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Abstract

Dust storms are devastating natural disasters that cost billions of dollars and many human

lives every year. Using the Non-Hydrostatic Mesoscale Dust Model (NMM-dust), this

research studies how different spatiotemporal resolutions of two input parameters (soil

moisture and greenness vegetation fraction) impact the sensitivity and accuracy of a dust

model. Experiments are conducted by simulating dust concentration during July 1–7, 2014,

for the target area covering part of Arizona and California (31, 37, -118, -112), with a resolu-

tion of ~ 3 km. Using ground-based and satellite observations, this research validates the

temporal evolution and spatial distribution of dust storm output from the NMM-dust, and

quantifies model error using measurements of four evaluation metrics (mean bias error, root

mean square error, correlation coefficient and fractional gross error). Results showed that

the default configuration of NMM-dust (with a low spatiotemporal resolution of both input

parameters) generates an overestimation of Aerosol Optical Depth (AOD). Although it is

able to qualitatively reproduce the temporal trend of the dust event, the default configuration

of NMM-dust cannot fully capture its actual spatial distribution. Adjusting the spatiotemporal

resolution of soil moisture and vegetation cover datasets showed that the model is sensitive

to both parameters. Increasing the spatiotemporal resolution of soil moisture effectively

reduces model’s overestimation of AOD, while increasing the spatiotemporal resolution of

vegetation cover changes the spatial distribution of reproduced dust storm. The adjustment

of both parameters enables NMM-dust to capture the spatial distribution of dust storms, as

well as reproducing more accurate dust concentration.

Introduction

Dust storms have drawn serious concern during the past decades for their impact on the atmo-

spheric environment, biochemical cycles, radiative balance, and human health [1]. Since the

late 1980s, several dust models have been developed to simulate and predict the spatiotemporal

patterns of the evolution, magnitude, transportation, and deposition of dust storms [2–5]. For
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example, models with near global coverage, Barcelona Supercomputing Centre-Dust Regional

Atmospheric Model 8b v2.0 (BSC-DREAM8b) [6], forecast the atmospheric life cycle of desert

dust particles. At the regional level, the Chinese Unified Atmospheric Chemistry Environment

for Dust (CUACE/Dust) model [7] is an integral part of a real-time mesoscale sand and dust

storm forecasting system for eastern Asia and has an aerosol module differentiating the size of

suspended particles. The model used in this study, NMM-dust, has a meteorological core cou-

pled with a dust module [8]. The meteorological core is the non-hydrostatic mesoscale model

(NMM), also used in US National Weather Service (NWS) operations. The NMM-dust pro-

duces multiple outputs including dust load and concentration up to 3 km spatial resolution.

Although significant progress has been made in the development of sophisticated dust

models, results from different models vary substantially despite independent model valida-

tions, indicating that the dust models suffer from various degrees of uncertainties [9]. To iden-

tify the sources of uncertainties, Todd et al. [10] conducted an inter-comparison of models

and concluded that various features account for the uncertainties, including meteorology ini-

tialization (e.g., wind speed, direction), land surface initialization (e.g., surface roughness, soil

properties), and modeling processes (e.g., emission size distribution, dust optical properties,

deposition schemes). It is not possible to partition the uncertainties unless individual aspects

are tested through sensitivity experiments, commonly conducted to achieve a better under-

standing of a single source of uncertainty.

Among the above aspects, initialization of required input parameters plays a significant role

by determining the amount of dust emissions from the land surface. Dust emissions are a

threshold, sporadic and spatially heterogeneous phenomenon [11] locally controlled on small

spatial and temporal scales [12]. Therefore, accurately predicting the magnitude and the spa-

tiotemporal patterns of dust emission remains a crucial challenge for global and regional dust

models. Theoretical knowledge currently utilized in models predicts the vertical dust flux if the

required input parameters (surface, soil, and meteorological features) are accurately deter-

mined [11]. However, the application of complex emission schemes in global, and to a lesser

extent regional models, is hampered by the uncertainty of the required input data at the scales

of application and the inaccuracies of the meteorological/climate model [13]. This uncertainty

is mainly rooted in the fact that dust models require inputs that are typically problematic to

quantify, such as soil textural characteristics, soil moisture content, and vegetation characteris-

tics [14–15]. Especially in recent years, the development of high-resolution dust models has

created a requirement for high spatiotemporal resolution input data [6], so that the representa-

tion of soil and land surface for model initiation needs to be more realistic.

