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Abstract

We test the validity of using the regime shift theory to account for differences in environmen-

tal state of coastal lagoons as a response to variation in connectivity with the sea, using

free-living nematodes as a surrogate. The study is based on sediment samples from the

inner and outer portions of 15 coastal lagoons (5 open to the sea, 5 intermittently open/

closed, and 5 permanently closed lakes) along the southern coast of Brazil. Environmental

data suggested that there are two contrasting environmental conditions, with coastal lakes

being significantly different from open and intermittent lagoons. Marine nematode assem-

blages corroborate these two mutually exclusive alternative stable states (open vs. closed

systems), but assemblages from the intermittently open/closed lagoons showed a gradual

change in species composition between both systems independently of the environmental

conditions. The gradient in the structural connectivity among lagoons and the sea, due to

their regime shifts, changes the movement of resources and consumers and the internal

physico-chemical gradients, directly affecting regional species diversity. Whereas openness

to the sea increased similarity in nematode assemblage composition among connected

lagoons, isolation increased dissimilarity among closed lagoons. Our results from a large-

scale sampling program indicated that as lagoons lose connectivity with the sea, shifting the

environmental state, local processes within individual intermittently open/closed lagoons

and particularly within coastal lakes become increasingly more important in structuring

these communities. The main implication of these findings is that depending on the local sta-

ble state we may end up with alternative regional patterns of biodiversity.

Introduction

Coastal lagoons are transitional aquatic systems that mediate transfers between the terrestrial

environment and the ocean, including potential environmental stressors [1,2]. Lagoons are an

evolving coastal landform that may go through a cycle from an open embayment, to a partially

back-barrier lagoon with progressive infilling, to a segmentation into small lagoons with unsta-

ble inlets and then lakes [3,4] (Fig 1A). The evolution of coastal lagoons is the result of the bal-

ance between the processes which act to reduce the size of a lagoon and those, which act to
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increase it [5]. For a given lagoon status, the combination of rate of accretion and sea rise will

determine the volumetric capacity of the lagoon, its import/export status, and the resultant

evolution [6]. The relative importance of a particular process in a lagoon depends upon the

environmental setting in which the lagoon is located and the evolutionary path followed by a

lagoon depends upon the magnitude and relative importance of each of the operative processes

[5]. The dynamism of these forces promotes both long-term and short-term changes in these

ecosystems. In the long-term (months and years), it influences the connectivity with the sea,

while in the short-term (tidal cycles), it affects the amount of seawater inflow. According to the

present connectivity with the sea, these coastal water bodies can roughly be divided into three

major types: open (permanently connected to the sea), the intermittently open/closed (which

includes seasonally or non-seasonally closed or those normally closed), and the closed (pres-

ently without permanent open bar, the coastal lakes).

Open lagoons are characterized by a wide spatio/temporal range in environmental condi-

tions (e.g., salinity, temperature, oxygen), biological productivity and movement of resources

and consumers with other adjacent marine areas [7,8]. In contrast, coastal lakes are largely

more homogeneous in their environmental conditions than open lagoons. Intermittently

open/closed lagoons and lakes (ICOLL) show dramatic environmental changes over a short

period of time, especially concerning hydrodynamics, salinity gradient, sediment composition

and concentration of organic matter [9,10,11]. This shift from a completely open coastal

lagoon to a coastal lake causes abrupt changes in the biota [12,13] as expected by the alternative

stable state model [14] (Fig 1B dashed line). The environmental shift might be induced by nat-

ural processes over geological scales, or by anthropogenic activities at the ecological scale, such

as hydrological management [15], artificially connecting coastal lakes to the sea [9] or modifi-

cations as a result of climate change [16].

Although the shift in biodiversity patterns is theoretically sound, there is a lack of empirical

evidence to support it. So far, shifts in biodiversity patterns for coastal lagoons have been

restricted to single lagoons and water column assemblages [12,13]. The benthic system has

gained little attention. Typically, the benthic systems of open lagoons are composed of a num-

ber of estuarine resident and many temporary marine species [17,18,19]. The species composi-

tion in intermittent lagoons may be variable according to the current connectivity state. After

blocking events (depending on rainfall regime and time of closure), they might become more

homogeneous and dominated by freshwater species, typical of coastal lakes [9, 20,21,22].

These isolated observations suggest that the benthic system may not respond gradually after a

blocking/opening event (dot-dashed line, Fig 1B), but may respond abruptly showing two

alternative stable states (dashed line, Fig 1B).

