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Abstract

Alien species invasion represents a global threat to biodiversity and ecosystems. Explain-

ing invasion patterns in terms of environmental constraints will help us to assess invasion

risks and plan control strategies. We aim to identify plant invasion patterns in the Basque

Country (Spain), and to determine the effects of climate and human pressure on that pat-

tern. We modeled the regional distribution of 89 invasive plant species using two

approaches. First, distance-based Moran’s eigenvector maps were used to partition varia-

tion in the invasive species richness, S, into spatial components at broad and fine scales;

redundancy analysis was then used to explain those components on the basis of climate

and human pressure descriptors. Second, we used generalized additive mixed modeling to

fit species-specific responses to the same descriptors. Climate and human pressure

descriptors have different effects on S at different spatial scales. Broad-scale spatially

structured temperature and precipitation, and fine-scale spatially structured human popula-

tion density and percentage of natural and semi-natural areas, explained altogether 38.7%

of the total variance. The distribution of 84% of the individually tested species was related

to either temperature, precipitation or both, and 68% was related to either population den-

sity or natural and semi-natural areas, displaying similar responses. The spatial pattern of

the invasive species richness is strongly environmentally forced, mainly by climate factors.

Since individual species responses were proved to be both similarly constrained in shape

and explained variance by the same environmental factors, we conclude that the pattern of

invasive species richness results from individual species’ environmental preferences.

Introduction

Invasion by alien species and climate change are two of the main global threats to biodiversity
[1, 2] and ecosystem services [3]. Additionally, since plant invasion dynamics is known to be
highly responsive to rising temperature, altered precipitation, and various disturbances
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associated with changes in land use [4, 5], recent research has suggested increased invasion risk
in a global change scenario [6, 7].

Identifying invasion patterns and hotspots, i.e. areas that host the highest numbers of inva-
sive species, and the main factors associated with invasion at regional or larger scales [8], is a
highly valuable tool for ecologists and managers in order to better target eradication and con-
trol. Explanatory distributionmodels based uniquely on climatic factors provide useful knowl-
edge by identifying the climatic constraints to the spread of alien species [5]. However, these
models assume that the introduction effort (propagule pressure) and the level of disturbance
might be comparable across regions. Propagule pressure is closely related to human activity [9,
10], which is usually assessed through various surrogates such as human population density.
Likewise, the structure of the landscape, commonly determined in Europe by human activities,
is known to influence the dispersal and establishment of invasive plant species [11–13]. Consis-
tently, many research works have reported significant relationships between land cover
descriptors and patterns of specific richness (e.g., [14, 15]). For this reason, including human
pressure-related predictors such as population density or land cover predictors is likely to
improve the accuracy of explanatory models [16]. Moreover, it has been argued that the envi-
ronmental control of the spatial distribution of species responds to a hierarchical scheme in
which climatic variables change at the largest spatial scales, whereas landscape descriptors vary
at smaller scales [16, 17].

In this work we first aim to model the relationship between the invasive plant richness and
climate and human pressure predictors in the Basque Country region (Spain). In this region,
20.8% of the vascular flora (487 species) is non-native, of which 89 (i.e. 18.6% of the alien spe-
cies) are considered invasive according to Richardson et al. (2000) [18]. The Basque Country
region is a suitable model system for testing for the joint effect of climate and human pressure
descriptors on invasive species richness distribution since two differentiated bioclimates (Tem-
perate and Mediterranean) coexist in a relatively small territory and the landscape consists of a
mosaic of natural, semi-natural and urban areas. Species richness itself, however, cannot be
assumed to be characterized by an environmental niche (but see [19]). For this reason, the exis-
tence of invasion hot spots should be the outcome of the fact that a high number of invasive spe-
cies display similar favorable environmental niches. By addressing the individual response of a
set of frequent invasive species distribution to environmental predictors we can obtain comple-
mentary information on the process driving invasive species richness distribution patterns.

Therefore, in this research, besidesmodeling the relationship between the invasive plant
richness and climate and human pressure predictors, we intend to model the species-specific
response of the most frequent species to the same predictors. Hence we address the following
questions: (1) Do climate and human pressure constraints explain the spatial pattern of inva-
sive species richness, and if so, how? (2) Do species-specific responses reflect the existence of
commonly preferred environmental settings for invasive plants? (3) If affirmative, do these spe-
cies-specific environmental preferences match the spatial pattern of invasive plant species
richness?