Improved representation of the soil and land surface conditions, especially the parameters

that are responsible for dust emission and transport, has the potential of improving model

accuracy. Researches have been conducted to test multiple soil and land surface parameters,

such as soil properties (texture and moisture), and roughness length. For example, Laurent

et al. [11] integrated improved surface features and soil scheme into Regional Atmospheric

Modeling System (v6.0). Results demonstrated that the model provides a more realistic simula-

tion of surface winds and improved quantification of regional dust emissions than a previous

version. Menut et al. [16] explored the sensitivity of a dust model to the roughness length data-

set derived from the European Remote Sensing (ERS) satellite and the soil texture dataset from

the State Soil Geographic data base-Food and Agriculture Organization of the United Nations

(STATSGO-FAO). They analyzed the model output under the configuration of ERS and

STATSGO-FAO, and compared to the Laboratoire Inter-Universitaire des Systemes Atmo-

spheriques (LISA) dataset. Results showed that the configured model output provided more

realistic spatial patterns of dust emission than LISA. Similarly, Cheng et al. [17] presented an

improved dust emission scheme for application to the global aerosol-climate model

Improving Dust Model Using Input Parameters of Different Spatiotemporal Resolutions

PLOS ONE | DOI:10.1371/journal.pone.0165616 December 9, 2016 2 / 19



ECHAM5-HAM, which updates surface aerodynamic roughness length, soil moisture and

East-Asian soil properties. The resulting dust emission output was a more realistic dust distri-

bution verified by available measurements.

However, questions have been raised on that whether the increased resolution will reduce

the uncertainty associated with the input data. Valari and Menut [18] investigated the uncer-

tainty of the CHIMERE model by increasing the resolution of input emission data from 48 km

to 6 km, and results showed that the model accuracy do not improve monotonously with reso-

lution increases, but that after a certain point discrepancies become larger. Therefore, sensitiv-

ity experiments are needed to investigate whether (and to what extent) improving the

spatiotemporal resolution of essential inputs (soil moisture and vegetation cover) will impact

model accuracy.

The objective of this research is to investigate the sensitivity of the regional dust model,

NMM-dust, to two required input data (soil moisture and greenness vegetation fraction) with

different spatial and temporal variations. This study seeks to contribute to the literature on the

topic in the following ways. First, we select suitable input for the two essential parameters of

soil moisture and vegetation cover with different spatial and temporal variations. Second, we

examine the impact of the spatiotemporal input variations on NMM-dust result using both

ground-based and satellite observations. Third, we provide guidance on the adjustment of the

spatiotemporal variations of required input data to improve dust modeling. In the following

data and methods section, details are offered on model description, the datasets selected for

investigation and observation data for model evaluation, methodology for integrating the pro-

posed model input into model execution, and the evaluation methodology. The experiment

and results section provides experimental design, and the evaluation of model results using

ground-based and satellite observations for aerosol optical depth. Finally, we conclude and dis-

cuss the research, followed by some options of future work.

Data and Methods

In this study, the NMM-dust model is used to compute the dust concentration for the target

area covering part of Arizona and California (31, 37, -118, -112), with a resolution of ~ 3 km

(Fig 1). The timeframe covers from July 1–7, 2014, during which a dust storm occurred on

July 3rd to 4th moving through Phoenix to the south. To test the sensitivity of NMM-dust,

we select soil moisture and greenness vegetation fraction dataset with different spatial and

temporal resolutions, and integrate them into the initialization stage of NMM-dust, execute

experimental model runs, and evaluate experiment results compared with observations. The

workflow of input data integration, dust model execution, and result evaluation is schemati-

cally illustrated (Fig 2). Herein the model is described, and the geophysical principles of how

soil moisture and greenness vegetation fraction affect dust emission are presented in Section

2.1. The description of the proposed model input and observation data used for evaluation is

introduced in Section 2.2. The approach of integrating selected input data is introduced in Sec-

tion 2.3, followed by presentation of evaluation methodology (Section 2.4).

Model Description

NMM-dust is an atmospheric dust model embedded in the Non-hydrostatic Mesoscale Model

[19–20], and is intended to provide around 3–7 days of dust forecasts for regional domains

with a horizontal grid spacing to about 3 by 3 km resolution. NMM-dust has been an essential

tool that helps improve the understanding of dust emission, transportation, and deposition.

The meteorological fields are initialized every 24h (at 0UTC) and boundary conditions are

updated every 6h with the NCEP/GFS Global Forecast System Analysis data (1˚ x 1˚). NMM-
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dust is embedded in the loosely coupled nested models, combining with Dust Regional Atmo-

spheric Model (DREAM) [3, 20]. The loosely coupled nested model was proposed and devel-

oped to improve the computing efficiency of dust forecasting. With DREAM producing low

resolution dust information over a large domain, NMM-dust can then be executed using

DREAM output contributing as initial states to produce high resolution results for sub-

regions.

