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Abstract
Climate change will affect key ecological processes that structure natural communities, but

the outcome of interactions between individuals and species will depend on their thermal

plasticity. We tested how short- and long-term exposure to projected future temperatures

affects intraspecific and interspecific competitive interactions in two species of coral reef

damselfishes. In conspecific contests, juvenile Ambon damselfish, Pomacentrus amboi-

nensis, exhibited no change in aggressive interactions after 4d exposure to higher tempera-

tures. However, after 90d of exposure, fish showed a nonadaptive reduction in aggression

at elevated temperatures. Conversely, 4d exposure to higher temperature increased

aggression towards conspecifics in the lemon damselfish, Pomacentrus moluccensis. 90d

exposure began to reduce this pattern, but overall there was little effect of temperature.

Aggression in interspecific contests increased with short-term exposure, but was signifi-

cantly lower after long-term exposure indicative of acclimation. Our results show how the

length of exposure to elevated temperature can affect the outcome of competitive interac-

tions. Furthermore, we illustrate that results from intraspecific contests may not accurately

predict interspecific interactions, which will challenge our ability to generalise the effects of

warming on competitive interactions.

Introduction

Climate change will alter the physiology, behaviour, and geographical distribution of many
species [1–3]. However, the impact of these changes on population and community structure
will depend on the outcome of biological interactions with other species [4,5]. Due to differ-
ences in thermal tolerances, some species will be more capable of maintaining performance at
higher temperatures than others [6,7]. Consequently, differences in thermal tolerance could
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dramatically alter the outcome of ecological interactions, such as competition and predation
[8,9]. Yet, thermal tolerances can change if exposure to new thermal conditions occurs for a
sufficient amount of time at critical periods [10,11]. Furthermore, the extent of phenotypic
change can depend on the length of exposure, with longer-term periods believed to unlock
greater plasticity [12,13]. While many studies are now investigating the effects of higher tem-
peratures on physiological processes [14–16], incorporating longer exposure lengths during
early life has receivedmuch less attention. In climate change studies, relevant exposure will be
critical for predicting the outcome of ecological processes in a future warmer world [3,13,17].

Much of our understanding of how speciesmight respond to future warming comprises of
relatively short-term experiments using adults [18,19]. Yet, exposure of juveniles to higher
temperatures during early development can potentially induce greater plasticity in phenotypic
traits and greater thermal tolerance in later life stages than just exposure of adults [20–23].
These early life influences can then produce long-lasting alterations in phenotype, affecting
individual success later in life [24]. Changes in phenotype that prove beneficial to an individual
are known as acclimation and could be a method to maintain performance in a new environ-
ment [25]. However, acclimation may not always fully compensate for the negative effects of
environmental stress and can result in partial acclimation or even overcompensation [26,27].
Furthermore, not all induced changes will be beneficial to future performance [28,29]. Instead,
prolonged exposure to elevated temperature may result in a further degrade in performance
compared to present-day levels [30–32]. Understanding the influence of early environmental
experience is important, because early life stages are critical in population regulation [33].
Many juveniles are vulnerable to resource restriction and even small changes in resource acqui-
sition can affect attributes like growth and survival [34,35]. At this age, competitive interactions
greatly influencewhich individuals will survive to the next life stage [36,37].

Performance in tropical ectotherms is believed to be particularly sensitive to higher temper-
ature as they occupy relatively stable thermal environments and often live close to their thermal
maximums [38,39]. Small increases in temperature may have large effects on competitive per-
formance in these environments [40]. However, the effect of longer-term exposure to elevated
temperatures on competitive ability has not been tested. The objective of the present study was
to determine how the length of exposure to elevated thermal conditions in post-settlement
recruits affects the outcome of competitive interactions within and between two species of
coral reef damselfish, Pomacentrus moluccensis and P. amboinensis. These species are known
competitors for shelter over a broad geographic range [41], making them ideal candidates for
this study. We raised juveniles of both species at three temperatures and two exposure lengths
to test: (1) the effects of elevated temperature on aggressive interactions and (2) compare per-
formance from short-term to long-term exposure to higher temperature. We expected that
short-term exposure would have a negative impact on competitive interactions by reducing
aggression in contests. After long-term exposure, we predicted either acclimation to occur and
aggression would be restored towards control levels, or that extended exposure would accumu-
late stress and lead to a further decline in aggression performance.