Material and Methods

Study area

The Basque Country region (Spain) occupies 7234 km2 in the northern Iberian Peninsula, with
its approximate geographic center at 43°02’N, 02°30’W (Fig 1). The main climatic gradient has
a north-south direction and, as distance from the sea increases, winter temperature and rainfall
decrease. Across a south-north distance of only 120 km, the range in mean annual temperature
is 9°–14°; the range in annual precipitation is 600–2400 mm (S1 Fig). The area is divided into
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two bioclimatic zones: A temperate climate prevails in the north and a Mediterranean climate
is restricted to the southern end.

Forest plantations (mainly in the northern half) and agricultural land (mainly in the south)
occupy 29% and 13.5% of the Basque Country, respectively. Natural forests (27.7%), grasslands
and shrublands (11.2%), meadows (13.3%), artificial areas (5.5%), and wetlands and coastal
habitats (1%) occupy the remaining territory. The human population is concentrated around
the three main cities, mostly in the Bilbao (42% of the total population) and San Sebastián
(21%) metropolitan areas (Fig 1 and S1 Fig).

Data compilation and preparation

We used data on the distribution of 89 species (S1 Table) that were considered to be invasive
plants in the Basque Country [20], defined as “alien plants that produce reproductive offspring,
often in very large numbers, at considerable distances from parent plants (. . .), and thus have
the potential to spread over a considerable area” [18].

We assembled a three-matrix data set. The first was a species composition matrix of 104
sample units (of 10 km x 10 kmUTM cells) x 89 invasive alien plants, where each element

Fig 1. Location of the Basque Country (study area) in the Iberian Peninsula. Main cities: Bi (Bilbao), SS (San Sebastián) and Vi

(Vitoria).

doi:10.1371/journal.pone.0164629.g001
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represented the presence/absencewithin a cell. The invasive species richness (S), or the number
of invasive alien plant species per UTM cell (Fig 2a), was derived from this matrix. The data
contained in this matrix were obtained by integrating 18,224 citations, herbarium specimens
and species observation records from vegetation surveys compiled in the BIOVEG vegetation
plot database [21], corresponding to the period 1970–2009. The invasive species included in
the study are known to have been widespread throughout the territory during the last 50 years
[20] and all recorded populations were assumed to have persisted throughout the survey
period.

The secondmatrix was an environmental matrix of the same 104 sample units x 5 environ-
mental descriptors. These descriptors (S2 Fig) were: mean annual temperature in °C and
annual precipitation in mm (climate descriptors), human population density (per 100 km2)
and percentage of natural and semi-natural areas in a cell (human pressure), and grain (cell)
surface in km2. The last variable was included for later use as a covariate to control for potential
effects of differing grain surface for cells located in the administrative limits of the Basque
Country. The climatic descriptors were calculated from the Digital Climatic Atlas of Spain
[22], based on data for the period 1955–1999. Althoughmany other climatic descriptors and
indexes (such as summer and autumn rainfall, continentality index, thermicity index, mean
minimum and maximum temperature in January, etc.) were initially considered (Table 1), they
were all eventually discarded due to high collinearity (Kendall's tau> 0.75) with annual tem-
perature and precipitation.

Similarly, to consider the human pressure descriptors, we used the EUNISmap of the Bas-
que Country [23] to calculate the percentage of natural and semi-natural areas and the official
census of 2005 to compute the human population density (National Institute of Statistics).
While other landscape descriptors relative to agricultural and urban lands were initially consid-
ered (Table 1), they were discarded due to high collinearity with human population density
and percentage of natural and semi-natural areas. All the GIS procedures involved in the set-
ting up of the environmental descriptors were performed using the softwareMiraMon [24].
The third matrix was a spatial matrix of the same 104 sample units (of 10 km x 10 kmUTM
cells) x 2 (X, Y) UTM coordinates. Hence the typical size of grain cell (Fig 1 and S2 Fig) is 100
km2 (10 km x 10 km); the sampling interval, as distance between centroids of the grid cells, is
10 km between neighboring sampling units; and the extent or range is about 10,000 km2. The
full data set is available in S1 File.

Data analysis

Modeling the relationship between the richness of invasive alien plant species (S) and cli-
mate and human pressure descriptors. To test for spatial autocorrelation in the number of
invasive alien plant species per UTM cell (invasive plant richness, S), we computed a spatial
correlogram based on Moran’s I statistic [25]; the Holm correction [26] was applied to decrease
the risk of type I errors. Similar correlograms were computed for all four environmental vari-
ables (S3 Fig).