NMM-dust starts with preprocessing, by re-gridding DREAM output (including soil mois-

ture and greenness vegetation fraction) into finer resolution and generates all other required

constants into datasets. Initialized with these constants, NMM-dust continues its calculation

in the model core, composed of the following processes: 1) dust emission; 2) horizontal and

vertical advection; 3) horizontal diffusion and vertical transport; 4) dry deposition and gravita-

tional settling; and 5) wet deposition. NMM-dust includes eight dust size bins with intervals

defined by Tegen and Lacis [12] (Table 1).

Dust emission is the main process that soil moisture and greenness vegetation fraction

affect. Greenness vegetation fraction controls the dust source because dust emission only takes

place at the fraction of bare soil exposed in a grid cell, expressed as 1 –GVF. The dust emission

scheme allows for soil moisture to affect the uplifting of dust particles. Basically, dust produc-

tion starts in the form of vertical dust flux for each particle size bin p only when the friction

velocity calculated in the model is above the threshold uss. The threshold friction velocity is cal-

culated as dry soil, which depends on particle size, as Bagnold [21] defined in Eq 1:

usd pð Þ ¼ A pð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ggðpÞ
rðpÞ � ra

ra

s

ð1Þ

Fig 1. Map of the NMM-dust experiment domain, and four AERONET sites described in Section 4.3.1.

doi:10.1371/journal.pone.0165616.g001
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where g is the gravity acceleration, γ(p) is the particle radius, ρ(p) is the particle density, and ρa

is the density of the ambient air. A(p) is a function of the particle friction Reynolds number for

the threshold condition, and is specified using an empirical value [22], indicating that for par-

ticles with larger radius the threshold friction velocity is higher. Based on the dry soil thresh-

old, the emission scheme specifies the effect of soil moisture on the threshold friction velocity,

as Fécan et al. [23] defined in Eq 2:

uss ¼ usd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1:21ðw � w0Þ0:68

q

ð2Þ

where w is the soil moisture content and w’ is the amount of adsorbed water, an increasing

function of the clay fraction in the soil.

Fig 2. Workflow of NMM-dust, including the integration of soil moisture and GVF datasets, and model evaluation.

doi:10.1371/journal.pone.0165616.g002
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The output of NMM-dust includes dust concentration, dust load, wind velocity/direction

and others. Aerosol optical depth is calculated [12] based on simulated dust load (Eq 3).

AOD550 ¼
P8

1
AOD550 ¼

P8

1

3

4rg
MQext 550ð Þ ð3Þ

where ρ is the particle mass density, and γ is the effective radius. Qext(550) is the extinction effi-

ciency factor calculated using Mie scattering theory at a wavelength of 550 nm. M is the dust

mass load.

Proposed Input and Observation Data

Soil moisture data. The development of remote sensing techniques has greatly improved

the estimation of soil moisture [24], but these estimates normally bear low temporal resolution,

limited surface penetration, and are affected by meteorological conditions and vegetation. In

addition, the spatial and vertical structures of soil moisture conditions are nonlinear and

depend on quantities not readily observed (i.e., soil texture, precipitation, runoff, infiltration,

subsurface drainage) [25]. Another source of soil moisture input commonly used is another

model’s output. For example, both BSC-DREAM8b [6] and CHIMERE [26] utilized the

National Center for Environmental Prediction (NCEP) data as initial land and meteorological

fields. In this approach, the spatial completeness and temporal granularity of the input is

assured, but the spatial variation of input soil moisture dataset is not, since the spatial resolu-

tions of two models are normally not consistent. In addition, the accuracy of model output

depends on model itself, and needs to be evaluated using land surface and atmospheric

observations.

Compared to satellite observations and model data, land data assimilation systems combine

the modeled land surface fields with observational estimates, and produce dynamically consis-

tent, spatially complete and temporally continuous estimates of land surface conditions [27].

Land-surface assimilation data has the potential of improving soil moisture analysis [28] and

weather prediction [29]. In this sensitivity test, two soil moisture datasets are selected from

Land Data Assimilation System (SM_1 and SM_2). The SM_1 [30] is from the Noah land-sur-

face model for Phase 2 of the North American Land Data Assimilation System (NLDAS-2)

and has a spatial resolution of 0.125 degree and hourly temporal resolution. Another soil mois-

ture dataset (SM_2) with a different spatiotemporal resolution is from Global Land Data

Assimilation System (GLDAS) and has a spatial resolution of 0.25 degree and a temporal reso-

lution of 3 hours. The commonality of these datasets is that the soil layers are uniform across

the domain, and both have the same number and thickness of layers as NMM-dust (0–10 cm,

10–40 cm, 40–100 cm, and 100–200 cm underground).