In this study, we investigate to what extent the differences in openness of coastal lagoons

structure meiofauna communities. Meiofauna comprises a group of benthic organisms rang-

ing from 0.5 mm to 0.05 mm [23]. They are omnipresent in all types of marine habitats occur-

ring in high abundances and number of species. Given their short life cycles and tight

relationship with the sediment composition [23], meiofauna is an ideal tool to investigate

short- to long-term changes in coastal lagoons. We assume that open and closed lagoons are

two alternative states of equilibria, and that intermittent lagoons are the transition phase

between them. Based on this assumption, we expect that the benthic system will respond

accordingly showing two alternative stable states. Additionally, we expect that (1) open lagoons

will have higher regional richness and abundance as resources and consumers move among

adjacent habitats; (2) absence of barriers and fauna movements by outlets will increase similar-

ity between open lagoons, while the isolation would increase dissimilarity (species turnover)

between closed lagoons; (3) openness generates environmental gradients which will increase

dissimilarities within lagoons.

Regime shifts in coastal lagoons
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Fig 1. Conceptual model of coastal lagoon evolution based on the relative importance of sedimentation, river inflow and tide (A)

and the model showing the transition between the two alternative stable states of coastal lagoons along a connectivity gradient

(B).

doi:10.1371/journal.pone.0172366.g001
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Materials and methods

Coastal lagoon sampling and sample processing

Coastal lagoons were sampled along the ~430 km coast of Santa Catarina State, South Brazil

(Fig 2). This coastline can be divided into two major segments:—from the north border, in Ita-

poá, up to the Cape Santa Marta, at Laguna, the coast is N-S orientated, highly embayed with

rocky headlands alternating with small bays;—southwards of Laguna, the straight NE-SW

coast is dominated by high energy sandy shores. The most frequent swell wave direction along

this coast is from the south, with average heights of 2.5 m; the coast has a micro-tidal regime

with higher tides in the north (mean astronomic tide 1 m in Itapoá) than in the south (0.5 in

Laguna); the general alongshore littoral drift is from S-SE to ENE-NE, but local reversals take

place during strong NE conditions [24]. Coastal lagoons are mainly concentrated in central/

southern portions of the coast (Fig 2).

Fifteen coastal lagoons/lakes (5 closed- Peri, Jaguaruna, Faxinal, Esteves, Cavera; 5 open—

Camacho Laguna, Conceição, Barra Velha, São Francisco; 5 intermittent -Lagoinha do Leste,

Garopaba, Ibiraquera, Urussanga, Sombrio) were sampled in the austral summer 2012. The

lagoons are marginally urbanized, and sampling points have been selected out of the urbaniza-

tion range to avoid potential influence of anthropogenic impacts. In each of the lagoons, 9

meiofauna samples and 3 of sediment samples (granulometry and total organic content) were

taken in the outer and inner portions of the lagoons (a total of 18 samples of meiofauna and 6

samples of sediment per lagoon). The samples of each sample portion were taken dozens of

meters apart from each other. For the closed lagoons, inner samples were those taken west-

ward in the most interior region, while the outer samples were taken eastward near the sand

Fig 2. Map of the coast of Santa Catarina showing the location of the sampled lagoons: Closed (black

circle), intermittently open/closed (gray circle) and open (open circle).

doi:10.1371/journal.pone.0172366.g002
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barrier (exact location of sampling sites are available in S1 Table). Water salinity was measured

in situ with a multiparameter YSI. Meiofaunal shallow subtidal samples (<1m depth) were

taken with a plastic syringe of 2 cm in diameter pushed to a depth of 10 cm. They were imme-

diately fixed in 4% formalin, later sieved through a 63 μm mesh and extracted by flotation with

Ludox TM (specific gravity: 1.18). Samples were then evaporated with anhydrous glycerol and

permanent slides were made [25]. Sediment samples were taken with a PVC corer tube (10 cm

Ø and 5 cm height). Granulometry was done by sieving and pipetting analysis and total

organic content was determined by loss of ignition (550˚C for 4 hours). Carbonate content of

sediments samples was determined by acid digestion [26].

Data analysis

Nematode univariate descriptors were the number of genera (richness; S), density (inds.

10 cm-2; N) and Shannon-Wiener diversity index (log2; H’). As functional attributes of the

assemblages across the studied lagoons, we analysed the nematode feeding types [27,28,29],

and the index of trophic diversity (1-ITD) [30] based on the proportion of each feeding type.

Because the study encompasses both marine/estuarine and freshwater nematodes we used five

feeding types: selective deposit feeders (1A), nonselective deposit feeders (1B), epigrowth feed-

ers (2A), predators/omnivores (2B) and vascular plant feeders (3).