To model the relationship between the response variable S and the environmental descrip-
tors, we applied the following procedure, which can be replicated using the full R coding pro-
vided in S2 File. In the first step, we constructed orthogonal spatial variables representing
structures at multiple scales, for which the principal coordinates of neighbormatrices (PCNM)
method [27, 28], a distance-based class of the Moran’s eigenvector maps family or dbMEM
[29], were used. As a result, we obtained n-1 = 103 orthogonal eigenvectors (= PCNM spatial
variables) describing both positive (52 eigenvectors) and negative (51 eigenvectors) spatial cor-
relation. Since negative spatial correlation is of interest mainly for modeling biotic interactions
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Fig 2. Spatial pattern of S, the number of invasive alien plant species per 10 km x 10 km UTM cell in

n = 104 cells (a) and spatial correlogram based on Moran’s I statistic for S (b). The plot displays the

spatial correlation values against distance (1: 0–10 km, 2: 10–20 km, etc.). Distance (d) is in units of 10 km.

doi:10.1371/journal.pone.0164629.g002
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[30] and not for modeling environmentally-induced spatial variation in species composition
(for which eigenvectors describing positive correlation are commonly used), in this analysis we
selected and used only the 52 orthogonal eigenvectors representing positive spatial correlation.

In the second step, these eigenvectors were tested against the response S using redundancy
analysis and forward selectionwith a double stopping criterion [31]. Redundancy analysis
(RDA) is a technique for multivariate (multi-response) or univariate regression [30] analysis in
either one- or two-dimensional spatial settings [28]. As a result, a set of 16 significant PCNM
spatial variables was selected (S4 Fig). These significant spatial variables represented spatial
structures in S at different spatial scales.

In the third step, this set of PCNM variables specifying the spatial component in S was
divided, according to the size of the patterns ([30], Chapter 13—Spatial analysis), into two sub-
sets. One of these subsets (five PCNMs) constituted the broad-scale spatial component; the
other (nine PCNMs), the fine-scale spatial component. Therefore, five PCNMs were used to
model spatial variation at a broad scale and nine other PCNMs were used to model spatial vari-
ation at a fine scale.Whereas these choices are somewhat arbitrary in the sense that “no univer-
sal rule defining what is broad- and fine-scale has been proposed yet” [30], we observedno
change in the conclusions of the analysis when the above two subsets were defined in slightly
different ways (i.e. using subsets of four and ten or six and eight PCNMs, instead of five and
nine, to define broad-scale and fine-scale components, respectively).

The number of PCNM variables used in this work is comparable with (or even less than)
the number of PCNMs used in previous research. For example, Borcard et al. (2004) [28] used
50 PCNMs to model the abundance of Adiantum tomentosum measured in 260 sampling
units; in the same paper, they used 12 PCNMs to model chlorophyll measured in 63 sites in a
French lagoon. In the fourth step, after double-checking the significance of the PCNM spatial
variables at the two different spatial scales, we used the corresponding RDA canonical axes to
extract spatial structures in S. As a result, we obtained one RDA canonical axis modeling

Table 1. Numerical summaries of the response and descriptor variables.

Variable Description Range Mean StDev

S Species number (species per 100 km2) 79–0 = 79 20 18

T* Mean annual temperature (˚C) 14.0–9.7 = 4.3 12.0 1.1

P* Annual precipitation (mm) 2272–546 = 1746 1219 365

Tmin Mean January temperature (˚C) 8.5–2.9 = 5.6 5.6 1.5

Tmax Mean July temperature (˚C) 21.9–17.4 = 4.5 19.1 0.7

CI Continentality index (Tmax—Tmin in ˚C) 16.1–11.2 = 4.9 13.5 1.3

IoJuly PJuly / TJuly 6.7–1.3 = 5.4 2.9 1.0

Ios2 (PJuly + PAugust) / (TJuly + TAugust) 6.9–1.2 = 5.7 3.2 1.1

Tsummer TJune + TJuly + TAugust 62.4–49.3 = 13.1 54.8 2.3

Psummer PJune + PJuly + Paugust 387.4–96.9 = 290.5 195.7 60.6

PopDen* Human population density (per 100 km2) 4183–0 = 4183 310.0 638.0

NaturPerc* Percentage of natural and semi-natural areas (%) 93.4–9.3 = 84.2 45.2 22.2

