightly higher than the local temperature, even in the absence of advective transport. This is

somewhat counterintuitive, but it is consistent with observations ([9], discussed later in the

paper). To quantify the effect of the currents on the optimum temperature, we therefore gener-

ally compare the optimum temperature of the most abundant species for simulations with and

without advection (i.e., rather than the optimum temperature of the most abundant species vs.

local temperature). The difference between these two optimum temperatures is the “advective

temperature differential” (ΔTopt = Topt(a)–Topt(na)). Turning off or modifying (perturbing)

processes in a model to learn about their effect is a relatively common approach. For example,

[25] turned off different scales of motion (e.g., mesoscale eddies, vertical mixing) to explore

their effect on ocean phytoplankton diversity.

The advective temperature differential is based on the optimum temperature of the most

abundant species. For this relatively simple modeling approach, where all species are subjected

to the same death rate and transport, abundance is equivalent to time-averaged growth rate

and fitness. When there is no advection, the most abundant species (or the optimum tempera-

ture of the most abundant species) is a function of the local temperature only. With advection,

the most abundant species also reflects the historical temperature experienced by the water

upstream. When a sample is collected and characterized in some way (e.g., measure optimum

temperature), the results also most likely reflect the most abundant species.

Historical temperature

To aid in the interpretation of the model results we use the individual-based model to track

the temperature history of each individual using an exponential moving average with the

growth rate (Thist(g)) or selection rate (Thist(s)) as weighting parameter. The basic equation for

Table 1. Definition of temperatures

Symbol Description, notes

Tloc Local temperature

Topt Optimum temperature, see Fig 1.

Topt(o) Optimum temperature observed for isolated species

Topt(a) Optimum temperature of most abundant species from simulation with advection

Topt(na) Optimum temperature of most abundant species from simulation without advection

ΔTopt Advective temperature differential, Topt(a)–Topt(na)

Thist(g) Historical temperature based on growth rate (i.e., lifetime)

Thist(s) Historical temperature based on selection rate

ΔThist(s) Historical temperature differential based on selection rate, Thist(s)–Tloc

doi:10.1371/journal.pone.0167010.t001
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the historical temperature (Thist) is:

Tt
hist ¼ ð1 � ahist DtÞTt� Dt

hist þ ahist Dt Tt
loc ð1Þ

αhist (d-1) is the weighting parameter that characterizes the length of memory. Larger values

will give more weight to the current temperature (less memory) and smaller values will give

more weight to the historical temperature (more memory). For the weighting parameter, we

use the growth or selection rates, both of which change with time and space, as described below.

The integration time step (Δt = 0.3 d) is chosen so that the term αhist Δt is between 0 and 1.

One approach is to use the growth rate (kg, d-1) as weighting parameter. Then, Thist(g) is an

estimate of the temperature experienced during the lifetime of the cell. More specifically, it is

the historical temperature weighted by the biomass synthesized at that temperature. Consider,

for example, a cell that grows at Tloc = 15˚C for a long time and then at Tloc = 20˚C at kg = 0.5/d

for 3 d. The fraction of biomass synthesized at Tloc = 15˚C and 20˚C is 0.22 (exp[-kg t]) and

0.78 (1–0.22), respectively. The weighted average temperature is Thist(g) = 19˚C. The same

result is obtained by integrating the above equation over multiple time steps (Δt = 0.3 d).

Another approach is to use the selection rate (s, d-1) as weighting parameter. The selection

rate is defined as the difference between the growth rates of species in competition, and it is

most often applied to two species. Here, we have many species and we define the selection rate

as the difference between the growth rate of the optimum species (i.e., the one with the highest

concentration) and that of the adjacent species (i.e., the one with the second-highest concen-

tration). Calculated in this manner, the selection rate characterizes how fast the dominant spe-

cies is changing. For this study, where we are generally concerned with the optimum

temperature of the most abundant species, this is an appropriate measure of the memory time-

scale of the population.