Differences in nematode descriptors and functional attributes among typologies (fixed fac-

tor: closed, ICOLL and open), lagoon (random factor: 5 closed, 5 open and 5 ICOLL, nested in

typology) and location (random factor: inner and outer, nested in lagoons and nested in typol-

ogy) were tested with a permutational analysis of variance (PERMANOVA) run on Euclidean

distance matrices with 9999 permutations, and the residuals were permuted under a reduced

model [31]. To visualize the similarity of the meiofauna composition among different lagoon

typologies and location within lagoons, similarity matrices were constructed based on the

Bray-Curtis similarity measure. Ordination was done by nMDS, and significance tests for dif-

ferences in the multivariate structure of nematode assemblages performed using PERMA-

NOVA [31]. The variation in species composition of nematode assemblages (beta diversity)

was decomposed into replacement and richness difference using abundance data dissimilari-

ties and the Sorensen index [32]. These analyses were performed using the R software [33].

Total β-diversity and decomposed replacement and richness differences were analyzed using

PERMANOVA tests with the same design described above. The decomposition of beta diver-

sity can be done by two methods, the “POD” and “BAS” [32]. Although both indices may not

show congruent patterns [32,34], in the present study they showed agreement for total dissimi-

larity and replacement. For richness, the BAS method returned negative sums of squares for

the factor typology, while the POD did not (see Results).

Differences in the environmental variables (salinity, mean grain size, sorting, total organic

content, sand, silt and clay percentages) were also tested using PERMANOVA using the same

design as for the fauna. The relationships between environmental variables and nematode

assemblages were explored using distance-based redundancy analysis (dbRDA) that enabled

us visualize the percentage of variability in the original data explained by the axis and the rela-

tive contributions of each of the predictor variables on the assemblage structure [31].

Ethic statement

No specific permits were required to collect meiofauna as they are microscopic, non-patho-

genic and with no special conservation concerns. Field study did not involve endangered spe-

cies and sampling was carried out in public waters.

Regime shifts in coastal lagoons
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Results

Faunal descriptors and connectivity

A total of 106 genera of nematodes was recorded, among which 19 were recorded in the closed

lagoons, 71 in the intermittently open/closed, and 68 in the open lagoons (Table 1). Most of

the nematode genera recorded in open lagoons (70.5%) were those typically found in brackish

or marine waters. This proportion was reduced in ICOLLs (49%) with an increasing number

of brackish/freshwater or freshwater genera. In closed lagoons, freshwater or brackish/fresh-

water genera accounted for 95% of the collected fauna. Only 5 genera occurred in all the three

types of lagoons, namely Anonchus (Aphanolaimidae), Anoplostoma (Anoplostomatidae), Des-
modora (Desmodoridae), Dichromadora and Hypodontolaimus (Chromadoridae). The per-

centage of exclusive genera (those found exclusively in only one type of lagoon) decreased with

increasing connectivity: 13 genera occurred exclusively in the closed lagoons (65%), 26 in the

intermittently open/closed (35%) and 21 in open lagoons (30%; Table 1). Trischistoma (Trypi-

lidae), Semitobrilus (Trobilidae) and Ironus (Ironidae) were the most abundant genera in

closed lagoons, accounting for 55% of the nematodes collected. At the intermittently open/

closed and open, the genera Microlaimus (Microlaimidae), Spirinia and Desmodora (Desmo-

doridae) were the most abundant genera in both types of lagoons (Table 1).

The number of genera and diversity of nematodes were significantly higher in the open

lagoons, followed by intermittent and were lowest at closed ones (Table 2 and Fig 3). Density

was significantly higher in open lagoons and ICOLLs than in closed ones (Fig 3). Differences

in the univariate measures between individual lagoons/lakes occurred mostly within the closed

ones (S3 Table). Significant differences between outer and inner portions increased with

lagoon connectivity. In the closed lagoons, the descriptors did not show any significant differ-

ences between inner and outer portions; in ICOLLs, nematode richness, diversity and density

were, in general, higher in outer portion, or did not differ significantly (S4 Table). All

Table 1. Summary characteristics of nematode assemblages from coastal lagoons.