AgricPerc Percentage of agricultural (incl. lands devoted to forestry) areas (%) 86.6–0.3 = 86.3 40.2 25.3

InfraPerc Percentage of infrastructural (incl. roads) areas (%) 39.7–0.0 = 39.7 4.1 6.9

The four climate and human pressure descriptors used in this work as explanatory variables are marked with an asterisk (*). The other nine variables that

were initially considered as potential descriptors were discarded due to high collinearity with other descriptors (see text for details). S (response variable)

has been mapped in Fig 2; in addition, see maps and correlograms of the four environmental descriptors in figures of Supporting Information (S1 and S3

Figs).

doi:10.1371/journal.pone.0164629.t001
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broad-scale spatial structures in S, and another one modeling fine-scale spatial structures.
These axes are quantitative continuous random variables taking positive and negative values.
In the fifth and last step, we tested for environmental forcing in S. To do this, the two signifi-
cant canonical axes (representing fine- and broad-scale spatial variation) were regressed, in
two separate regressions, on all climate and disturbance descriptors, for which we used a nor-
mal regression model with canonical (identity) link function, while controlling for potential
effects of differing grain surface. A graphical schematic description of PCNM analysis was pub-
lished by Borcard et al. (2004) [28] in Figure A1 of their Appendix A.

Species-specificresponses to climate and human pressure descriptors. We used Gener-
alized Additive MixedModels (GAMMs) [32, 33] to model relationships between the occur-
rence of (individual) species and the four selected environmental variables without assuming
linearity. Tests were restricted to 37 invasive alien species with relative frequency> 0.2. In
order to guarantee the assumption of independence and hence obtain correct tests and esti-
mates, spatial autocorrelation [34] in model residuals was simultaneously modeled [33]. The
appropriate spatial autocorrelation structures [35] to account for spatial autocorrelation in
model residuals were identified, species by species, using semivariograms [36] that were imple-
mented with the functionVariogram() of the package nlme [37]. Once identified, these struc-
tures were incorporated [33] into the basic models (i.e. models that, at that stage, had only
smoother terms), which were refitted using the function gamm() of the R package mgcv [38].
This function not only permits mixedmodeling, but also finds out automatically the right
amount of smoothing. Species grouping based in life forms (annuals vs. perennials) and in the
broadest features of phylogeny (eudicots vs. monocots) was also explored. All statistical analy-
ses were performed using R software [39] and the complete R coding used for the analysis is
available in S2 File. Together with S1 File, this R code allows the full replication of our statistical
analysis.

Results

Spatial pattern of alien plant invasion in the Basque Country

Our data show a sharp contrast in the pattern of the number (per UTM cell) of invasive alien
plant species, S (Fig 2a). The northern coastal areas are the most invaded, with 30–70 species
per cell, and present the highest registered values in the two main urban areas (Bilbao and San
Sebastián). In contrast, the southernMediterranean areas registered the lowest S values (0–30
species per cell). S is spatially correlated (Fig 2b): we found positive spatial autocorrelation at
distances of 0–40 km and negative spatial autocorrelation starting at large distances (90 km).

The four environmental descriptors are also spatially structured.However, whereas mean
annual temperature and annual precipitation vary at a relatively broad spatial scale, creating
large gradients with positive autocorrelation at distances up to 60–70 km (S1a and S1b Fig and
S3a and S3b Fig), both human population density and the percentage of natural and semi-natu-
ral areas vary at a relatively fine spatial scale with positive autocorrelation only at distances up
to 20–30 km (S1c and S1d Fig and S3c and S3d Fig).

Patterns of plant invasion explained by climate and human pressures

We dissected the pattern in S (Fig 2) into two spatial components. The broad-scale spatial com-
ponent of S represented R2 = 50.8% of the total variance (F = 20.2; p< 0.01) and is mapped in
Fig 3a. In a posterior linear regression, mean annual temperature and annual precipitation
explained 65.7% of the spatially structured variation in this RDA canonical axis (Table 2).
Hence spatially structured climate descriptors explained R2 = (0.508 x 0.657) x 100 = 33.4% of
the total variance in the response S. The fine-scale spatial component of the invasive plant
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Fig 3. Patterns of invasive alien plant species per cell (S) in the Basque Country at broad (a) and fine

(b) spatial scales. The maps represent fitted scores (n = 104) of RDA canonical axes modeling broad-scale

(adjusted-R2 = 50.8% of the total variance in S) and fine-scale spatial structures (adjusted-R2 = 20.1% of the

total variance in S). Distance (d) is in units of 10 km. See the environmental analysis of these spatial patterns

in Tables 2 and 3.

doi:10.1371/journal.pone.0164629.g003
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richness represented R2 = 20.1% of the total variance in S (F = 6.2; p< 0.01) and is mapped in
Fig 3b. In a posterior linear regression, spatially structured natural log-transformed human
population density and percentage of natural and semi-natural areas explained 21.9% of the
variation in this RDA canonical axis (Table 3). Consequently, spatially structured human pres-
sure descriptors explained R2 = (0.201 x 0.219) x 100 = 4.4% of the total variance in S.

