
RESEARCH ARTICLE

Development and validation of risk profiles of

West African rural communities facing

multiple natural hazards

Daniel Asare-Kyei*, Fabrice G. Renaud, Julia Kloos, Yvonne Walz, Jakob Rhyner

United Nations University, (UNU-EHS), UN Campus, Platz der Vereinten Nationen 1, Bonn, Germany

* asare-kyei@ehs.unu.edu

Abstract

West Africa has been described as a hotspot of climate change. The reliance on rain-fed

agriculture by over 65% of the population means that vulnerability to climatic hazards such

as droughts, rainstorms and floods will continue. Yet, the vulnerability and risk levels faced

by different rural social-ecological systems (SES) affected by multiple hazards are poorly

understood. To fill this gap, this study quantifies risk and vulnerability of rural communities to

drought and floods. Risk is assessed using an indicator-based approach. A stepwise meth-

odology is followed that combines participatory approaches with statistical, remote sensing

and Geographic Information System techniques to develop community level vulnerability

indices in three watersheds (Dano, Burkina Faso; Dassari, Benin; Vea, Ghana). The results

show varying levels of risk profiles across the three watersheds. Statistically significant high

levels of mean risk in the Dano area of Burkina Faso are found whilst communities in the

Dassari area of Benin show low mean risk. The high risk in the Dano area results from,

among other factors, underlying high exposure to droughts and rainstorms, longer dry sea-

son duration, low caloric intake per capita, and poor local institutions. The study introduces

the concept of community impact score (CIS) to validate the indicator-based risk and vulner-

ability modelling. The CIS measures the cumulative impact of the occurrence of multiple

hazards over five years. 65.3% of the variance in observed impact of hazards/CIS was

explained by the risk models and communities with high simulated disaster risk generally fol-

low areas with high observed disaster impacts. Results from this study will help disaster

managers to better understand disaster risk and develop appropriate, inclusive and well

integrated mitigation and adaptation plans at the local level. It fulfills the increasing need to

balance global/regional assessments with community level assessments where major deci-

sions against risk are actually taken and implemented.

1. Introduction

Africa is currently a continent under pressure from multiple stresses and is highly vulnerable

to the impacts of climate change [1,2]. Fields [3] argues that the influence of multiple stressors
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such as environmental disasters, infectious disease, economic turbulence from globalization,

resource privatization, and civil conflicts, combined with the lack of resources for adaptation,

will present serious challenges for African communities struggling to adapt to climate change.

West Africa in particular, has been described as a hotspot of climate change [2]. In this region

a temperature of 3–6˚C above the late 20th century baseline is “very likely” to materialize

within the 21st century and the fact that this projection is expected to occur one or two decades

earlier than other regions [2] contributes to making the region even more vulnerable to climate

change. The frequency of occurrence of extreme events is expected to increase and the in-

teraction of climate change with non-climate stressors will aggravate vulnerability of agricul-

tural systems in semi-arid Africa such as the West Sudanian Savanna region of Burkina Faso,

Ghana and Benin [2]. There is also medium confidence that projected increase in extreme

rainfall will “contribute to increases in rain-generated local flooding” ([4], p. 24). For West

Africa, Sylla et al. [5] projected a decrease in the absolute number, but an increase in the in-

tensity of very wet events–leading to increased drought and flood risks towards the late 21st

century. Increases in the frequency and intensity of extreme weather events constitute an

immediate and damaging impact of climate change [6].

Yet, comprehensive and quantitative understanding of the vulnerability and risk faced by

West African rural communities to these multiple hazards, including the commonly occurring

hazards of floods and droughts are still lacking. The few studies available in the area have either

qualitatively assessed vulnerabilities (e.g. [7, 8]) or only looked at specific aspects such as vul-

nerability to food insecurity [9,10], or focused on single hazards such as floods (e.g. [11,12]).