Closed ICOLL Open

Number of genera 20 73 69

Number of freshwater genera 6 14 1

Number of freshwater / brackish genera 12 22 19

Number of brackish genera 1 35 48

Exclusive genera (%) 65 35 30

Most frequent genera Semitobrilus (60%)

Trischistoma (48%)

Desmodora (81%)

Theristus (80%)

Desmodora (78%)

Theristus (77%)

Total density (inds.10 cm-2) 3–407 (57) 9–5474 (678) 6–5283 (674)

Trischistoma (inds.10 cm-2) 29 - -

Semitobrilus (inds.10 cm-2) 21 - -

Ironus (inds.10 cm-2) 5.2 0.07 -

Microlaimus (inds.10 cm-2) - 143 80

Spirinia (inds.10 cm-2) - 108 185

Desmodora (inds.10 cm-2) 0.04 73 37

Total number of genera, number of brackish/freshwater genera of according to [35,36], percentages genera found exclusively in lagoon types (exclusive

genera), frequent genera, minimum–maximum densities of nematodes (and average inds.10cm-2), and the most abundant genera (inds.10cm-2) in closed,

intermittently open/closed and open lagoons of Santa Catarina coast, South Brazil. A complete list of nematode genera, environment (brackish/freshwater),

and mean densities in each lagoon typology can be found in S2 Table.

doi:10.1371/journal.pone.0172366.t001
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descriptors differed significantly in open lagoons, where richness and diversity were higher in

the outer portion and density was higher in the inner parts of the lagoons (Fig 3 and S4 Table).

Nematode trophic structure differed significantly among lagoon typologies. While closed

lagoons were largely dominated by predator/omnivores (mean of 54%), in ICOLLs and open

lagoons nonselective deposit feeders and epigrowth feeders were significantly more abundant

(mean of 39% and 32% respectively) (Fig 4 and S5 Table). Selective deposit feeders (with a

mean around 16%) did not differ significantly among typologies (S5 Table). Abundances of

vascular plant feeders significantly decreased with openness (Fig 4, S5 and S6 Tables). The

index of trophic diversity was significantly lower in closed lagoons, intermediate in ICOLLs

and higher in the open lagoons (Fig 4 and Table 2). Significant variations in trophic diversity

among lagoons within individual typology and at scale of locations within the lagoon were not

detected (Table 2).

Connectivity and assemblage similarities

The non-metric multidimensional scaling (nMDS) analysis revealed substantial differences in

nematode assemblages between connected and closed lagoons, but not between locations

within the lagoons (Fig 5). The results of the PERMANOVA showed that the greatest variation

in the data dissimilarities occurred due to differences in connectivity rather than between loca-

tions within lagoons (Table 3). The statistical tests confirmed that nematode assemblages of

closed lagoons differed significantly from more connected ones (Table 3). The PERMANOVA

tests also revealed that nematode assemblages of inner and outer portion of closed lagoons did

not differ significantly, whilst in the ICOLLS and open they did (Table 3). The analysis of the

average similarity between/within lagoons showed that nematodes assemblages from the open

lagoons were more similar to each other than those from the closed ones (Table 3). As lagoons

lose connectivity with the sea, nematode composition became more dissimilar. Internal

Table 2. Permutational analysis of variance (PERMANOVA) results testing the effects of lagoon typology (Open, ICCOL and Closed), lagoons (5

open, 5 ICOLL and 5 closed) and location (inner and outer) on the univariate nematode descriptors, feeding types and index of trophic diversity.

Sources of variation df SS MS Pseudo-F P(MC)

Richness Typology 2 3035.4 1517.7 6.6401 0.008

Lagoon (Typology) 12 2749.1 229.09 3.2699 0.02

Location[Lagoon(Typology)] 15 1051.5 70.098 11.249 0.001

Residual 235 1464.3 6.2313

Shannon diversity Typology 2 25.519 12.76 6.8144 0.01

Lagoon (Typology) 12 22.518 1.8765 1.8651 0.131

Location[Lagoon(Typology)] 15 15.099 1.0066 6.7646 0.001

Residual 235 34.969 0.1488

Density Typology 2 235.8 117.9 5.0229 0.034

Lagoon (Typology) 12 282.31 23.526 3.233 0.021

Location[Lagoon(Typology)] 15 109.21 7.2807 11.872 0.001

Residual 235 144.12 0.6132

Index of trophic diversity Typology 2 1.2518 0.6258 9.9346 0.007

Lagoon (Typology) 12 0.7591 0.0632 0.6606 0.775

Location[Lagoon(Typology)] 15 1.4382 0.0958 0.9482 0.235

Residual 235 5.561 0.2428

Analysis performed on Euclidian distance matrices. P(MC): p-value obtained with Monte Carlo permutation test. Bold values indicate significant differences

at p<0.05. For the results of pair-wise tests, see Figs 3 and 4, and S3, S4 and S5 Tables.

doi:10.1371/journal.pone.0172366.t002
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Fig 3. Mean (±SE) of nematode number of genera, diversity and density in inner and outer portions (columns) of lagoons,

and total mean value (±SE) of the descriptor in closed, intermittently open/closed (ICOLL) and open lagoons (gray dot).