In summary, the fraction of S (Fig 2) that is spatially structured (as described by the PCNMs
spatial variables) represented R2 = 50.8 (broad scale) + 20.1 (fine scale) = 70.9% (Fig 3). The

Table 2. RDA canonical axis modeling broad-scale spatial structures.

Source d.f. SS MS F p-value

ANOVA table:

Mean annual temperature 1 48.90 48.90 158.5 0.000

Annual precipitation 1 8.60 8.60 27.9 0.000

Annual precipitation2 1 4.73 4.73 15.3 0.000

Residuals 101 31.15 0.31

S = 0.56 (on 101 d.f.); adjusted-R2 = 65.7

Estimates of parameters:

Term Coefficient SE Coef. t p-value

Mean annual temperature 5.64 0.62 9.1 0.000

Annual precipitation 3.23 0.62 5.2 0.000

Annual precipitation2 -2.18 0.56 -3.9 0.000

Regression analysis results of broad-scale spatial variation in the number of invasive alien plant species in the Basque Country (S) on climate descriptors.

Note that the response is an RDA canonical axis modeling broad-scale spatial structure that explained 50.8% of the total variance in S (see a map for this

axis in Fig 3a). In this model, mean annual temperature and annual precipitation (in the form of first- and second-order polynomial terms) significantly

explained 65.7% of variation in the RDA canonical axis. Grain surface was not significant; the habitat use descriptors percentage of natural and semi-natural

areas and human population density were not significant.

doi:10.1371/journal.pone.0164629.t002

Table 3. RDA canonical axis modeling fine-scale spatial structures.

Source d.f. SS MS F p-value

ANOVA table:

Population density 1 4.85 4.85 17.5 0.000

Population density2 1 1.74 1.74 6.3 0.014

Natural and semi-natural areas 1 2.32 2.32 8.4 0.005

Residuals 101 28.01 0.28

S = 0.53 (on 101 d.f.); adjusted-R2 = 21.9

Estimates of parameters:

Term Coefficient SE Coef. t p-value

Population density 1.66 0.56 3.0 0.004

Population density2 1.60 0.54 3.0 0.004

Natural and semi-natural areas -1.64 0.57 -2.9 0.005

Regression analysis results of fine-scale spatial variation in the number of invasive alien plant species in the Basque Country (S) on human pressure

descriptors. Note that the response is an RDA canonical axis modeling fine-scale spatial structure that explained 20.1% of the total variance in S (see a map

for this axis in Fig 3b). In this model, population density (in the form of first- and second-order polynomial terms) and percentage of natural and semi-natural

areas significantly explained 21.9% of variation in the RDA canonical axis. Grain surface was not significant. The climatic descriptors mean annual

temperature and annual rainfall were not significant.

doi:10.1371/journal.pone.0164629.t003
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fraction of S that was explained by spatially structured environmental variables added up to R2

= 33.4 (broad scale) + 4.4 (fine scale) = 37.8% (Tables 2 and 3), which indicates the presence of
a marked environmentally induced spatial component in S. Mean annual temperature at a
broad scale, and similar contributions of human population density and percentage of natural
and semi-natural areas at a fine scale, were the most important environmental factors, which
explains the location of the within-region S hot spots (Fig 3) in the warmest and highly popu-
lated northern areas of the Basque Country.