Asare-Kyei et al. [13] reviewed vulnerability and risk indices developed at different scales from

local to national assessments (see for example [14, 15, 16, 17,18,19,20]). All these studies have

measured vulnerability, resilience and adaptation using a variety of concepts, approaches, and

indicators, however, important considerations such as applicability to local communities,

methods to estimate localized risks, inclusion of at risk populations in developing the indica-

tors themselves, use of multiple hazards and multiple scales were often missing [13,21]. Studies

such as Linstädter et al. [22] assess the resilience of pastoral SES to droughts in South Africa

whilst Martin et al. [23] assessed livelihood loss to drought using a model based approach.

Although these recent studies introduce new and interesting dimensions to resilience assess-

ment in the context of droughts; using multidisciplinary approaches [22] and scenario com-

parison [23], they do not integrate multiple hazards occurrence, and limit their assessment to

pastoral systems. For West Africa, Asare-Kyei et al. [13] found that, “no study has attempted

to understand the risk patterns of rural communities in the context of climate change” through

a set of participatory developed indicators. The only study that comes close is provided by the

United States Agency for International Development [17], however, indicators were derived

purely from literature without a participatory process with the vulnerable themselves. For

more information of available risk and vulnerability indices, see Asare-Kyei et al. [13,21].

Studies such as Welle et al. [24] and Beckmann et al. [25] have also developed risk indices

across countries and compared countries with high and low risk levels. However, it has been

found that studies that use the same indicator set and make an effort to derive relative vulnera-

bilities across countries produce results that may be contradictory to expert knowledge [26].

The World Development Report in 2010 reviewed two major vulnerability-driven indices–

Disaster Risk Index, DRI [20] and Index of Social Vulnerability to Climate Change for Africa,

SVA [27] and concluded that these indices created spatial patterns out of tune with develop-

ment-driven indicators and consistently showed a pattern contradictory to expert knowledge

[26]. This was corroborated by Asare-Kyei et al. [13] that such contradictory results are ex-

pected because using the same indicators ignore the salient indicators deemed to be relevant

by the local populations. In countries where the same indicators apply, they differ in their
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ranking and hence the weights that must be applied in estimating the final risk index. To this

end, this study does not intend to use common indicators and make comparisons across coun-

tries but rather uses a participatory bottom-up approach where case study specific indicators

are used.

In 2007, Birkmann [28] indicated that a discussion has just begun as to whether and how

global approaches and the associated indicators can be down-scaled to estimate localized risk

and vulnerability and whether they provide appropriate and useful information. However, to

date, little is known about the risk profiles of rural West African communities particularly

regarding risk to multiple hazards. Yet, it is acknowledged that risk and vulnerability identifi-

cation and measurement before and after the occurrence of hazards are essential tasks for

effective and long term Disaster Risk Reduction (DRR) [28]. There is an increasing need to

balance global, regional and sub-national assessments with community level assessments

because these are the scales where major decisions against disaster risk reduction are made

and expected to be implemented. A common methodology to identify and measure risk and

vulnerability to climatic hazards in order to define disaster risk reduction measures is still not

sufficiently developed [28,29]. To this end, participatory “bottom–up” methods are increas-

ingly being employed to identify and document the processes that occur at a local level, involv-

ing decision-makers in communities and societies [13,30,31,32].

However, despite the growing acknowledgment of the necessity of community participation

for sustainable disaster reduction, this has not been translated into actions to carry out partici-

patory community based vulnerability and risk assessments in the West African sub region. In

this study, a community based participatory method of assessing risk to multiple natural haz-

ards based on indicators is introduced to address the gaps enumerated above.

Validation or model evaluation is an essential aspect of assessing the accuracy of complex

model outcomes. Gall [33] outlined six critical dimensions of model evaluation, of which vali-

dation is a key component. However, in almost all risk assessment studies reviewed, the only

validation approach is based on statistical assessments of model intrinsic uncertainties. Damm

[14] observed that the development of indicators and subsequent modelling of composite risk

indices have inherent uncertainties due to the many subjective decisions made by authors, yet

“conventional validation of vulnerability is not possible as vulnerability cannot be measured in

the traditional sense” and concluded that “validation still remains an open challenge” in risk

assessment (Damm [14], p.17, 197). To this end, major risk assessments studies such as the