Simulations performed

Typical simulations are run for 31 years with 50 species (with Topt from -5.2 to 36.2˚C in 0.8˚C

steps, which covers the range of ambient temperatures) for a total of 25 million cells and

growth rate parameter adjusted to obtain global population average growth rates as desired

(e.g., 0.14 d-1 for heterotrophic bacteria, [38], [39]). See the S1 File for additional discussion on

parameter values.

Results and Discussion

Effect of currents on temperature selection

Before taking the global view of the effect of advection on temperature selection, we present

temperatures for simulations with and without advection for two locations in the Gulf Stream

(Fig 2, see Fig 3 for locations). The model output is presented as the optimum temperature of

the most abundant species. The local and optimum temperatures of the most abundant species

exhibit similar patterns, but there are a number of differences. First, the optimum temperature

of the most abundant species changes less smoothly. At the northern location (GSN), at least

two species with temperature optima of about 25 and 29˚C co-exist. Note that the difference in

temperature optima of adjacent species in the model is less than 1˚C, so this relatively large dif-

ference is not a result of a low number of species included in the model, but reflects the selec-

tion dynamics of the system. The species with the highest instantaneous growth rate changes

frequently and smoothly follows the local temperature. However, for most species this only

lasts for a few weeks, which is not long enough to rise to dominance (see S1 File for further dis-

cussion). Second, as discussed above, the optimum temperature of the most abundant species

Ocean Currents and Temperature Selection
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is generally higher than the local temperature, even for the case of no advection. Third, the

optimum temperature of the most abundant species lags the local temperature, because it takes

some time for the species with the new optimum temperature to outcompete the one with the

old optimum temperature. The local temperature is higher at the southern, upstream location

(GSS). Consequently, the population at the northern, downstream location (GSN) has experi-

enced a warmer temperature and that affects the optimum temperature.

The advective temperature differential (ΔTopt) for the GSN site is about 3.2˚C (see also Fig 4

discussed subsequently), meaning that incorporating advection by ocean currents leads to

over 3˚C higher optimum temperature of the most abundant species. At first glance it may be

a bit surprising that there is such a large difference for a relatively fast-growing microbe popu-

lation. The generation time of heterotrophic bacteria is about 5 days and the historical temper-

ature based on growth rate at the GSN location is close to the local temperature (see Tloc and

Thist(g) in Fig 2A). The historical temperature based on growth rate is an estimate of the tem-

perature experienced by a cell over its lifetime (see Methods) and is appropriate to use when

one is concerned with the temperature record of individuals, as in shells of planktic foraminif-

era [26]. However, the optimum temperature of the most abundant species at any location is a

property of the microbe community, rather than the individual microbes. When the tempera-

ture changes, it may take several generations before this translates into a change in community

composition. A more appropriate measure to characterize the time scale of temperature mem-

ory is the selection rate, the difference in growth rates between competing species. The histori-

cal temperature calculated in this manner (Thist(s)) is substantially above the local temperature

at this location. In fact, the historical temperature differential (ΔThist(s), see Table 1) is about

3.1˚C, which is close to the advective temperature differential (ΔTopt). At the global scale, the

historical temperature differential parameter can explain much of the model results in advec-

tive temperature differential (see S1 File).

Fig 2. Time series of model results. Local temperature (Tloc), optimum temperatures of the most abundant

species in simulations with (Topt(a)) and without(Topt(na)) advection and historical temperature based on

growth (Thist(g)) and selection (Thist(s)) rates at two locations in the Gulf Stream (GSS and GSN in Fig 3).

Population average growth rate = 0.14 d-1.

doi:10.1371/journal.pone.0167010.g002
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Fig 3. Map of model results. (A) Advective temperature differential (ΔTopt) across the global ocean, defined as the

difference between optimum temperatures of the most abundant species in simulation with and without advective

transport. Population average growth rate = 0.14 d-1. Values are averages over the 31-year simulation period. Also

shown are locations used in Figs 2 and 4 (pink circles and text), isolation locations for phytoplankton in Fig 5 (dark green

triangles), Prochlorococcus ecotypes in Fig 6 (light green squares, open symbols are for Gulf Stream (GS) and eastern

North Atlantic (ENA) samples, also identified in Fig 6.) and metagenome nucleotide divergence in Fig 7 (medium green

circles, samples GS008 and GS366 are labelled). Approx. location of select currents (white arrows and white bold text).