Table 1. Physical and optical properties of dust particle size class.

Size Class Size Range, μm Effective Radius, μm Qext(550) Particle Density, km/m3

1 0.1–0.18 0.15 1.536 2500

2 0.18–0.3 0.25 2.816 2500

3 0.3–0.6 0.4 3.086 2500

4 0.6–1 0.8 2.583 2500

5 1–1.8 1.5 2.3450 2650

6 1.8–3 2.5 2.240 2650

7 3–6 4 2.174 2650

8 6–10 8 2.110 2650

doi:10.1371/journal.pone.0165616.t001
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The control case (Table 2) is the default model run for NMM-dust; since NMM-dust is cou-

pled with another coarse resolution dust model (DREAM), the inputs to NMM-dust (e.g., soil

moisture and vegetation cover) originate from DREAM’s outputs with a spatial resolution of

0.3˚. This coarse resolution results in low spatial variation for soil moisture. Specifically, soil

moisture values from DREAM output approach 0.05 [m3/m3] for all four soil levels within the

model domain. Comparing with the soil moisture values from the land data assimilation data-

sets (Fig 3), the value of 0.05 [m3/m3] for all four soil levels does not represent the realistic soil

moisture condition, and is smaller than the values from SM_1 and SM_2. Fig 3 shows that soil

moisture from the first level (0–10 cm underground) has lower values than those of the other

three. Since SM_1 has higher spatial resolution than SM_2, SM_1 and SM_2 show different

spatial patterns of soil moisture, but they indicate similar high-valued (northeast) and low-val-

ued (west central) areas. The highest value (dark brown) from SM_1 is greater than that from

SM_2 (e.g. Level 1: 0.14> 0.085).

Table 2. Soil moisture datasets.

DATA SOURCE RESOLUTION LEVELS

CONTROL CASE DREAM output 0.3˚ 4 [0–10, 10–40, 40–100, and 100–200 cm]

SM_1 NLDAS-2 Hourly, 0.125˚ 4 [0–10, 10–40, 40–100, and 100–200 cm]

SM_2 GLDAS-1 3-hourly, 0.25˚ 4 [0–10, 10–40, 40–100, and 100–200 cm]

doi:10.1371/journal.pone.0165616.t002

Fig 3. Selected soil moisture datasets at the time of July 1, 2014 00 UTC. Unit in m3/m3.

doi:10.1371/journal.pone.0165616.g003
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Greenness vegetation fraction data. Vegetation cover is represented in the model as

green vegetation fraction (GVF), normally derived from satellite remote sensing and com-

posed into a data product. Since the model starts the emission based on the fraction of bare

soil estimated using GVF data, some portions of ground may be covered by plant litter and

thus the fraction of bare soil can be overestimated. Therefore, even the study area is mostly

covered by open land with dry soil, the model can still overestimate the overall dust emission.

When GVF data are available with regional to global coverage, their spatiotemporal resolutions

are often too coarse to resolve local scale heterogeneity. For example, the vegetation cover

input commonly utilized by dust models is the 5 year-worth of monthly Advanced Very High

Resolution Radiometer (AVHRR) data (1985–1990) with 0.144˚ of spatial resolution, about 15

km in Central America [31]. However, this dataset is outdated and has coarse spatial resolu-

tion, which may negatively affect model accuracy and reliability for finer scale simulations.

Moreover, the monthly temporal resolution may not provide sufficient information to

describe short term variation of vegetation conditions, such as weekly or biweekly [29]. There-

fore, GVF input is required with more compatible spatial and temporal resolution for

improved model simulations.

Due to the advances in algorithms and techniques of deriving GVF datasets, there are vari-

ous GVF datasets using different satellite retrievals and methods. For example, Jiang et al. [32]

proposed an algorithm to produce real-time weekly GVF data from the Advanced Very High

Resolution Radiometer (AVHRR) normalized difference vegetation index (NDVI). This GVF

dataset was further investigated using a mesoscale numerical weather prediction model and

improved model performance. Broxton et al. [33] developed a 1-km global monthly GVF

product for 2001 to 2012 based on Moderate Resolution Imaging Spectroradiometer (MODIS)

NDVI and land-cover type. Also derived from MODIS NDVI, daily real-time GVF data [34]

are generated by Short-term Prediction Research and Transition (SPoRT) Center with a native

0.01 resolution for the Continental United States (CONUS). To select suitable GVF datasets, it

is critical to consider the availability of data for the simulation period and its spatial and tem-

poral variations. Unfortunately, daily real-time GVF from SPoRT is not available for our simu-

lation period. Therefore, weekly and monthly GVF data are used in this research to test the

impact on NMM-dust.