World Risk Index [24,25,34,35] used statistical Monte Carlo analysis and sensitivity analysis as

validation tools. Other studies such as Adger & Vincent [36] and Brooks et al. [37] attempted

to undertake indicator validation using mortality outcome. On the other hand, the difficulties

with validating complex risk assessment models means that some studies don’t undertake any

validation at all, e.g. [29]. To address this open challenge in risk assessment, the study intro-

duces the concept of community impact score (CIS) to validate the indicator-based risk and

vulnerability modelling. The CIS is a novel and innovative approach to validate risk assessment

and uses observed disaster impacts to validate the results of a complex indicator aggregation

model. The result of this aggregation model is termed in this study as the West Sudanian Com-

munity Risk Index (WESCRI). The contributions of single constituent parameters to WESCRI

describe the specific risk profile of a community in terms of the main determinants of risk.

This study aims at (1) conducting risk assessment for multiple hazards (drought and floods)

through a bottom-up participatory process as opposed to the classical top-down, large scale

approaches; (2) assessing risk from the perspectives of a coupled SES rather than single-haz-

ard-decoupled risk assessments; (3) quantifying risk using indicators relevant for rural com-

munities to understand the constituents (profiles) of risk across community clusters within a

watershed and (4) exploring an innovative validation approach for risk assessment.

Community risk profiles
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This disaster index across community clusters helps to identify and support decision-mak-

ers with information to recognize and map risk hotspots even within communities in a single

watershed in order to support priority setting for risk-reduction strategies. Three case studies

are presented for three watersheds in three different countries in West Africa. The study helps

to provide a better understanding of the risks and vulnerabilities of these rural communities

and helps to differentiate between communities by the elements characterizing their risks and

vulnerabilities. Studying risk profiles of rural communities also provides an insight on how to

situate vulnerability, risk and climate change adaptation efforts within the context of the com-

munity’s sustainable development agenda and can help to develop appropriate, inclusive and

well integrated mitigation and adaptation plans at the local level.

2. Research sites

Within the structure of the West African Science Service Centre for Climate Change and

Adapted Land Use (WASCAL) project, three study areas in three West African countries have

been selected. These areas are (i) the Vea area in the Upper East region of Ghana; (ii) the Dano

area in the province of Sud-Ouest of Burkina Faso; and (iii) the Dassari area in the commune

of Materi in north-west Benin (Fig 1). These study areas, which belong to the Sudanian

Savanna ecological zone, have similar climate and are under varying forms of agricultural sys-

tems. The areas are predominantly rural and have relatively high population density compared

to other regions in the countries [38].

The study areas were delineated into community clusters based on high resolution land use

maps developed by Forkuor et al. [39]. The community clusters were used as the unit of analy-

sis for the spatially explicit vulnerability and risk assessment. The delineation into community

clusters which is explained in detail in Asare-Kyei et al. [38] was based on a digital elevation

model (DEM), river channel systems, populations in the communities or population conglom-

erations, community groupings by local authorities, settlement structures as well as the opera-

tional plans which are used by local disaster managers to segregate and demarcate the areas for

effective disaster management

Fig 1. Overview of the West African study sites. Showing also the three watersheds which are presented

in detail in S1 File.

doi:10.1371/journal.pone.0171921.g001

Community risk profiles

PLOS ONE | DOI:10.1371/journal.pone.0171921 March 1, 2017 4 / 26



In the Vea study area, 13 community clusters were delineated. The largest of these clusters

is the Kula River drain (Fig A in S1 File), named after the Kula river which is well known for

causing many of the floods in the area. Other major community clusters are the Vea main

drain and Kolgo/Anateem valley. These community clusters are located at the downstream of

the Vea and Kolgo Rivers and are also significantly exposed to floods. Similarly, the Dano

study area has further been delimited into 13 community clusters. The Yo, Bolembar, Gnik-

piere and Loffing-Yabogane are the major clusters with extensive river system, smallholder

agriculture and many scattered settlements and hamlets. The Dassari area in Benin was also

delineated into 12 community clusters. The Sétchindiga, Porga and Nagassega community

clusters are most prominent as they are crossed by a major river network that significantly

exposes the area to flooding. Details about the procedure for the community clustering can be

found in Asare-Kyei et al. [38]. In Table 1, the physical characteristics of the three watersheds

are presented. Other information about flood and drought events in the watersheds are pre-

sented in the supplementary information, S1 File.