GS = Gulf Stream, FC = Falkland Current, CC = Canary Current, KC = Kuroshio Current. (B) Poleward velocity. See S1

File for a larger version of the North Atlantic.

doi:10.1371/journal.pone.0167010.g003
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The direction (warmer or colder) and magnitude of the advective temperature differential

(defined as the difference in optimum temperature of the most abundant species of simulations

with and without advection) is a function of the location and growth rate (Fig 4). Locations with

strong poleward currents have populations that experience a cooling and therefore have a posi-

tive differential (Gulf Stream, Figs 2 and 4), whereas locations with strong equatorward currents

have a negative differential (Falkland Current, Fig 4). The magnitude of the differential depends

on the growth rate. For microbes with relatively low growth rates (~0.14 d-1, characteristic of het-

erotrophic bacteria, [38], [39]), the selection rate is lower and the population has a longer mem-

ory and larger differential (Fig 4). Populations with higher growth rates (~0.65 d-1, characteristic

of phytoplankton, [38], [39]) have shorter memory and smaller differential (Fig 4). Simulations

with even higher growth rates show the differentials continuing to converge towards zero.

A global map of advective temperature differential (ΔTopt) illustrates that this differential

can be quite heterogeneous across the globe (Fig 3A). As for the individual locations (Fig 4),

the direction and magnitude depends on the location. Poleward-flowing western boundary

currents, like the Gulf Stream and Kuroshio Current, have positive differential. Equatorward-

flowing currents, like the Falkland Current and Canary Current, have negative differential.

These global patterns are also qualitatively similar to those for temperature offsets for drift of

planktic foraminifera presented by van Sebille et al. [26] and the inter-generational tempera-

ture ranges due to drift experienced by microbes presented by Doblin and van Sebille [28].

However, these two previous studies did not explicitly consider fitness and selection. A map of

poleward velocities shows a pattern that is consistent with this (Fig 3B).

Fig 4. Direction and magnitude of advective temperature differential depends on location and growth rate.

Difference of optimum temperature of the most abundant species in simulations with and without advection (ΔTopt)

for locations in the Gulf Stream (GSN in Fig 3), Bermuda Atlantic Time Series (BATS in Fig 3) and Falkland Current

(FC in Fig 3) for different growth rates. Values are averages over the 31-year simulation period.

doi:10.1371/journal.pone.0167010.g004
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Fig 3 presents results for a growth rate characteristic of heterotrophic bacteria (~0.14 d-1,

[38], [39]). We present maps of all temperature variables (see Table 1) for a range of growth

rates (0.07–1.3 d-1), an atlas of selection temperatures, in S2 File. Those growth rates cover the

range typical of heterotrophic bacteria (0.14 d-1) and phytoplankton (0.65 d-1) in the ocean

[38, 39]. Note, however, that for some species growth rates can be even lower, and may

approach zero if we consider dormancy [40]. Also, zooplankton may have lower growth rates.

For example, in their model of planktic foraminifera [26] used lifespans of up to 180 days, cor-

responding to growth rates of 0.004 d-1.

Comparison to observations: Phytoplankton optimum temperatures

Our results suggest that the effect of advection can be substantial in currents that experience

strong warming or cooling, which means that explicitly considering how currents carry plank-

tonic organisms should improve observed correlations between microbe distributions and

temperature. We explore this using experimentally-determined optimum temperatures for

phytoplankton from two datasets. The dataset of Thomas et al. [9] includes observations from

194 marine and estuarine isolates. Here, we included the 153 observations identified as marine.