Methods

Study species, collection, and holding facilities

The study species were the lemon damselfish, P. moluccensis, and the Ambon damselfish, P.
amboinensis. These species are commonly used in a wide range of ecological, behavioural and
physiological experiments [41–43]. They co-occur in the same habitat for the majority of their
geographic range, spanning from the Coral Sea to Southeast Asia [44]. Much research under-
taken on their interactions has been done at Lizard Island on the northern Great Barrier Reef,
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Australia (-14°67´S, 145°44´E). Both species prefer to settle to live coral [45,46] and in the wild
P. moluccensis is exclusively found on live coral, while P. amboinensis is found on a broader
range of habitats including dead coral and rubble [41,46]. These species feed on similar food
items as juveniles [41] and P. moluccensis is normally outcompeted for preferred habitat and is
forced to occupy a position near the top of a coral head, while P. amboinensis occupies the safer
bottom part of the habitat patch [47]. Body size is strongly related to dominance within [46,48]
and between the two species [41]. All work reported herein was conducted under permits from
James CookUniversity Animal Ethics Committee (A2079), the Great Barrier ReefMarine Park
Authority (G10/33239.1), and Queensland Fisheries (170251).

Like many reef fishes, these species have a pelagic larval phase that prevents rearing individ-
uals from their embryonic phase. After 3–4 weeks, larvaemake their final metamorphosis and
recruit back as juveniles to join the reef community. This transition period is an important life
history bottleneck as there are more juveniles than available shelter, forcing individuals to com-
pete for space [49]. Collection efforts targeted the smallest (~20 mm standard length), and
therefore youngest of these recruits. Fish were collected from reefs in the Cairns region
(-16°78´S, 146°26´E) of the Great Barrier Reef, Australia during January 2014 and transferred
to experimental facilities at James CookUniversity. Individuals were randomly allocated to
replicate 40 litre tanks in three temperature treatments: 29°C (current-day summer average for
the collection region; control; [50]), 30°C, and 31°C (projected future temperatures by 2100;
[51]). Elevated temperature treatments were split into two exposure lengths: 4d or 90d. We
used 4d for our short-term exposure to explore the impacts of elevated temperature on compet-
itive behaviour without causing a thermal stress response [52]. Previous work using P. moluc-
censis has shown no acclimation to similar elevated temperatures to occur for up to 22 days,
supporting that our 4d treatment would not be confounded by reversible acclimation [53]. We
chose a 90d exposure for our long-term treatment based on previous developmental studies
using this species [54] and another closely related species of damselfish [55]. Daily temperature
variation and photoperiods followed a natural cycle for the collection region, ± 0.6°C around
the mean and 12:12h, respectively [50].

Experimental design

To determine the effects of short-term exposure to elevated temperature on competitive inter-
actions we conducted intraspecific and interspecific trials with fish from 29°C tested at 30°C,
and 31°C. Holding tank temperatures were raised 1°C/day (to reduce the effect of heat shock;
[52,53]) and held at target temperature for 4d before testing. To determine the effects of long-
term thermal exposure on competitive interactions, we conducted intraspecific and interspe-
cific trials at 30°C and 31°C using fish that had beenmaintained at these temperatures for 90d.

Our control treatments maintained fish at 29°C and tested at 29°C. All competitive trials
were conducted during one experimental period to ensure fish were the same age. No trials
occurred between fish from the same holding tank to control for the possibility of a pre-estab-
lished hierarchy and no two competitors were matched more than once to prevent a winner
effect. In total there were 40 holding tanks for the five treatment combinations: control,
two combinations for short-term exposure (30 and 31°C), and two combinations for long-
term exposure (30 and 31°C; S1 Table). Ten replicates were conducted for each treatment
combination.