Field observations and interactions with people in the communities revealed that all these

communities are frequently exposed to droughts and floods and life in these communities has

been reduced to routine coping or adaptation to these two hazards. The sustainability of a

household’s livelihood now depends on the household’s ability to manage the impacts of

drought and flood events. S1 File in the supporting information section give details about each

of the study areas.

3. Methods

A stepwise process (Fig 2) was followed, first to develop the community level vulnerability

index and subsequently the West Sudanian Community Risk Index (WESCRI). The sections

below present detailed descriptions of these work steps.

3.1. Development of a multi-hazard vulnerability and risk assessment

framework

In this study, an attempt was made to conduct the first operationalization of the framework

proposed by Kloos et al. [41] at the community level in three West African countries. The

framework is based on the key element, a SES, reflecting the connections and feedbacks

between the environmental and social sub-systems taking place at various spatial scales (local,

sub-national and national) [41]. Multiple temporal scales of different components of the

framework are also covered by looking at the dynamics within the system.

Risk is to be evaluated against hydro-climatic hazards and stressors (Fig 3), which may

materialize as sudden shocks such as floods and/or heavy rainfall events, slow onset events

such as droughts, late onset of the rainy season but also more gradual changes such as changes

in variability or averages of rainfall. At the same time, an SES is affected by socio-economic

drivers and stressors (Fig 3) which may lead to environmental changes that can turn into

stressors or hazards in themselves.

Table 1. Physical characteristics of the three watersheds.

Watershed Average annual rainfall (mm/year) Average peak runoff (M3/sec) Evapotranspiration (mm/year) Mean slope (%)

Vea 980 155.70 1455 0.4

Dano 910 68.96 1747 0.5

Dassari 1000 113.11 1552 0.3

Data source: runoff data from Asare-Kyei et al. [38], other data from Ibrahim et al. [40].

doi:10.1371/journal.pone.0171921.t001
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Ecosystem services are integral to the SES and provide numerous monetary and non-mone-

tary benefits to people living in the system [42]. To account for the multi-hazard nature, two

hazards are introduced to the framework, ‘H1’ and ‘H2’, and the combination of both hazards

selected for the West Sudanian Savanna case, ‘H1+H2’ representing floods and droughts. For

further details on the framework, see Kloos et al. [41].

In this framework, vulnerability is characterized by exposure, susceptibility and the capacity

of the coupled SES to cope and adapt to the impacts of either a single hazard or the combined

effects of multiple hazards. Risk is a product of vulnerability and the characteristics of the haz-

ard. Characteristics of the hazards in this study are construed to mean the intensity and fre-

quency of occurrence of the two hazards, floods and droughts.

Fig 2. A stepwise process to quantify risk and vulnerability at the community level.

doi:10.1371/journal.pone.0171921.g002

Fig 3. The Proposed West Sudanian Savannah Vulnerability framework by Kloos et al. [41].

doi:10.1371/journal.pone.0171921.g003
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Studies such as Beck et al. [34] and Welle et al. [24] have included the exposure term in risk

quantification and there have been debates as to whether exposure should be included in vul-

nerability component or the risk term [15]. In this study however, the point of departure from

the framework proposed by Kloos et al. [41] is that exposure is only construed to mean the ele-

ments of the SES that are exposed to the multiple hazards, hence the term ‘Exposure’ as used

by Kloos et al. [41] is replaced with ‘Exposed Elements’. This conceptualization helps to provide

an avenue to deal with the debate on whether exposure should be part of vulnerability or

included in the risk term. According to Birkmann ([15], p.38), “an element or system is only at

risk if the element or system is exposed and vulnerable to the potential phenomenon”. Although