The dataset of Chen et al. [10] includes 220 observations of marine phytoplankton. Note that

both datasets are based on a literature review and they are not mutually exclusive (i.e., several

observations are included in both datasets). However, they were developed using different

regression methods for estimating the optimum temperature. The locations are shown in Fig

3. For the model simulations, the growth rate parameter was adjusted so that the global average

growth rate was about 0.65 d-1, consistent with estimates for phytoplankton [38].

The observed optimum temperature (Topt(o)) is generally higher than the local temperature

(Tloc, from the hydrodynamic model) (Fig 5A). This can be explained by the changes in maxi-

mum growth rate and asymmetry of the growth rate vs. temperature relationship (Fig 1), as

discussed above.

The comparison of observed optimum temperature (Topt(o)) to optimum temperatures of

the most abundant species in the model without advection (Topt(na)) is better (Fig 5B). The dif-

ference between the root-mean-square error (RMSE) values in panels A and B of Fig 5 is statis-

tically significant (bootstrap analysis, based on difference of RMSE values, n = 1,000,

p< 0.001). The temperature function used in the model predicts a higher optimum tempera-

ture, consistent with the observations. This model is similar to that of Thomas et al. [9] and the

results are consistent.

The comparison to optimum temperatures of the most abundant species in the model with

advection (Topt(a)) is similar. For both datasets, the model with advection has a slightly lower

RMSE. However, the differences between these RMSE values are low and not statistically sig-

nificant (p< 0.05). There are a couple of possible reasons for this. First, there is substantial

variability in the observations. For example, in the Thomas et al. dataset, one location near the

southern end of Japan has 26 samples with observed optimum temperatures ranging from 21

to 32˚C. In the Chen et al. dataset, the three samples at BATS have observed optimum temper-

atures ranging from 18 to 30˚C. This local co-existence of species with different optimum tem-

peratures is also predicted by the model, which suggests it is due to seasonal dynamics (see Fig

2 and associated discussion). Therefore, the variability in the observations is not due to an

error per se, but it nonetheless overshadows the relatively small difference between the models

with and without advection. Second, the Thomas et al. and Chen et al. datasets include pre-

dominantly coastal isolates (i.e., vs. open-ocean, see Fig 3). The dynamics of the circulation in

these coastal regions may be substantially different from the open ocean, and may not be

completely resolved by the 1/10˚ resolution global hydrodynamic model. We explored using

Ocean Currents and Temperature Selection
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various subsets of the database, including lower local temperatures (Tloc < 20˚C) and various

functional groups (e.g., diatoms, cyanobacteria, based on Thomas et al. [41]), but this did not

result in a statistically significant difference between these two models.

Comparison to observations: Prochlorococcus ecotype ratios

We also apply our results to the dataset of Prochlorococcus ecotype ratios from Chandler et al.

[42]. This dataset covers regions in the Atlantic and Pacific Ocean, including transects that

spanned both northern and southern hemispheres of both oceans. Prochlorococcus is a genus

of marine cyanobacteria that dominates the picophytoplankton community of the oligotrophic

oceans. There are numerous strains or ecotypes that are adapted to different temperature, light

and nutrient conditions, which control their biogeography [5, 8, 15, 43–46]. The high-light

adapted ecotypes eMIT9312 and eMED4 numerically dominate the surface layer with the for-

mer dominating the warmer, lower latitudes, and the latter dominating the cooler, higher lati-

tudes [8, 42]. Interestingly, these two ecotypes do not compete to the exclusion of the other,

and their co-existence can be described as a log-linear increase in eMIT9312 relative to

eMED4 as a function of increasing temperature ([42], Fig 6A, red symbols). The largest dis-

crepancies between the observations and the regression are for one sample in the Gulf Stream

and five samples in the eastern North Atlantic (labelled GS and ENA in Fig 6A, see Fig 3 for

locations). At these locations, there are relatively strong poleward (GS) and equatorward cur-

rents (ENA), which suggests that accounting for advection can improve the correlation. We

use the results from our model to “correct” the temperatures using the advective temperature

differential provided in the atlas. Using the corrected temperatures improves the correlation

with the observed log ecotype ratio (Log(R)) significantly (Fig 6A, blue symbols, bootstrap

analysis, based on difference of R2 values, n = 1,000, p< 0.001). The GS and ENA data points

make up five out of the six largest improvements in the regression. Although the improvement

is evident and consistent with expectations, the correction does not go so far as to bring these

data points in line with the rest of the population.