In this sensitivity test, two GVF datasets are selected with different spatiotemporal resolu-

tions (GVF_1 and GVF_2). The GVF_1 is derived from the Visible Infrared Imager Radiome-

ter Suite (VIIRS) sensor onboard Suomi National Polar-orbiting Partnership (SNPP) satellite.

The GVF_2 is the 5-year (1985 to 1992) monthly mean derived from AVHRR NDVI. Table 3

demonstrates details of the spatiotemporal resolution of datasets utilized in the test.

The datasets for greenness vegetation fraction initializations are illustrated (Fig 4). The

GVF’s control case is from DREAM output, and its low spatial variation results in the GVF

value within the model domain for the seven days of simulation is ~ 0.5. The comparison of

the two GVF datasets interpolated into model resolution at the time of July 1, 2014 00 UTC

shows that GVF_1 has more detailed information of vegetation spatial variability than GVF_2,

and that the values in GVF_1 are mostly lower than those in GVF_2. In addition, due to differ-

ent spatial and temporal variations, GVF_1 and GVF_2 show different patterns of vegetation.

Table 3. Greenness Vegetation Fraction datasets.

DATA SOURCE RESOLUTION MIN-MAX (WITHIN MODEL DOMAIN)

CONTROL CASE DREAM output 0.32˚ 0.5

GVF_1 VIIRS GVF Weekly, 0.036˚ 0–0.81

GVF_2 5-year AVHRR NDVI (from 1985 to 1992) Monthly, 0.144˚ 0–0.96

doi:10.1371/journal.pone.0165616.t003
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Observation data. To identify the improvement of dust simulation, model results need to

be qualitatively and quantitatively examined. In this research, observation data used for evalua-

tion include the retrieval of column-integrated aerosol properties from Aerosol Robotic Net-

work (AERONET) and aerosol optical depth (AOD) from the MODIS spectrometer travelling

on board the NASA Terra and Aqua satellites. AOD information from both observations

include other aerosol types, such as sulfate, sea salt, or black carbon. NMM-dust can only gen-

erate AOD value transformed from total dust load. To clarify the difference between simulated

and observed AODs, we use the report from Arizona Department of Environmental Quality

[35] that provides AOD composition information. The aerosol type on July 2nd is majorly

dust. The aerosol types on July 3rd include Ozone, PM10 and dust. The aerosol types on July

4th consist of Ozone and dust. Therefore, the observed AOD on July 3rd and 4th should be

larger than simulated AOD.

The AERONET [36] is a ground-based remote sensing aerosol network of more than 1000

sites using Sun- and sky-scanning radiometers to measure aerosol optical properties [37]. The

AERONET data are used in various satellite and model validation studies as the reference stan-

dard for AOD measurements because of its long operational history, sufficient coverage of var-

ious regions, and high data quality [38]. Since AERONET sun photometers do not yield AOD

at 550 nm (AOD550), this variable is calculated from AOD at 440, 675 and 870 nm (AOD440,

AOD675, AOD870) and the Ångström exponent 440–870 (AE440_870) using Ångström law

(Eq 4).

AOD550 ¼
1

3
AOD440

440

550

AE440 870

þ AOD675
675

550

AE440 870

þ AOD870
870

550

AE440 870
� �

ð4Þ

Only closest-in-time observations are considered for model result evaluation. This study

uses four sites in the model domain for comparison with model results (Fig 1). These sites are

Yuma (32.64˚ N, 114.58˚ W, 63.0 m), Frenchman Flat (36.81˚ N, 115.93˚ W, 940.0 m), Gold-

stone (35.23˚ N, 116.79˚ W, 1100.0 m), and Table Mountain, CA (34.38˚ N, 117.68˚ W, 2200.0

m). The uncertainty of AERONET AOD measurements is reported to be about ±0.01 for AOD

at wavelengths greater than 440 nm [36].

As ground observation, AERONET is unavailable under cloudy skies and nighttime condi-

tions and only covers scattered points of an area. Satellite products have the advantage of a

Fig 4. Selected GVF datasets at the time of July 1, 2014 00 UTC. Unit in 1/100.

doi:10.1371/journal.pone.0165616.g004
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large spatial coverage, and the measurements are regular and rapidly available. To complement

the point scale observations, MODIS aerosol product is selected with a large spatial coverage at

daily intervals. Since the model domain is within a semi-arid area, traditional algorithms do

not separate aerosol signals from those of highly reflective surfaces. The DB algorithm [39]

takes advantage of the surface phenomenology, performing aerosol retrievals at blue wave-

lengths (e.g. 0.47 μm spectral channel in MODIS) and utilizing the selected aerosol model in

the inversion to generate AOD [39, 40]. In this study, MODIS Level 2 Deep Blue AOD prod-

ucts in 550 nm wavelength are used, with a spatial resolution of 10 × 10 km. Model forecasts

are integrated into a 0.11˚ lat by 0.09˚ lon grid to match the spatial resolution of MODIS aero-

sol products. MODIS passed the model domain at ~ 18:00 UTC daily, and with the Deep Blue

product, a quality flag was used to filter out unqualified pixels.