exposure is often related to the hazard, excluding exposure from vulnerability assessment

entirely makes such an analysis “politically irrelevant” ([15], p.38). This is because once vulnera-

bility is agreed to mean those conditions that intensify the susceptibility and decrease the capac-

ity of the SES to the impact of the hazard, it also rests on the spatial dimension, by which the

degree of exposure of the SES to the hazard is referred to [15,16]. This study is based on the

assertion of Birkmann [15], that the location’s general exposure is essentially a component of

the hazard whilst the degree of exposure of its critical elements such as farmlands, schools,

houses etc. falling in hazard prone areas indicates the spatial dimension of vulnerability. In this

study therefore, this spatial dimension of vulnerability is termed as ‘Exposed Elements’ and

shows that exposure is a partial characteristic of vulnerability. To this end, indicators used to

describe the SES spatial dimension of vulnerability in this study include: agricultural areas in

hazard zones, insecure settlements (share of the area’s settlement intersecting the hazard zones),

protected areas in hazard zones, agricultural dependent population, etc.

From these conceptualizations, vulnerability (V) and risk (R) of the SES can be expressed

as:

Vses ¼ EEses þ Sses þ ð1 � CsesÞ ð1Þ

Rses ¼ Vses �MH ð2Þ

where V is the vulnerability of the SES, EE is the exposed elements within the SES indicating

their degrees of exposure, S is the susceptibility of the SES, C is the capacity of the SES to cope,

adapt and resist the hazard, R is the risk faced by the SES andMH represents the characteristics

of the multi-hazards (here intensity and frequency of droughts and floods). MH represents the

SES general exposure to the hazards under study. This conceptualization is in agreement with

the IPCC summary report for policy makers ([2], p. 5), which defines risk as the “potential for
consequences” where a valuable element is at stake and its outcome uncertain. This framework

serves as a template for a reduced form of analysis allowing for the operationalization of the

complex concept of vulnerability to a place based assessment. Note that all the quantities in Eq

1 are assessed by set of indicators which have been developed through participatory methods

as described in Asare-Kyei et al. [13].

3.2 Participatory indicator development

Asare-Kyei et al. [13] followed a participatory approach to select indicators suitable for both

quantitative and qualitative assessment of risks faced by people in West Africa under climate

change. The methodology allowed for a representative participation of all stakeholder groups

dealing with or affected by droughts and floods. Based on local stakeholder workshops, partici-

pants elicited indicators, which they considered as important in describing the risk they face.

This revealed many new indicators, which were not or were rarely used in the literature related

to West African risk assessment in the context of climate change.

Community risk profiles
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A standardized questionnaire was developed to collect household’s fine scale data for each

applicable indicator identified in Asare-Kyei et al. [13] in the three case studies. The selection

of households was done with the use of a sampling frame received from the local authorities.

The sampling frame contained information about communities frequently affected by floods

and droughts, number of people affected, population as well as relief items provided by the

local authorities. Almost all of the communities (over 90% in all study areas) frequently

affected by the hazards were sampled. Within each community cluster, simple random sam-

pling was used to select households usually affected by the hazards based on the sampling

frame provided. The number selected from each community depended on total number of

affected households, thus communities with higher affected populations received more repre-

sentation. Unaffected households in these communities were also randomly selected to serve

as basis for comparing the responses from affected households. In addition, 10 focus group dis-

cussions were held in the three study areas to capture the processes and impacts associated

with droughts and floods and situations where the two hazards occurred in the same year. In

the Vea study area, a total of 240 households were sampled and interviewed whilst 100 and 92

households were respectively sampled and interviewed in the Dano and Dassari study areas.

The total number of households used in this study was therefore 432.

For indicators which cannot be described by household data such as Green Vegetation

Cover, soil organic matter, population density, and others, secondary data were used. While

some of these secondary data came from local statistical reports, some were also retrieved from

remote sensing data and spatial analysis in a Geographic Information System (GIS). S1 Table in

the supplementary information describes the construction of the data values for each indicator.