Another approach is to directly simulate the Prochlorococcus ecotypes using growth rate vs.

temperature functions based on data from laboratory experiments with the eMIT9312 and

eMED4 ecotypes (see SI). For this analysis the transect data are presented as observed vs. mod-

eled log ecotype ratio (Fig 6B1). As a baseline, the regression equation in panel A (uncorrected)

is used to predict ecotype ratios. This is just another way of looking at the same information

already presented in panel A. There is a good agreement between the observations and the pre-

dictions using the correlation. The direct simulation does relatively well considering it is a

straight (i.e., uncalibrated) prediction. However, it does worse than the regression model. This

suggests that there are other environmental factors that correlate with temperature (e.g., light,

nutrients, grazer activity) that also affect the ecotype ratio. The effect of those factors are

implicitly captured by the empirical regression model, but not the direct simulation, which

uses growth rate vs. temperature functions based on observations from laboratory experiments

that exclude other factors. This is an area of future research and can be explored by including

additional factors in this model or modifying existing ecosystem models. For example, the

model of Follows et al. [15] can already explain much of the global biogeography of eMIT9312

and eMED4 using a number of nutrients (phosphorus, nitrogen, iron and silica), light and

Fig 5. Model–data comparison for phytoplankton optimum temperatures. Predicted vs. observed

optimum temperatures for the datasets of Thomas et al. [9] and Chen et al. [10]. (A) Prediction is local

temperature. (B) Prediction from model without advection. (C) Prediction from model with advection. Numbers

on panels are RMSEs (±SD, bootstrap analysis, n = 1,000).

doi:10.1371/journal.pone.0167010.g005
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temperature. That model accounts for the history of environmental variables, but simulates

the effect of temperature using a more general equation. It could be modified to include the

more specific growth rate vs. temperature functions used here and applied to this dataset (i.e.,

Fig 6), which would allow for the effect of the various environmental factors to be quantified

(e.g., by turning factors on/off). The purpose of the present project is to explore the effect of

advection. If advection is turned off in the model, the agreement between the model and obser-

vations decreases significantly (bootstrap analysis, based on difference of RMSE values,

n = 1,000, p< 0.001).

We also compare the model to observations from the BATS time series (Fig 6B2). The

observations show a time lag between the local temperature and the log ecotype ratio of about

48 days (obtained by fitting a sine curve to the temperature and ecotype time series). The

model ecotype ratio is generally higher, has a lower amplitude and longer time lag (with

Fig 6. Model–data comparison for Prochlorococcus ecotypes. (A) Regression of observed log ecotype

ratio to local and corrected temperatures. The corrected temperature was calculated as the local temperature

(Tloc) plus the advective temperature differential (ΔTopt) from the atlas (see SI). Open symbols are for Gulf

Stream (GS) and eastern North Atlantic (ENA) samples, also identified in Fig 3. (B) Direct prediction of log

ecotype ratio using ecotype-specific growth rate vs. temperature functions (see SI). (B1) Observed vs.

modeled log ecotype ratio. (B2) Observed and modeled log ecotype ratio vs. time at BATS. Numbers on panel

A are R2s (±SD, bootstrap analysis, n = 1,000) and B1 are RMSEs (±SD, bootstrap analysis, n = 1,000).

Numbers on panel B2 are parameters of sine curve fit to log ecotype ratios in observed (Data), model with

advection (Model(a)) and model without advection (Model(na)). Lag is relative to temperature.

doi:10.1371/journal.pone.0167010.g006
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temperature), again suggesting that there are other factors that contribute to the observed eco-

type ratio. When the advection is turned off, the agreement with the model and observations

decreases substantially.