Species-specific responses to climate and human pressures

Significant GAMMmodels were fitted for 36 out of 37 tested species (Table 4; Fig 4), with aver-
age adj.-R2 = 35%.Dittrichia viscosawas the only tested species whose presence seems to be
independent of the considered environmental descriptors. The relationship between species
probability of presence and mean annual temperature was significant for 28 species (76% of
the tested species) and was always monotonic and increasing (either curvilinear concave or sig-
moid-shaped; see examples in Fig 4a and 4b). Annual precipitation was significant only for 13
species (35%), with most relationships between species probability of presence and precipita-
tion being hump-shaped (Fig 4c) or nearly so. Natural log-transformed human population
density was significant for five species (13%), with all relationships being always increasing and
curvilinearconcave (Fig 4d). Finally, the relationships between species probability of presence
and percentage of natural and semi-natural areas were significant for 21 species (57%); these
relationships were always monotonic and decreasing, and either curvilinear concave or curvi-
linear convex (see examples in Fig 4e and 4f). Overall, 31 out of 37 frequent invasive alien spe-
cies seem to be sensitive to either temperature, precipitation or both. In other words, the null
hypothesis of no relationship between species occurrence and climatic descriptors was rejected
for all species in Table 4 except Amarathus retroflexus,Dittrichia viscosa, Fallopia japonica,
Medicago sativa, Sorghum halepense and Veronica persica (16% of tested species). Similarly,
the null hypothesis of no relationship between species occurrence and human pressure descrip-
tors was rejected for all species in Table 4 except Amaranthus deflexus,A. hybridus, Arundo
donax, Aster squamatus, Chenopodium ambrosioides, Cortaderia selloana, Dittrichia viscosa,
Echinochloa crus-galli,Crocosmia x crocosmiiflora, Oenothera rosea, Solanum chenopodioides,
Lepidium virginicum and Lonicera japonica (35% of tested species). On the whole, mean
annual temperature was the most influential environmental descriptor.

On average, annual species (relative frequency = 0.42) are slightly more frequent than peren-
nial species (relative frequency = 0.37). However, the climate and human pressure descriptors
(mean annual temperature, annual precipitation, percentage of natural and semi-natural areas,
and human population density) explain higher proportion of variance for perennials (average
R2 across species = 0.40) than for annuals (average R2 species = 0.26). In general, the presence-
absence of both annuals and perennials tend to display sigmoid-shaped (positive) or curvilinear
concave (also positive) relationships with mean annual temperature. By contrast, whereas the
presence-absence of annuals tends to be little affected by annual precipitation, the presence-
absence of perennials tends to display hump-shaped relationships with annual precipitation,
with optima located at intermediate values of this environmental descriptor. Similarly, the pres-
ence-absence of both annual and perennial species tends to display curvilinear (-) relationships
with the percentage of natural and semi-natural areas. By contrast, whereas the presence-
absence of annuals tends to be little affected by human population density, the presence-absence
of perennials tends to display curvilinearconcave (+) relationships with this variable.

Regarding the broadest phylogenetic groups (monocots vs. eudicots), the climate and
human pressure descriptors explain more variance for monocots (average R2 across
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Fig 4. Fitted Generalized Additive Mixed Models for six example species, with 95% confidence

bands. The smoothers show the probability of occurrence with increasing mean annual temperature

(Temperature, a–b), annual precipitation (Precipitation, c), natural log-transformed human population

density (ln-HPD, d) and percentage of natural and semi-natural areas (Natural area) in a given UTM cell (e–

f). See Table 4 for statistical details.

doi:10.1371/journal.pone.0164629.g004
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species = 0.49) than for eudicots (average R2 across species = 0.30); this can be explained
becausemost monocots are perennials (90%) while only 60% of eudicots are perennials. How-
ever, the form and frequency of the relationships between the presence-absence of both mono-
cots and eudicots and the climate and habitat use descriptors are similar and no particular
pattern can be discerned.

Discussion

Modeling the spatial distribution of the number (per UTM cell) of invasive alien plant species
(invasive plant richness S) at two spatial scales allowed us to uncover the pattern of alien plant
invasion and thereby to identify invasion hot spots in the warmest and highly populated north-
ern areas of the Basque Country. We also disentangled the effect of climate and human pres-
sure descriptors on S at broad and fine scales. Species-specificGAMMs showed that most
tested species are sensitive to climate descriptors (mean annual temperature, annual precipita-
tion or both) and human pressure descriptors (either percentage of natural and semi-natural
areas or human population density), with similar and consistent responses that, overall, seem
to shape S as an integrated response.