Integrating proposed initialization

To integrate soil moisture and GVF datasets into the model, the constant files generated by

preprocessing are modified using the prepared datasets and then used as initialization. The

time of these datasets are set according to the time of model’s initiation. For example, if the

model is simulating from the time July 1st, 2014 00 UTC, the time attribute of the datasets

should be as close as possible. Since the target domain configured in the model has a spatial

resolution of ~ 3km, integrating selected soil moisture and GVF datasets into the model

requires spatial interpolation. Since selected soil moisture datasets have the same soil level set-

tings as NMM-dust, there is no requirement for vertical interpolation. Horizontal interpola-

tion of soil moisture data is conducted using Regression Kriging method [41], using DEM

[42], land cover [43], and annual solar radiation as dependent variables. The interpolation of

GVF data is conducted using original kriging [44].

Evaluation methodology

Model results are evaluated using AERONET and MODIS Deep Blue AOD data in 550 nm

wavelength (described in Section 3.3). AERONET is used to evaluate the temporal evolution of

aerosol condition of a matched location, whereas MODIS Deep Blue AOD data is used to evalu-

ate the spatial distribution of aerosol condition in the covered area. Statistical evaluation scores

are calculated for both sources of evaluation. The common metrics that are used to quantify the

mean difference between modelled (ci) and observed (oi) quantities are based on the WMO SDS

dust forecast model evaluation metrics [45], including the mean bias error (BE), the root mean

square error (RMSE), the correlation coefficient (r) and the fractional gross error (FGE).

Experiments and Results

Nine experiments were conducted regarding different initializations for the simulation period

during July 1–7, 2014 (Section 3.1), and the evaluation procedure is illustrated (Fig 5). Two

sources of observation data, AERONET and MODIS Deep Blue AOD data, are used to evaluate

the nine experimental results. For AERONET data, time series plots are used to compare the

temporal evolution of dust with model results for each experiment, and statistic scores are calcu-

lated to quantify the model error for each AERONET site. For MODIS Deep Blue AOD data,

the spatial distribution of AOD is compared with the model results, along with statistical scores.

Experiment design

For each day, NMM-dust is executed for nine experiments using different initializations

(Table 4). A control run (Experiment 1) is designed using default initializations for both soil
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moisture and GVF data. Model runs for integrating only one parameter are designed to test

the impact of the parameter itself and its spatiotemporal variations in the model (Experiment

2 to 5). Finally, two parameters are both integrated into the model, allowing more variations

(Experiment 6 to 9). With this experiment design, the sensitivity of the model to respond to

the variation of the soil moisture and GVF condition is tested and the results provide insight

for model improvement.

Model result evaluation using AERONET

The time series of NMM-dust simulated aerosol optical depth at 550 nm at four sites in the

model domain are compared with co-located AERONET observations during July 1–7, 2014

(Fig 6). Both observation and model results show an increase in AOD on July 3rd and a

decrease on July 4th followed by another smaller increase on July 5th; this indicates that the

simulation properly captures the overall temporal evolution of dust. Taking Site Yuma as an

example (Fig 6), the result of control case overestimates the AOD for the entire time period,

Fig 5. Evaluation procedure.

doi:10.1371/journal.pone.0165616.g005

Table 4. Experiment design for initialization.

Experiment # Initialization

Soil Moisture GVF

1 Default Initialization Default Initialization

2 Sm_1 Default

3 Sm_2 Default

4 Default GVF_1

5 Default GVF_2

6 SM_1 GVF_1

7 SM_1 GVF_2

8 SM_2 GVF_1

9 SM_2 GVF_2

doi:10.1371/journal.pone.0165616.t004
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with the highest value of 0.9 on July 3rd, 2014. Adjusting soil moisture in SM_1 effectively

reduces the overestimation (0.9 to 0.17), while adjusting in SM_2 also reduces the overestima-

tion to a lesser degree (0.9 to 0.7). On the other hand, adjusting GVF in GVF_1 results in an

underestimation for the first two days and does not reduce the overestimation for remainder

of the simulation period; while the results of adjusting in GVF_2 is similar to control case

result. The AOD values simulated from Experiment 6 and 7 are close to those of Experiment 2

because these three experiments involve the adjustment of soil moisture to SM_1. Similarly,

Experiments 8 and 9 similarly reduce the overestimation as in Experiment 3, while results

from Experiment 8 show underestimations during the first two days. The comparison of

adjusting two (Experiment 6–9) versus one parameter (Experiment 2–5) shows that soil mois-

ture has a stronger impact on the simulated values than GVF.