3.2.1. Ethical statement regarding the use of household surveys/interviews. This study

was approved and supported by UNU-EHS. The UNU-EHS, as a UN institution has the offi-

cial mandate to conduct human subjects’ research specifically with regard to social vulnerabil-

ity. The scientific committee responsible for this research is composed of senior researchers

within the institute including the director, Prof. Dr. Jakob Rhyner, heads of various academic

sections, Dr. Fabrice Renaud, Dr. Matthias Garschagen etc. It must be noted also that the

human subject research conducted by UNU-EHS doesn’t involve clinical human experiments

or samples but more simply of surveys and interviews for social vulnerability and disaster risk

assessments. We apply rigorously basic principles: questionnaires are only filled in with

approval of respondents; anonymity is strictly respected in assessing the results; no individual

information is ever divulged; questionnaires are never shared.

At the start of each interview session, the objectives of the study were explained to the house-

holds and their verbal consent was sought. Written consent was not used because almost all the

households sampled could neither read nor write and a request to make them thumbprint some-

thing they did not understand would have complicated the field survey. All the sampled house-

holds willingly and enthusiastically agreed to participate in the survey. Article preparation and

submission protocol in place at UNU-EHS was followed and all research procedure was approved.

Almost all the households’ heads or representatives who participated in the survey had their con-

sent recorded. However, because the survey was conducted in remote, inaccessible communities,

in less than 5% of cases, the recorder battery had run out and consent was taken in the presence of

community key informants who acted as witnesses and supported the research.

3.3. Normalization and weighting of indicators

The re-scaling normalization technique was applied to convert different measurement units

into a dimensionless unit. This method (Eq 3) normalizes indicators X to have an identical

range between 0 and 1.

Community risk profiles
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The drawback of this approach is that outliers can distort the transformed indicator. To

prevent this, the exploratory data analysis described in the supporting information (S2 File)

removed all extreme values (outliers) within the datasets based on expert knowledge. This

rescaling normalization approach, however, has an advantage of widening the range of indica-

tors lying within a small interval and increases the effect on the composite indicator more than

the z-score transformation which has been used by Damm [14]. The world risk report used

this approach to develop the “World Risk Index” [24,25].

After the indicators have been normalized, they were weighted using an expert opinion

approach [14]. This approach allowed to better reflect policy priorities and the relevance of

indicators for populations at risk to explain the risk and vulnerability in the study area. As

explained in Asare-Kyei et al. [13], the experts provided rankings for all indicators within each

vulnerability component. This ranking was converted to weights before the indicators were

combined to develop the vulnerability index. The rank to weight conversion model developed

by Al-Essa [43] was used in this study and assumes a linear relationship between ranks and

weight.

For any set of n ranked indicators within a subcomponent and assuming a weight of 100%

for the first-ranked (most important) indicator, the percentage weight of an indicator ranked

as r can be derived by using the model developed by Al-Essa [43] and presented in Eq 2 in

S2 File.

For details about this rank to weights conversion as applied in this study see Al-Essa [43],

Stillwell et al. [44], Baron and Barrett [45] and Lootsma [46].

3.4. Aggregation of the composite vulnerability index

Applying the linear aggregation method, the normalized and weighted indicators were

summed up to derive the composite vulnerability index. This approach has been applied in

several studies such as Damm [14] in mapping socio-ecological vulnerability to flooding in

Germany, and by Beck et al. [34], Birkmann et al. [25] and Welle et al. [24] in developing

the World Risk Reports since 2011. Although there are other aggregation techniques, the

linear aggregation technique proposed in this study is the most widespread aggregation

method. This approach is basically the summation of weighted and normalized individual

indicators.

This method imposes limitations on the nature of individual indicators. For example, to get

a meaningful composite indicator (CI) is dependent on the quality of the underlying individual

indicators and the measurement units. It also has implications for the interpretation of

weights. This additive aggregation function works only if the individual indicators are mutu-

ally independent. This implies that the function allows the assessment of the marginal contri-

bution of each indicator separately [47].