The spatial structure of the invasive plant richness is strongly

environmentally induced

The broad-scale spatial component of S, which is the most important spatial component, was,
to a large extent (65.7%), explained by mean annual temperature and annual precipitation. The
fine-scale spatial component of S was partially explained (21.9%) by human population density
and percentage of natural and semi-natural cover. Human population density and human set-
tlements are factors positively correlated with alien plant abundance and propagule pressure
[10, 40]. Moreover, population density was correlated in our study with land use descriptors
such as the percentage of cultivated areas and of infrastructural areas and, therefore, it can be
considered as a good proxy of disturbance. It is well known that human mediated disturbances
provide opportunities for invaders to spread [41], form “corridor pathways” [42, 43], and can
increase above- and below-ground resource availability [44]. Although a number of studies
have also reported a positive correlation between alien plant species richness and temperature,
precipitation and/or human activity (e.g., [45–48]), they do not specifically address the spatial
scales at which these spatially structured variables operate. However, in our study, by perform-
ing PCNM and variation partitioning analyses [27, 28] we were able to capture environment-
induced spatial structures at different scales [49]. Because the organisms are constrained by
their physiological tolerances to climatic factors, it is widely accepted that climate governs spe-
cies distributions at broad biogeographical scales [16, 17, 50, 51]. Our results support the idea
that the species distributions are hierarchically structured and that climatic variables are large-
scale determinants, followed by land cover or disturbance predictors at smaller resolutions [16,
17]. Modeling the corresponding spatial structures separately at different scales is of valuable
use for ecologists, though not largely used (but see [49, 52–55]). To our knowledge, this is the
first study that specifically addresses this issue in alien plant invasion spatial patterns.

In our study the unexplained variance in the spatially structured invasive species richness
amounted to 34.3% at a broad scale and 78.1% at a fine scale. This fact, in part, might be the
outcome of the sampling bias that is likely to affect the data collection compiled in databases,
due to variable sampling effort among different areas. Moreover, other factors that have not
been taken into account in this study could explain part of the unexplained variance. For
instance, at a broad scale, the suitability of our model might be reduced by the fact that many
invasive species have not achieved their potential distribution range yet [56, 57] or that they
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differ in the residence time [58]. In addition, the response of some species that preferably
inhabit azonal aquatic habitats such as riverbeds or estuaries (e.g. Baccharis halimifolia) or
other saline habitats, such as dunes and cliffs, might be difficult to model at this scale. In fact,
these coastal habitats have been identified as very prone to invasion [59, 60], showing a high
proportion of the invasive flora of the territory.

At a fine spatial scale, the spatial structure we found might indirectly reflect dispersal issues,
on top of spatially structured environmental factors. Propagule pressure [61] or spatial struc-
ture induced by species dispersal kernels could explain part of the unexplained variance. The
integration of other factors such as biotic interactions and dispersal mechanisms into biocli-
matic models might contribute to improving the accuracy of models [14, 62].

Species-specific responses to climate and human pressure descriptors

Most tested species responded to climate predictors (84%), particularly to temperature (76%),
and to human pressure descriptors (65%). Importantly, all monotonic species responses had
the same sign for each predictor, i.e. the probability of presence of invasive plants always
increased as mean temperature and human population density increased, and as the percentage
of natural and semi-natural areas decreased.Moreover, the relationship between species proba-
bility of presence and rainfall, when significant, was hump-shaped in most cases and the opti-
mum in these relationships was nearly always found to be around 1500 mm per year. On the
other hand, the average adj.-R2 = 35% found for these fitted GAMMs (Table 4; Fig 4) is clearly
comparable with the adj.-R2 = 34 + 4 = 38% that was found in the PCNM analysis.

Some species such as Cortaderia selloana, Arundo donax and Lonicera japonica responded
uniquely to climate descriptors, mainly to mean annual temperature, and the distribution of
these species is typically restricted to areas located at low altitudes that lack winter frost in the
Basque Country. However, the distribution of 51% of the tested species was better explained by
a combination of climate and human pressure descriptors. Most successful invaders in the Bas-
que Country have actually been introduced from warm and subtropical bioclimates and are fre-
quently associated with human-induced disturbances [63]. For instance, common species like
Centranthus ruber and Erigeron karvinskianus, though highly associated with warm climates
[64], also typically inhabit urban walls and rocky roadsides. Several ruderal speciessuch as
Bidens aurea, Bromus catharticus, Conyza sumatrensis and Oxalis latifolia are at the same time
thermophilous species distributed at low latitudes [64, 65]. Likewise, alien grasses that are very
abundant in the region, such as Paspalum dilatatum and Sporobolus indicus, have a neotropical
origin [66, 67] and invade mainly disturbed trampled grasslands in the Basque Country [20].