Besides the time series, evaluation scores using AERONET AOD help explain the patterns

and are averaged for the four AERONET sites (Table 5). Positive BE values indicate different

degrees of overestimations of the simulated AOD, and the smallest bias occurs when adjusting

soil moisture to SM_1. The RMSE represents a similar pattern as that for BE. The correlation

coefficients for all experiments range from +0.32 to +0.84, and the best and worst cases are the

Fig 6. Temporal variations of co-located AERONET observed and NMM-dust simulated aerosol optical

depth at 550 nm at site Yuma during July 1–7, 2014. X axis represents time (day), while Y axis represents AOD

value for each of nine experiments (a-i).

doi:10.1371/journal.pone.0165616.g006
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matches for AERONET with 84% (Exp. 2) and Exp. 4 (32%), respectively. The FGE values

indicate that model error ranges from 0.41 to 0.99, indicating that the error increases when

adjusting GVF to GVF_1 and decreases when adjusting soil moisture to SM_1. An explanation

for this pattern is that SM_1 has higher soil moisture values than the control case and SM_2,

which decreases dust emission, whereas GVF_1 has lower vegetation fraction than GVF_2 and

the control case, which fails to control dust source of emission.

Model result evaluation using MODIS Deep Blue data

MODIS observations of AOD are used to examine the dust storm-induced aerosol changes on

a regional scale. The spatial distribution of AOD at 550 nm retrieved by MODIS is compared

with the experimental results. Both MODIS Deep Blue and NMM-dust simulated AOD show

similar spatial distributions during the simulation period (Fig 5). For example, on July 2nd at ~

18:00 UTC, the highest values (> 0.3) are found in the northwest of the model domain and less

so in the east. Similar to the AERONET evaluation, the control case overestimates MODIS-

retrieved AOD. Adjusting soil moisture shows the effective reduction of the overestimation,

lowering the highest value from 0.6 (control case) to ~ 0.4 (Exp. 2 and 3), while the spatial cov-

erage of dust remains similar to that of the control. Adjusting the greenness vegetation fraction

does not affect the overestimation, with the highest values remaining at 0.6, but changing the

spatial coverage of dust. The combination of adjusting soil moisture and GVF constrained the

value of AOD (highest values ~ 0.4) but changed the distribution of dust coverage (Fig 7). An

example is Experiment 7 (Fig 7B) when adjusting soil moisture to SM_1 and GVF to GVF_2

result in the overestimation of AOD controlled at a value< 0.3. In addition, the locations of

high-density areas (Fig 7B), especially two clusters in the east, are associated with those from

the MODIS data (Fig 8A), whereas other results (except Fig 8C and 8D, which also involve

SM_1) do not reflect this distribution pattern. This result indicates that the high variability of

SM_1 increases model accuracy in terms of AOD value, and the combination of SM_1 and

GVF_2 better captures the spatial distribution of dust.

Evaluation scores using MODIS Deep Blue data are averaged for seven days (Table 6). Posi-

tive BE values demonstrate the overestimation of the model versus MODIS retrieved AOD,

and the best value occurs in cases adjusting soil moisture into SM_1 (Exp. 2); the RMSE values

show similar patterns. The correlation coefficients indicate that the patterns in the model

match ~ 70% of the MODIS Deep Blue, with the greatest match occurring when adjusting

SM_1. Furthermore, as a measure of the overall model error, FGE for all experiments range

from 0.66 to 0.91, indicating that the control case has the worst accuracy compared with

MODIS Deep Blue data, while adjusting soil moisture into SM_1 resulted in the highest

Table 5. Evaluation Scores using AERONET AOD at four Sites (i.e. four data points).

Exp. # Exp. Name BE RMSE r FGE

1 Control case 0.28 0.36 0.36 0.99

2 SM_1 0.06 0.15 0.84 0.41

3 SM_2 0.16 0.28 0.54 0.97

4 GVF_1 0.29 0.42 0.32 0.98

5 GVF_2 0.24 0.39 0.50 0.87

6 SM_1 & GVF_1 0.08 0.20 0.68 0.51

7 SM_1 & GVF_2 0.08 0.18 0.66 0.45

8 SM_2 & GVF_1 0.17 0.28 0.51 0.92

9 SM_2 & GVF_2 0.17 0.30 0.66 0.55

doi:10.1371/journal.pone.0165616.t005
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accuracy. One notable observation from the evaluation scores is that adjusting only the GVF

does not reduce the model error (compare Exp. 4 and 5 with Exp. 1), while adjusting GVF

combined with soil moisture (either SM_1 or SM_2) increases model accuracy (Exp. 6–8 with

highest FGE scores).