The linear aggregation technique applied in this study is given as:

CIc ¼
XQ

q¼1
wqIqc ð3Þ

With
X

q
wq ¼ 1 and 0 � wq � 1 for all q ¼ 1; . . .;Q and c ¼ 1; . . .;M:

C is sub-component of vulnerability such as susceptibility, M is number of sub-compo-

nents, q represents individual indicators,W is the weight applied to the indicator and Q is the

number of indicators in a sub-component.

Using Eq 3, a three tier aggregation process was followed to develop the West Sudanian

Community Vulnerability Index (WESCVI).

Community risk profiles
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3.5 Developing the West Sudanian Community Vulnerability Index

(WESCVI)

To quantify vulnerability means applying the weights to the data values of each variable and

adding them up. Before doing so, a sub-index for each component was developed (see Fig 4).

As shown in Fig 4 for the Vea study area, the weight applied to each indicator is given in per-

centages. It must be noted that the indicators within each component have been listed in order of

the ranking provided by the experts. The ranks for the first three or four indicators have been con-

verted to weights as described above. For the exposed elements component, two indicators each

for exposure of social system and ecological system exposure finally went to the computation of

the exposure index after the bivariate correlation analysis (see Indicators A, B and A, B in Fig 4).

Note that Fig 4 and the corresponding figures in the supporting information (S1 Fig and S2

Fig) also illustrate the constituents of the community risk profiles. The figures show all the

final components, sub-components and indicators that help to anticipate the level to which a

community could be impacted by droughts, floods or a combination of the two hazards.

There are four thematic areas within the susceptibility component of the social subsystem

according to which the indicators have been structured. These are ‘poverty and dependencies’,

‘housing conditions’, ‘public infrastructure’ and ‘health and nutrition’. The further categoriza-

tion of the indicators into these thematic areas can allow for the development of additional

sub-indices if so desired and thus will be crucial for determining which social aspect is most or

least important in influencing the vulnerability of the people living in the study areas.

The capacity component has three sub-components: coping capacity, adaptive capacity and

ecosystem robustness. An index was calculated for each of these sub-components by applying

Eq 6 before being combined into the capacity index. Each of these sub-components were given

equal weights of 33%, thus giving the social system a higher weight of 66% compared to the

33% from the ecological system. The reason is that capacity to cope or adapt is more construed

to be pertaining to the social system than to the ecological system [25]. Weighting them equally

here would mean underestimating the inherent ability of social systems to respond through

coping and adaptation measures to the impact of the hazards.

Fig 4. Schematic representation of the development of the West Sudanian Community Vulnerability

Index (WESCVI) in the Vea study area of Ghana.

doi:10.1371/journal.pone.0171921.g004
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It must be noted that in quantifying the WESCVI, coping capacities are not considered but

instead their lack thereof. This lack of coping capacity is estimated by subtracting the estimated

coping capacity value from one. This approach, which is also used in the estimation of the

World Risk Index [24,25] was used to calculate lack of adaptive capacity and lack of ecosystem

robustness. In vulnerability analysis, susceptibility by definition is construed to mean all fac-

tors that increase vulnerability whilst capacities do the opposite effect. Therefore, the negative

variants of data values were used for susceptibility (e.g. distance of more than 30 minutes to

water source) whilst positive variants of capacity indicators were used (e.g. literacy levels

instead of illiteracy levels).

The WESCVI was finally estimated by combining the three indices describing exposed ele-

ments, susceptibility and (lack of) capacity. The vulnerability indices for the Dano (S1 Fig) and

Dassari (S2 Fig) were estimated by using the same approach described above for the Vea study

area. It must be noted that different set of indicators were used for each study area based on

the results from Asare-Kyei et al. [13] and that this assessment in the present study is not

meant for comparing the vulnerability or risk profiles of the different three study areas.

3.6 Multi-hazard index development

The development of the multi-hazard index maps considered two components (see Fig 5),

integrating the flood hazard intensity developed in Asare-Kyei et al. [16] and drought hazard.