Different letters indicate significant differences (p<0.05) among lagoon typology.

doi:10.1371/journal.pone.0172366.g003
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Fig 4. Relative abundance of nematode feeding types and index of trophic diversity (mean ±SE) in closed, intermittently open/

closed (ICOLL) and open lagoons. Different letters indicate significant differences (p<0.05) among lagoon typology. (1A) selective

deposit feeders, (1B) nonselective deposit feeders, (2A) epigrowth feeders, (2B) predators/omnivores and (3) vascular plant feeders.

doi:10.1371/journal.pone.0172366.g004
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Fig 5. nMDS ordinations for log-transformed nematode abundances. (A) closed, intermittently open/closed (ICOLL) and open lagoons.

(B) inner and outer portions of coastal lagoons. Stress 0.16.

doi:10.1371/journal.pone.0172366.g005
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similarities, conversely, were higher within closed lagoons, decreasing as lagoons gain connec-

tivity. The results of these analyses were consistent whether analysed by means of presence/

absence or relative abundances.

The variability in genera composition (β-diversity) differed significantly according to

lagoon typology and location (Table 4). Total β-diversity was significantly higher in closed

Table 3. Permutational analysis of variance (PERMANOVA) results testing effects of typology (Closed, ICOLL and Open), lagoon (15 lagoons) and

sampling location (inner and outer) on nematode assemblages.

Sources of variation df SS MS Pseudo-F P(MC)

Typology 2 225730 112860 5.9 0.001

Lagoon (Typology) 12 230050 19171 2.43 0.001

Location[Lagoon(Typology)] 15 117950 7863 8.26 0.001

Residual 235 223700 951

Pair-wise tests

Lagoons compared P(MC) Inner vs outer within lagoons P(MC)

Open x ICCOL 0.219 Open 0.03

Open x Close 0.001 ICCOL 0.001

ICCOL x Close 0.001 Close 0.076

Average similarity between and within lagoons

Between lagoons

Open ICOLL Closed

Open 36.166 - -

ICOLL 30.589 44.566 -

Closed 12.009 16.315 51.256

Average similarity within lagoons

Open ICOLL Closed

Inner x outer 30.166 43.951 50.402

Inner x inner 40.115 47.118 50.980

Outer x outer 38.115 49.204 54,53

Analyses performed on Bray–Curtis dissimilarities of fourth root transformed nematode abundances. P(MC): p-value obtained with Monte Carlo permutation

test. Bold values indicate significant differences at p<0.05.

doi:10.1371/journal.pone.0172366.t003

Table 4. Permutational analysis of variance (PERMANOVA) results of the effects of lagoon typology (Open, ICCOL and Closed), lagoons (5 open,

5 ICOLL and 5 closed) and location (inner and outer) on the total β-diversity and decomposed replacement and richness differences.

Sources of variation df SS MS PseudoF P(MC)

Total β-diversity Typology 2 29.875 14.937 9.2767 0.001

Lagoon (Typology) 12 19.445 1.6204 2.4662 0.001

Location[Lagoon(Typology)] 15 9.8702 0.6580 6.567 0.001

Residual 229 22.946 0.1002

Species replacement Typology 2 9.3098 4.6549 9.4516 0.004

Lagoon (Typology) 12 5.9469 0.4955 2.7067 0.0381

Location[Lagoon(Typology)] 15 2.7501 0.1833 4.7777 0.001

Residual 229 8.7877 0.0383

Species richness Typology 2 29.875 14.937 9.2767 0.001

Lagoon (Typology) 2 7.7552 3.8776 6.8406 0.002

Location[Lagoon(Typology)] 12 6.8456 0.5704 2.7158 0.01

Residual 15 3.1554 0.2103 6.4882 0.001

doi:10.1371/journal.pone.0172366.t004
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lagoons, intermediate in ICOLLs and lower in the open lagoons (Fig 6 and S7 Table). Signifi-

cant variations in β-diversity among lagoons within individual typology were mainly detected

in closed ones (S8 Table). At the scale of locations within the lagoon, the genera variability was

lower than at the scale of lagoon. Total genera variability between locations varied significantly

in open lagoons and ICOLLs, but not in closed ones (S9 Table). The relative contributions of

replacement and richness components to the nematode genera variability also differed signifi-

cantly among lagoon typologies, with and increasing dominance of replacement over richness

as lagoon connectivity increased (Fig 6).