Competitive interaction trials

Size difference between competitors is a known factor in determining the outcome of competi-
tive contests [41]. Consequently, all fish were measured just before the experimental period
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(standard length mm, �x ¼ 29:1 � 4:1 SD) and pairs were created by matching fish within
10% of their standard length [56]. Competitive arenas and procedures followed Killen et al.
[57]. At the start of the trial, fish were placed individually in habituation chambers for 10 min
(Fig 1), consisting of PVC cylinders with a revolving door. After a 10 min habituation period,
the doors on both chambers were carefully opened simultaneously and fish were allowed to
emerge. Once both fish exited their habituation chambers, a central partition was raised, expos-
ing both fish to one another as well as to a fragment of coral skeleton (~5 x 5 x 5 cm). The coral
provided shelter and also served as a resource for competition. Competitive interactions were
video recorded for 10 min and later analysed for three behavioural traits: (i) displays, defined
as a lateral flare of its fin towards the opponent; (ii) attacks, defined as a chase or biting of the
opponent; and (iii) avoidances, swimming away from an opposing attack or display. These var-
iables were used to calculate an aggression score = attacks + displays−avoids [58]. The fish with
the higher aggression score was deemed dominant and the winner for that pair. Aggression
was used as a measure for competitive performance as it provides a good indicator of contest
outcomes [57].

Data analysis

Size differences for each pair, calculated as the size of the winner fish minus the size of the loser
fish, were normally distributed and did not differ from zero (one-sample t-test, t150 = 0.213,
p = 0.832). This indicated size matching was successful and the remaining size differences had
no effect on the outcome of contests. Subsequent analyses were performedwithout correcting
for any size differences. For each trial, individual aggression scores were calculated and the dif-
ference of the winner minus the loser score was computed. Aggression score differences were
analysed with separate ANOVAs to measure the effect of short-term exposure to elevated tem-
perature and to compare short-termwith long-term exposure. This was repeated for each spe-
cies in the intraspecific treatments and the interspecific treatment for a total of six models.
Preliminary analysis included holding tank in the model to test for tank effect, but no effect
was found. Consequently, results reported do not include this variable in the design.

While increased temperature could affect the difference in aggression score between com-
petitors, it could also affect the absolute level of aggression as well as the total number of
aggressive interactions during a trial. To ensure aggression score difference was an accurate
reflection of overall aggressive behaviour, aggression score of winner fish only and total num-
ber of aggressive interactions were analysed similar to aggression score differences. For inter-
specific trials, proportion of wins by species were compared across temperature and exposure
length with a chi-square test of independence.

Results

Intraspecific competition

For P. amboinensis, there was no change in aggression score difference following 4d exposure
to higher temperatures (Fig 2a). After 90d, fish had a significantly smaller difference in aggres-
sion scores at 30°C and 31°C compared to the 4d treatment (F1,38 = 10.7, P = 0.002; Fig 2a). For
P. moluccensis, there was a trend to increase aggression score differences following 4d exposure
(Fig 2b) and if we only considered the aggression score of the winner, this effect was significant
(F2,27 = 3.46, P = 0.046; S1 Fig). There was no difference in aggression score differences between
4d and 90d (Fig 2b). The aggression score of the winner only (S1 Fig), and the total number of
aggressive interactions by the two individuals (S2 Fig), mirrored aggression score differences in
both the 4d and 90d treatments confirming aggression score differences were an appropriate
measure of aggressive behaviour during a trial.
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Fig 1. Experimental setup for competition trials. Fish began in habituation chambers (circles) for 10 min. Revolving doors

were opened and fish were allowed to emerge. Once emerged, a second partition was raised (dotted line) exposing fish to

each other and a coral skeleton for shelter. A 10 min video recording was taken of their interactions.

doi:10.1371/journal.pone.0164505.g001
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Interspecific competition

There was no change in aggression score differences among temperature treatments for con-
tests with 4d exposure, although there was a tendency for the aggression scores to increase with