Comparison to observations: Metagenome nucleotide divergence

Finally, we apply our results to a surface ocean metagenome dataset [13]. This dataset includes

87 samples from the surface ocean for which the DNA was sequenced. There are numerous

bioinformatics methods available to analyze these raw DNA sequences, such as whole genome

alignment or recruitment (akin to in silico DNA hybridization). Several past studies have

explored the role of temperature in marine metagenomics datasets [11–13, 17] and found it to

be an important variable, making this dataset an ideal test case here. In this dataset, the 87

metagenome samples are compared against each other (87 × 87 = 7,569 data points). Their dif-

ference is quantified as average nucleotide divergence (AND). Metagenome sequences were

quality processed using PRINSEQ [47], and all sequences with the following characteristics

were removed from further analysis: sequences <100 bp, sequences containing any ambigui-

ties (Ns), all forms of replicate and duplicate sequences, and sequences with a minimum

entropy value of 70 (applied to pyrosequencing datasets only). The bioinformatic tool Mash

[48] was used to estimate pairwise AND values of each metagenome pair. Then, AND was cor-

related to the absolute temperature difference of the sample pair (Fig 7). The slope is positive,

meaning sample pairs with larger difference in temperature have larger AND, which is intui-

tively correct. The temperature difference calculated using the local temperatures can explain

about 42% of the variance in AND. When the temperature difference is calculated using the

corrected temperatures, it can explain 43%. This is a small, but significant improvement (boot-

strap analysis, based on difference of R2 values, n = 1,000, p< 0.001). The largest improvement

is seen for the sample pair GS008 (Newport Harbor, USA) and GS366 (Southern Ocean),

which are from areas of positive and negative advective temperature differential, respectively

(see Fig 3A).

Summary and Outlook

We explored the role of advection on temperature selection of microbes in the global surface

ocean using an individual-based model. Our results suggest that currents can distort tempera-

ture selection: In areas with substantial warming or cooling currents, the local temperature is

not a good indicator of the historical temperature experienced by the microbial community.

The direction and magnitude of the advective temperature differential depends on the location

and growth rate of the microbes. In poleward currents like the Gulf Stream, the addition of

advection by ocean currents leads to a relatively high increase of the optimum temperature of

the most abundant species. For microbes with faster growth and selection rates the memory is

shorter and the differential lower, compared to those with slower growth rates.

Comparison of the model to observed optimum temperature for phytoplankton suggests

that accounting for currents results in a small improvement, but the difference is not statisti-

cally significant. This is likely because the variability in the observations is very high to begin

with, so that the signal-to-noise level in our analysis is low. More observations, collected using

standard protocols (e.g. [49]) and also farther into the open ocean, may help resolve some of

these discrepancies. Our model results could help select locations where we expect a substan-

tial effect, including in the Southern Ocean and the extensions of the Western Boundary Cur-

rents (Fig 3).

Comparison to observations of Prochlorococcus ecotype ratios shows that accounting for

advection improves the correlation. Future improvements in understanding the biogeography
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of Prochlorococcus will likely require accounting for additional variables, like light and nutri-

ents, which can have ecotype-specific effects on growth and physiology [45, 50–53]. Impor-

tantly, the impacts of light level and nutrient concentration on the growth rates of

Prochlorococcus as a function of temperature have yet to be investigated in laboratory cultures.

Of course, advection will also play a role for those variables, which can be accounted for in the

same manner as we did for temperature here.

The observed nucleotide divergence of metagenome sample pairs correlates positively with

their absolute temperature difference. Basing the temperature difference on temperatures cor-

rected for advection improves the correlation.