Environmental variables and nematode assemblages

Salinity values increased with increasing connectivity and were significantly higher at the

outer portions of ICOLLs and open lagoons; salinity did not vary within closed lagoons (S10,

S11, S12 and S13 Tables). In general, granulometry was relatively homogeneous among the

lagoons, with sediments composed of moderately sorted fine sands (mean grain size and sedi-

ment sorting did not vary significantly among nor within lagoons). Grain size, sand, silt + clay

percentages did not vary significantly among typologies, nor among lagoons within individual

typology (S10 Table). However, total organic content was higher in the inner portion of open

lagoons and ICOLLs, while sand percentages were higher in the outer portion of more con-

nected lagoons (S10 and S13 Tables).

The distance-based RDA ordination (Fig 7) indicated that the first two axes explained

30.5% of the variability in the faunal data and 81.1% of the relationship between nematode

genera and the environmental variables (Fig 7). The first axis (responsible for 68.4% of the fit-

ted model relating the fauna-environmental variables) was strongly related to salinity, and

Fig 6. Nematode variation in genera composition (total mean β-diversity), contribution of replacement and richness differences (gray

dots) and within in inner outer portions of lagoons (columns). Different letters indicate significant differences (p<0.05) among lagoon types.

doi:10.1371/journal.pone.0172366.g006
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represented the connectivity gradient from the closed to the permanently open lagoons. The

second axis, responsible for 12.7%, was related to sediment sorting, silt and carbonate percent-

ages, and represented the variation within the lagoons.

Discussion

Using particular lagoon status over space as replicates of their evolution over time, we

observed that open and closed lagoons are mutually exclusive alternative states of equilibrium,

and that ICOLLs are an intermediate or transition phase between them. The gradient in the

structural connectivity between lagoons and the sea, due to their regime shifts, changes the

movement of resources and consumers, and the internal physico-chemical gradients that

directly affected the regional species diversity, abundance and trophic status. Whereas the lack

of barriers and the fauna movements through the inlets increased similarity between the more

connected lagoons, isolation increased variation in the composition of nematode assemblages

with species losses and decrease of trophic diversity between closed lagoons.

Intermittently open/closed lagoons are particularly important in the understanding of bio-

logical and physico-chemical shifts between coastal lagoons/lakes. This is because, in the

short-term, changes in the connectivity of ICOLLs leads to drastic environmental changes

[9,10,11], shifting between the lacustrine or the lagoonar equilibrium state. The sampled

ICOLLs in this study were not in the same status of closure (3 were closed and 2 were open)

Fig 7. Distance-based RDA ordination relating environmental variables to the nematode composition. GS- grains size; TOC- total organic

content; closed (dark blue circle), intermittently open/closed (light blue circle) and open (open circle).

doi:10.1371/journal.pone.0172366.g007
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and our expectations were that nematode assemblages of the ICOLLs would be grouped with

the closed or the open lagoon samples depending on their inlet state. Instead, we found that

ICOLLs univariate and multivariate descriptors of the nematodes assemblages had an interme-

diate structure between lagoons and coastal lakes. ICOLLs are typically characterized by low

freshwater inflow, which leads to sand berm formation across the mouth, preventing mixing

with ocean water [37]. Besides, high intra and inter-annual variability in rainfalls and dis-

charges are typical of ICOLLs [38]. A possible mechanistic explanation for the transitional

structure of the nematode assemblages is the intermediate pattern of isolation compared to

lagoons and coastal lakes. Increasing isolation from open ocean conditions also alters the

structure of foraminiferans and macrobenthic assemblages, leading to a decrease in diversity

and changes of species [22,39]. The higher diversity of nematode assemblages in brackish

water compared to freshwater reflects both the input of marine species and the presence of

strong environmental gradients and higher environmental heterogeneity. Overall freshwater

nematode communities are impoverished when compared to marine and brackish systems

[35]. Regarding nematode abundance, higher values in open lagoons and ICOLLs probably

reflects the amount of organic matter. Although just marginally significant, closed lagoons had

lower TOC than ICOLL and open ones. Moreover, TOC was significantly higher in the outer

portion of open lagoons and ICOLLs, as observed for nematode abundances, giving support to

the hypothesis that TOC plays a significant role in nematode abundances [40].