Fig 2. Mean aggression score difference ± SE, calculated as winner fish score minus loser score,

between competitors by temperature of 4d (grey) and 90d exposure treatments (open). Species

composition listed by row: intraspecific Pomacentrus amboinensis (a), intraspecific P. moluccensis (b), and

interspecific (c). Statistical significance (p < 0.05) between 4d and 90d treatments represented with (*). All

treatments n = 10.

doi:10.1371/journal.pone.0164505.g002
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temperature (Fig 2c). Fish with 90d of exposure had lower aggression score differences at ele-
vated temperatures compared with 4d (F1,38 = 5.14, P = 0.029; Fig 2c). The aggression score of
the winner only (S1 Fig), and total number of aggressive interactions by the two individuals (S2
Fig), mirrored aggression score differences in both the 4d and 90d treatments.

There was no significant difference in the proportion of contests won by species across the
three temperatures after 4d exposure. However, when the 30 and 31°C treatment groups were
combined into an “elevated temperature” group, there was a trend from favouring P. amboi-
nensis at control temperatures to favouring P. moluccensis in elevated temperatures (χ2 = 3.5,
df = 1, p = 0.07; Fig 3). After 90d exposure, this trend was reduced, though proportions did not
fully return to controls.

Discussion

Climate change is predicted to affect the outcome of ecological interactions within and between
species, with potentially far-reaching consequences for population dynamics and community
structure [59]. Elevated temperatures can lead to negative effects on individual performance
[1], but individual performancemay acclimate and return to control levels after long-term
exposure to these temperatures [12,25]. Alternatively, longer exposure could result in a further
decline in performance [32,29]. We found aggression after short-term exposure was main-
tained in intraspecific contests with P. amboinensis, whereas there was a trend towards
increasing aggression in P. moluccensis. Long-term exposure reduced aggression scores in P.
amboinensis, but P. moluccensis was unchanged. Interestingly, the aggressive response of spe-
cies in interspecific contests differed from what would have been predicted from each species’
performance in intraspecific contests. This suggests that predicting the outcomes of species
interactions in the future may not be possible frommeasuring the behavioural performance of
species independently.

Elevated temperatures influenced the outcome of competitive interactions for interspecific
contests. There was a tendency for increased aggression score differences with short-term
exposure to elevated temperature. After long-term exposure, acclimation appears to have
occurred as aggression was significantly lower compared to fish with short-term exposure. In
fact, acclimation may have overcompensated as aggression was lower than control in the long-
term treatment. Exposure length also appeared to influence the relative proportions of wins by
each species.While P. amboinensis was favoured in control conditions, P. moluccensis tended
to win more contests after short-term exposure to elevated temperatures. This trend was
less apparent with long-term exposure, though proportions did not fully return to controls.
Changes in species dominance at elevated temperature can occur in competitive hierarchies of
both marine [60] and freshwater species [61], but whether these changes are diminished or
reversed with longer-term exposure during early life has not been tested.

Elevated temperature had different effects on each species for intraspecific competition, pos-
sibly due to differential thermal sensitivity and performance optima. Temperature had only
small effects on competitive interactions in P. moluccensis. Short-term exposure had an
increasing trend with temperature, while long-term exposure showed a relatively flat response
with the biggest difference between exposure lengths at 31°C. The lowered aggression with lon-
ger exposure at 31°C matches previous research showing evidence of acclimation in aerobic
capacity for this species, from a nearby reef region, after early development in similar tempera-
tures [54]. These results suggest this speciesmay fare well within the +2°C future temperature
increases. In contrast, P. amboinensis maintained aggression levels with short-term exposure,
but long-term exposure resulted in a reduction of aggressive performance. This indicates there
was no acclimation to elevated temperature. Instead, this shows how prolonged exposure will
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not always induce phenotypic changes that are beneficial to an individual’s performance. Other
studies have also reported non-beneficial, or non-adaptive, responses after long-term exposure
periods to temperature [26,31,62]. These non-adaptive responses have been attributed to insuf-
ficient duration of exposure for acclimation to occur [63], conditions too extreme for any

Fig 3. Proportion of wins by species for interspecific contests. Pomacentrus moluccensis (grey) and P.

amboinensis (open) tested in “control” (29˚C) and “elevated” (30 + 31˚C combined) temperature treatment.