In summary, the applications to phytoplankton temperature optima, Prochlorococcus eco-

types and metagenome nucleotide divergence datasets suggest that temperature biogeography

studies would benefit if they account for advection. In terms of R2, or percent of variance

explained, the correlation to temperature improves on average about 3% if advection is consid-

ered (Table 2). We hope that future studies will utilize and benefit from the atlas of tempera-

ture corrections we developed and present in S2 File.

There are a number of potential improvements and follow-on studies. Our model and anal-

ysis is limited to 2D surface currents and temperature. However, vertical advection (e.g.,

upwelling) will also likely affect temperature selection and this could be explored using a 3D

analysis. We use a spatially and temporally constant carrying capacity. Gradients in population

size (e.g., coastal vs. open ocean, across fronts) may change the influences of upstream vs. local

populations (mass effects, [54]). Blooms, eddies and mixing events may also affect temperature

selection at times. These effects are expected to be less when averaged across time and along

major currents in the open ocean, but it would be useful to explore this further using a model

with variable carrying capacity. It would be straightforward to base the carrying capacity on

chlorophyll maps from satellites. Modeling variable population sizes is relatively simple using

the Eulerian approach, but more difficult when simulating individuals [55]. Also, currents will

not only affect temperature, but other variables, like various nutrients and light levels. Under-

standing the role of currents on the effect of these variables will require the use of a biogeo-

chemical model that explicitly resolves them [15, 25]. Our model explores the selection of

microbes, but does not consider adaptation or evolution. The time scales of these processes are

Fig 7. Model–data comparison for metagenome nucleotide divergence. Regression of average

nucleotide divergence (AND) to absolute temperature difference of samples based on (A) local and (B)

corrected temperatures. The corrected temperature was calculated as the local temperature (Tloc) plus the

advective temperature differential (ΔTopt) from the atlas (see SI). Population average growth rate = 0.14 d-1.

Numbers on panels are R2s (±SD, bootstrap analysis, n = 1,000).

doi:10.1371/journal.pone.0167010.g007

Table 2. Improvement when including advection

Dataset ΔR2 (%) (a)

Phytoplankton optimum temperatures +1.46

(Thomas et al.) (+0.24)

(Chen et al.) (+2.68)

Prochlorococcus ecotypes +6.17

Metagenome nucleotide divergence +2.23

Average +3.29

(a) Relative improvement of correlation to temperature. Calculated as [(R2 considering advection)–(R2 not

considering advection)] / (R2 not considering advection) × 100.

doi:10.1371/journal.pone.0167010.t002
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longer than the immediate response of the growth rate on the local temperature included in

our model, but they may be relevant considering travel times in ocean currents. How impor-

tant adaptation and evolution are in the biogeography of marine microbes is an open question.

The individual-based approach is well-suited for and could be used to simulate these processes

[16, 56].

Finally, the growth and death formulations in our model are relatively simple (i.e., basic

functions of temperature and local population size). However, the model can be used as a start-

ing point for the development of more mechanistically-detailed models. Much more is known

about microbial biology and ecology, and biogeochemistry and biogeography studies need to

take advantage of this knowledge. We are presently combining this model with an existing

gene-level model of Synechococcus [57] and plan to compare model predictions to observations

of transcript levels [58].

Supporting Information

S1 File. Supporting Text, Figures and Tables. This file includes Model description, Selection

dynamics, Plankton datasets notes, Additional model results and References.

(PDF)

S2 File. Atlas. The atlas is presented as maps in PDF format (ATLASMAPS) and an MS Excel

book (ATLASTABLE) and accompanying ESRI shapefile (ATLASGIS). The atlas includes

results from simulations with different average growth rates. Columns/attributes are named

using the variables used throughout the paper. The average growth rate is appended to the col-

umn name. For example, TOPTA028 is Topt(a) from the simulation with average growth rate

of 0.28 d-1.

(ZIP)

S1 Movie. Movie. The movie has two panels. The left panel shows the local temperature. The

right panel shows individual cells colored by their optimum temperature. Simulation with

advection. In this simulation the number of individuals was reduced to ~50,000 to allow for

visualization of individuals.

(AVI)
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