Our results further showed that similarities of the nematode assemblages within and

between lagoons also change according to the stable state. While habitat connection and faunal

exchange by open inlets increased similarity between more connected lagoons, with variations

in the composition controlled by gradients, isolation increased variability of nematode assem-

blages between closed lagoons. At the same time, internal variability was higher within open

lagoons than in closed lagoons, with ICOLL again assuming an intermediate position. This

pattern may emerge as a result of the connectivity that modulates the degree to which the inlet

state facilitates or impedes the exchange of matter, energy and specimens among landscape

elements. Besides, differences in structural connectivity can lead to internal homogeneity or

strong physico-chemical gradients that directly affect species composition.

While the low variability of nematode assemblages among lagoons is likely to be a result of

faunal transport due to their physical link, the high dissimilarities of the assemblages between

coastal lakes might be consequence of their spatially disconnection and exposure to different

environmental conditions as a result of the discrete and variable surroundings. The coastal

lakes could be colonized by different adjacent freshwater sources, by flooding events [41] or

phoresy [42]. Moreover, some common taxa of freshwater and brackish habitats, such as eno-

plids and chromadorids, could be dispersed from the nearby coastal areas by wind, salt spray

or sea foam [41]. Although nematode composition and abundance are known to be closed

related to the lakes trophic state and related sediment characteristics [29,43,44], in the present

study, all coastal lakes can be classified as oligotrophic, with bottoms composed of clean sandy

sediments and very low total organic content (<0.5%). Our results indicated that the nema-

tode assemblages of coastal lakes are primarily structured by the intrinsic properties within

each lake and to a possible limited dispersion ability of nematodes between lakes.

Natural and gradual shifts from lagoons to lakes are long-term processes that result from

large-scale (e.g. sea-level and climate changes) and local processes (e.g. sediment supply, along-

shore drift, coastal morphology) [5,45]. The impoverishment of the nematode assemblages

and the substitution of brackish water species by freshwater species also promotes a change in

the trophic status of the benthic system and a significant decrease of trophic diversity. The

dominant genera of closed lagoons Semitobrilus and Trischistoma are predators, while the gen-

era Desmodora and Theristus are, respectively, epigrowth and non-selective deposit feeders
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[35,46]. These findings indicate that the availability of trophic resources is strongly affected by

shifts from lagoons to lakes, resulting in loss of functional diversity. Similar result was also

observed for meiofauna in hard-bottom macroalgal meadow/barren regime shift [47]. Besides,

natural shifts may also interact with human interventions, increasing the speed of the shift and

changing the dynamics of coastal lagoon evolution [48]. Our results from the large-scale sam-

pling program showed that as lagoons lose connectivity, gradually shifting the state, local pro-

cesses within individual ICOLLs and particularly within lakes become increasingly more

important factors in the structuring of these communities than differences in large scale pro-

cess (such as geomorphology or biogeography). The main implication of these findings is that

depending on the local stable state we may end up with alternative regional pattern of

biodiversity.

These findings also have direct implications for management and conservation plans of

lagoon environments. As an intermediate state, ICOLLs would play a key role in the manage-

ment of regime shifts and, based on our results, the most suitable approach for management

purposes would be to consider each ICOLL as a unique situation requiring a localized

approach, slowing environmental change towards the tipping point (e.g., sediment infill). In

the particular case of subtropical coastal lagoons, this imposes additional difficulties as they are

mostly distributed among unplanned populated areas. As ICOLLs typically have small river

catchments, it makes them sensitive to changing inflow conditions [49]. Poor occupation prac-

tices within lagoon floodplains can result in pressure for intervention—dredging and bulldoz-

ing to artificially breach or close the lagoon inlet, potentially reducing resilience. Monitoring,

establishment of local estuarine management plan and permanent policy review would ensure

that the most ecologically appropriate and cost effective options are being implemented at any

given location [50].

Conclusions

We conducted an extensive sampling program, using specific lagoon status over space as repli-

cates of their evolution over time, and observed that open and closed lagoons are mutually

exclusive alternative states of equilibrium, and ICOLLs are an intermediate or transition phase

between them. The gradual regime shift of coastal lagoons, as they lose connectivity with the

sea, changes the movement of resources and consumers, and the internal physico-chemical

gradients that directly affected regional diversity, abundance and trophic status. Absence of

barriers increased the diversity of nematode assemblages and the similarity between the fauna

of more connected lagoons. Isolation increased the variation in species composition between

lagoons and similarities within lagoons. As local processes within individual lagoons become

increasingly more important as they lose connectivity, depending on the local stable state an

alternative regional pattern of biodiversity may emerge.

Supporting information

S1 Table. Location of sampled lagoons along Santa Catarina State, South Brazil.