Elevated temperature treatments are split by 4d and 90d exposure.

doi:10.1371/journal.pone.0164505.g003
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acclimation to occur [29], or costs of acclimation outweighing its benefits [64]. Alternatively,
the longer exposure period could have resulted in accumulated physiological stress that caused
performance to decline. In our study, one or more of these may have acted to create a non-ben-
eficial response.

As global temperatures continue to rise, individuals will be exposed to increased tempera-
tures throughout their early life stages. Thermal plasticity will likely be a key process in deter-
mining performance in ecological interactions in future warmer environments. This is the first
study to show that extended exposure to elevated temperature affects competitive interactions
in coral reef fishes. Our intraspecific results suggest that P. amboinensis should perform poorly
relative to P. moluccensis in interspecific contests at elevated temperature. While this was true
for short-term treatments, we found this trend was less apparent after long-term exposure.
This highlights that interspecific competitive interactions can be complex and extrapolation of
results from within species to predicting between species contests may not be accurate. Future
studies should also consider exposure periods similar to, if not longer than, our study and be
combined with physiological measurements on stress responses when attempting to project the
outcome of competitive interactions between species in a future warmer world.

Supporting Information

S1 Dataset. Dataset listing counts of behaviours (Attacks, Displays, and Avoids) during
competitive interaction trials.Behaviours were used to calculate an “Aggression score” =
Attacks + Displays−Avoids. Rows are grouped in pairs, one for each competitor. “Diff, Total
interactions, and Aggression difference” reference the competitor from the same row and the
row beneath as a pair. Diff = the difference in “Size” for the pair. Total interactions = sum of
the “Attack”, “Display”, and “Avoid” for the pair. Aggression difference = absolute value of the
difference in “Aggression scores” for the pair.
(XLSX)

S1 Fig. Aggression scores ± SE of contest winner. Test temperature listed horizontally and
split by 4d (grey) and 90d exposure treatments (open). Intraspecific contests of Pomacentrus
amboinensis (a) with after 4d exposure to elevated temperature had no change in winner
aggression score compared to controls, but 90d exposure had significantly lower winner scores
when compared to 4d (F1,38 = 7.79, P = 0.008). Aggression scores for Pomacentrus moluccensis
(b) increased from control after 4d exposure to elevated temperature (F2,27 = 3.46, P = 0.046),
but there was no difference between 4d and 90d. Aggression in interspecific contests (c)
increased slightly with temperature after 4d, but was reduced to control levels after 90d expo-
sure (F1,38 = 5.14, P = 0.029). Significance of p< 0.05 symbolisedwith (�).
(DOCX)

S2 Fig. Total number of interactions ± SE by both competitors per contest.Calculated as
sum of attacks, displays, and avoids for both competitors. Test temperature listed horizontally,
and split by 4d (grey) and 90d exposure treatments (open). Intraspecific contests of Pomacen-
trus amboinensis (a) had a non-significant reduction of interactions after 4d exposure to tem-
perature compared to controls but 90d exposed treatments had significantly less interactions
than 4d (F1,38 = 4.17, P = 0.048). Contests with Pomacentrus moluccensis (b) had more interac-
tions with elevated temperature after 4d, but showed no difference after 90d. Interspecific treat-
ments (c) had increased interactions with temperature after 4d, but 90d exposure reduced this
back to control levels (F1,38 = 6.3, P = 0.016). Significance P< 0.05 symbolisedwith (�).
(DOCX)
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S1 Table. Experimentaldesignmatrix.Aim 1 compared control (grey) fish to individuals
with 4d exposure (solid) to elevated temperatures. Aim 2 compared contests using 4d exposed
fish with 90d exposure treatments (open).
(DOCX)

S2 Table. Statistical summaryof one-way ANOVA analyses. Separate tests were generated
for the effects of short-term exposure to elevated temperature (left) and comparing exposure
durations at elevated temperature (right) on (a) aggression score differences, (b) aggression
score of contest winner, and (c) total number of interactions for 3 species combinations.
(XLSX)
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