Conclusion and Discussion

This research investigates how spatiotemporal variation of input parameters impacts the sensi-

tivity and accuracy of a dust model (NMM-dust). The selected dust event is the Phoenix dust

storm on July 3rd, 2014. The time period of July 1st to 7th, 2014 was simulated for part of Ari-

zona and California and the spatiotemporal variations of soil moisture and greenness

Fig 7. Experiment 6–9 AOD results for July 2nd 2014 18:00 UTC. X axis represents longitude (degree), and Y axis represents latitude (degree).

Legends represent AOD values.

doi:10.1371/journal.pone.0165616.g007
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Fig 8. MODIS Deep Blue AOD at July 2nd 2014 18:50 UTC compared with Experiment 1–5 AOD results for July 2nd 2014 18:00

UTC.

doi:10.1371/journal.pone.0165616.g008
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vegetation fraction were tested. Two soil moisture datasets with different spatiotemporal reso-

lution were selected from land data assimilation systems, while two greenness vegetation frac-

tion datasets were selected from satellite derived composite data. These datasets were

integrated into NMM-dust initialization separately or in combination to examine the impact

of their spatiotemporal variations. Evaluations were conducted using ground (AERONET)

and satellite (MODIS) based observations. Results from the AERONET evaluation indicated

that although NMM-dust result overestimates the observation, the model captured the tempo-

ral evolution of dust storm. In addition, adjusting soil moisture to a higher spatiotemporal res-

olution effectively reduced the model’s overestimation. The spatiotemporal distribution of

simulated dust coverage is validated using MODIS Deep Blue data. Adjusting soil moisture

reduced the overestimation of dust volume, while adjusting greenness vegetation fraction

changed the spatial distribution of dust storm. Evaluation scores demonstrated that the higher

spatiotemporal resolution of soil moisture parameter affected the model’s accuracy, while the

combination of adjusting soil moisture and GVF captured the spatial distribution of dust con-

centration. However, adjusting only GVF did not affect the model’s accuracy. Overall, the

result indicated that NMM-dust is able to qualitatively reproduce the observed variations in

AOD, and adjusting input parameters enables NMM-dust to perform the reproduction

quantitatively.

There might be various reasons why model performance is more sensitive to soil moisture

resolution than to vegetation cover, and we raise two of them as hypotheses. Firstly, this sensi-

tivity test is based on soil moisture and vegetation cover data that are available, hence we can-

not find GVF dataset with higher spatiotemporal resolution, such as daily or hourly. The GVF

dataset used in this study is a composite of multiple days or years, and they are assumed to be

valid at the mid-point (GVF_1: fourth day of each week, GVF_2: fifteenth day of each month)

[31]. The valid values of both datasets are not completely consistent with the simulation

period, which is the first week of July. This inconsistency of valid values for GVF datasets

might contribute to the result that the model accuracy is less affected by GVF. Secondly, vege-

tation cover is not the only vegetation-related impacting factor in surface control of dust emis-

sion [46]. The dust emission scheme also takes account of vegetation type and their changes.

Therefore, adjusting GVF without changing vegetation type might have less impact on model

performance in controlling surface dust emission.

Spatiotemporal variations of input data have a significant impact on model performance,

and appropriate selection of the variation combinations improves model accuracy. Future

research will investigate additional input variables, including vegetation type, topology, and

soil temperature. Model sensitivities on spatiotemporal variations of these variables will be

tested using the methodology described herein. It is proposed as a significantly useful scheme

Table 6. Evaluation Scores using MODIS Deep Blue data (1833 data points).

EXP. # EXP. NAME BE RMSE r FGE

1 Control case 0.14 0.25 0.61 0.91

2 SM_1 0.05 0.11 0.76 0.69

3 SM_2 0.09 0.16 0.69 0.83

4 GVF_1 0.13 0.23 0.56 0.81

5 GVF_2 0.10 0.19 0.44 0.87

6 SM_1 & GVF_1 0.06 0.14 0.72 0.66

7 SM_1 & GVF_2 0.06 0.13 0.70 0.69

8 SM_2 & GVF_1 0.07 0.15 0.63 0.71

9 SM_2 & GVF_2 0.07 0.19 0.68 0.75

doi:10.1371/journal.pone.0165616.t006
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of input data adjustment for improving dust storm modeling. The introduction of more vari-

ables into the modeling process will also require study on better scheduling [47], big data pro-

cessing [48] and spatiotemporal computing techniques [49, 50] to satisfy forecasting needs.
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