(DOCX)

S2 Table. Nematode genera, environment, mean density (inds.10cm-2) and feeding type of

nematode genera along coastal lagoons of Santa Catarina, South Brazil. Feeding types: (1A)

selective deposit feeders, (1B) nonselective deposit feeders, (2A) epigrowth feeders, (2B) preda-

tors/omnivores and (3) vascular plant feeders.

(DOCX)

Regime shifts in coastal lagoons

PLOS ONE | DOI:10.1371/journal.pone.0172366 February 24, 2017 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s002


S3 Table. Results from pair-wise PERMANOVA tests on univariate nematode descriptor

and nematode assemblages for lagoons (5 open, 5 ICOLL and 5 closed) nested in typology

(open, ICOLL, closed). P(MC): p-value obtained with Monte Carlo permutation test.

(DOCX)

S4 Table. Results from pair-wise PERMANOVA tests on univariate nematode descriptor

and nematode assemblages for location (inner vs outer) nested in lagoon and typology.

(DOCX)

S5 Table. Results from PERMANOVA tests on nematode feeding types for lagoon typology

(Open, ICCOL and Closed), lagoons (15 sample lagoons) sampling location (inner and

outer). P(MC): p-value obtained with Monte Carlo permutation test. 1A- selective deposit

feeders; 1B- nonselective deposit feeders; 2A- epigrowth feeders; 2B- predators/omnivores; 3-

vascular plant feeders.

(DOCX)

S6 Table. Results from pair-wise PERMANOVA tests on nematode feeding types for

lagoons typology. p-value obtained with Monte Carlo permutation test. 1B- nonselective

deposit feeders; 2A- epigrowth feeders; 2B- predators/omnivores; 3- vascular plant feeders.

(DOCX)

S7 Table. Results from pair-wise PERMANOVA tests on total beta diversity, and decom-

posed replacement and richness differences for lagoons typology. Bold values indicate sig-

nificant differences at p<0.05.

(DOCX)

S8 Table. Results from pair-wise PERMANOVA tests on total beta diversity, and decom-

posed replacement and richness differences for lagoons (5 open, 5 ICOLL and 5 closed)

nested in typology (open, ICOLL, closed). P(MC): p-value obtained with Monte Carlo per-

mutation test.

(DOCX)

S9 Table. Results from pair-wise PERMANOVA tests total beta diversity, and decomposed

replacement and richness differences for location (inner vs outer) nested in lagoon and

typology.

(DOCX)

S10 Table. Results from PERMANOVA tests on environmental variables for lagoon typol-

ogy (Open, ICCOL and Closed), lagoons (15 sample lagoons) sampling location (inner and

outer). P(MC): p-value obtained with Monte Carlo permutation test.

(DOCX)

S11 Table. Results from pair-wise PERMANOVA tests on environmental variables for

lagoons typology. p-value obtained with Monte Carlo permutation test.

(DOCX)

S12 Table. Results from pair-wise PERMANOVA tests on environmental variables for

lagoons (5 open, 5 ICOLL and 5 closed) nested in typology (open, ICOLL, closed). P(MC):

p-value obtained with Monte Carlo permutation test.

(DOCX)

S13 Table. Results from pair-wise PERMANOVA tests on environmental variables for

location (inner vs outer) nested in lagoon and typology.

(DOCX)

Regime shifts in coastal lagoons

PLOS ONE | DOI:10.1371/journal.pone.0172366 February 24, 2017 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172366.s013


Acknowledgments

The authors would like to thank Rafaela Scremin, Karizy Zanoni, Marcia Kurtz, and Paulo

Pagliosa for their help in the field and samples processing. Sebastião Dutra is thanked for the

sediment analysis. We are grateful to three anonymous reviewers for comments on this article.

We thank Dr Stuart Jenkins (Bangor University) for the English revision of the manuscript.

Author Contributions

Conceptualization: SAN GF.

Data curation: SAN GF.

Formal analysis: SAN GF.

Funding acquisition: SAN GF.

Investigation: SAN GF.

Methodology: SAN GF.

Project administration: SAN GF.

Resources: SAN GF.

Software: SAN GF.

Supervision: SAN GF.

Validation: SAN GF.

Visualization: SAN GF.

Writing – original draft: SAN GF.

Writing – review & editing: SAN GF.

References
1. Basset A, Sabetta L, Fonnesu A, Mouillot D, Do Chi T, Viaroli P, et al. Typology in Mediterranean transi-

tional waters: new challenges and perspectives. Aquat Conservat Mar Freshwat Ecosyst. 2006; 16:

441–455.
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