Despite the above general pattern, five species proved to be sensitive only to human pressure
constraints: Sorghum halepense, Veronica persica,Medicago sativa, Amaranthus retroflexus and
Fallopia japonica. Most of them are segetal or ruderal species that are known to be widespread
throughout differing bioclimatic regions with dissimilar temperature and precipitation regimes
[65, 67]. The fitted models for these species had a rather low goodness of fit (R2� 0.1). One
single species,Dittrichia viscosa, did not respond to any of the considered descriptors, possibly
because in the Basque Country it has a typical row-shaped distribution along some of the main
highways. This last result indicates that plant invasions may be driven by species-specificeco-
logical requirements, which might also be taken into account whenmodeling invasive plant
species distribution. Although invasion hot spots are major targets for managers, particular
individual species might represent significant threats to native ecosystems as well. Therefore, in
order to identify areas for prevention and control of particularly aggressive species, it might be
necessary to consider additional alternative predictors, such as presence of certain types of hab-
itats [60], at least if more conservative attempts fail.
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Conclusion and Management Implications

Consistent results from two complementary statistical approaches (PCNMmethod and
GAMM) allowed us to show that the spatial structure of alien plant invasion in the Basque
Country is strongly environmentally induced, and to disentangle the scale-specific importance
of corresponding environmental factors. These findings will be useful for performing simula-
tions of plant invasions but also for highlighting the importance of undertakingmulti-scale
approaches in such simulations to better understand environmental limitations to the spread-
ing of invasive species. In the Basque Country, regional-scale predictions on hot spots or on
individual species could be made on a climatic basis using data obtained at broad scales. In
contrast, local conservation policy planning might focus on local-scale predictions based on
human pressure factors analyzed at a finer scale resolution. Likewise, for particularly aggressive
species control and prevention, individual speciesmodels may help in taking decisions on the
necessary scale to be considered according to the most influential environmental factor for that
particular species. This study thus may help optimize conservation efforts across administra-
tions by providing information on the appropriate scale for data resolution (grain) and for pre-
diction parameterization.

Supporting Information

S1 Fig. Environmental heterogeneity in the Basque Country, northern Spain.Maps of (a)
mean annual temperature, (b) annual precipitation, (c) log-transformed human population
density and (d) percentage of natural and semi-natural areas. Lower boundsmust be inter-
preted as less or equal than printed value: for example, the white quadrats in the map for
annual precipitation (b) indicate that annual rainfall is less or equal than 1000 mm. Distance
(d = 5) is in units of 10 km.
(PDF)

S2 Fig. Bivariate plots with smooth curves, histograms and Kendall correlations. Bivariate
plots, histograms and Kendall correlations for the climate and human pressure constraints
used as explanatory variables for the number of invasive alien plant species and species’ indi-
vidual responses. Human population density was log-transformed to achieve symmetry and
hence make it more amenable to linear modeling. NaturPerc = percentage of natural and semi-
natural areas; T = mean annual temperature (°C); lnPopDen = natural log-transformed human
population density per 100 km2; P = annual precipitation (mm); Grain surface in km2.
(PDF)

S3 Fig. Spatial correlograms.Spatial correlograms for mean annual temperature, annual pre-
cipitation, human population density and percentage of natural and semi-natural areas. These
correlograms can be compared with the maps in S2 Fig. Mean annual temperature and annual
precipitation vary at (relatively) broad spatial scales, whereas human population density and
the percentage of natural and semi-natural areas vary at (relatively) fine spatial scales. Distance
is in units of 10 km.
(PDF)

S4 Fig. Principal Coordinates of NeighborMatrices. Sixteen PCNM spatial variables with
positive spatial correlation that significantly explained spatial structures in the species number
of invasive alien plants in the Basque Country. According to the size of the patterns, the first
five PCNMs (1, 2, 4, 6, and 8) were selected to model spatial variation at a broad scale; the
other PCNMs were used to model spatial variation at a fine scale. In order to learn more on the
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use of these spatial templates, see S2 File in the Supporting Information (R code).
(PDF)

S1 File. Dataset used in this study. The full data of species occurrences and descriptors in
UTM cells.
(TXT)

S2 File. R code.Together with S1 File, this R code allows the full replication of our statistical
analysis.
(R)

S1 Table. Frequencies of studied alien species.List of invasive alien plant species with their
relative frequencies in the Basque Country region, northern Spain. Species with relative fre-
quency greater than 20% (grey) were tested by means of generalized additive mixed modeling
(GAMM).
(PDF)
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