The first part was the development of a flood hazard index map. This approach presented

in detail in Asare-Kyei et al., [38] drew on the strengths of a simple hydrological model and

statistical methods integrated in GIS to develop a Flood Hazard Index (FHI) to an acceptable

accuracy level. The FHI was validated with participatory GIS techniques using information

provided by local disaster managers and historical data. The flood hazard component shows

the intensity of flood at the pixel level on a scale of 1 to 5, with one being areas with least flood

intensity and 5, areas of highest flood intensity.

Fig 5. Development of multi-hazard index map. The figure on the left is a modified representation of the

flood modelling approach introduced in Asare-Kyei et al. [38] whilst the figure on the right is a modified

abstraction of FAO GIEWS [48] illustrating the development of DSI computed from the mean season of the

VHI. VCI is the scaling of maximum and minimum Normalized Difference Vegetation Index (NDVI) and TCI is

the scaling of maximum and minimum brightness temperature (BT), estimated from thermal infrared band of

AVHRR channel 4 [49]. The final VHI is derived by applying weight, “a” to the VCI and TCI. The end results of

these two methods were combined in GIS to develop the multi-hazard map.

doi:10.1371/journal.pone.0171921.g005
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The second component involves the development of drought hazard index termed the

Drought Severity Index (DSI). From Fig 5, the DSI is computed from Vegetation Condition

Index (VCI) and Temperature Condition Index (TCI) as explained in FAO GIEWS [48]. In

this study, the final Vegetation Health Index (VHI) dataset was received from FAO Global

Information and Early Warning System on Food and Agriculture (GIEWS) covering a period

of 30 years (1984 to 2013). The mean VHI is an average of the decadal VHI values over the

crop growing season to date and have non-cropland areas masked to cover only cultivated

land. It is a good indicator of drought at the pixel level [48].

The mean VHI which measures the drought intensity, was temporally integrated for every

major season from 1984 to 2013 to derive the seasonal mean VHI. Two main estimations path-

ways were followed to derive the DSI which measures both the magnitude (intensity) of the

drought and its frequency. The intensity was measured by computing the thirty-year average

VHI (Fig 6A). Kogan [50] developed a threshold value of 35% below which a pixel is described

as having agricultural drought condition. This threshold value was set by correlating VCI

with different crop yields and various ecological conditions. The result was a logarithmic fit

between VCI and crop yields at r-square of 0.79 [49,50].

To estimate the frequency of droughts at each pixel, a routine was established in the statisti-

cal software, R that calculates the number of times within the 30-year period that a pixel regis-

ters a VHI value of less than 35. Using this approach, the frequency of drought was established

for every pixel over the entire study area (Fig 6B). The highest frequency was found to be 10

indicating that those pixels have registered exceptional drought conditions in 10 out of the

30-year period. Table 2 presents the classification of the drought frequency and intensity into

five classes corresponding to the categories of the FHI.

The drought frequency and intensity were normalized between 0 and 1 and combined

using the weighted linear combination method given in Eq 7 [51] to produce the DSI in a GIS.

Fig 6. Estimating drought intensity and frequency over the study area. Conceptual basis for estimating

the drought frequency over the 30-year period is from FAO GIEWS [48] and Rojas et al. [49].

doi:10.1371/journal.pone.0171921.g006
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The method permits the assignment of weights, which indicates the relative importance of a

layer. The weights must sum up to one. In this study, the two standardized layers were consid-

ered equally important, thereby assigning a weight of 0.5 each to the layers in Eq (4).

DSI ¼
Xn

i¼1

0:5Xðav:VHIÞ þ 0:5XðdroughtfreqÞ ð4Þ

Where i indicates the number of pixels or spatial units within each layer. This formulation

then allowed the spatial combination of FHI and DSI to derive the multi-hazard index maps.

Eq 7 was again applied to combine the DSI and FHI to derive the Multi-Hazard Index (MHI)

map. It is important to mention that there are other approaches one could follow to combine

the two hazards. Another example could be using the maximum function, in which case, a

more than usual higher value in one quantity (hazard) could be rewarded. However, in this

study, the weighted average function was found to be much simpler to implement. It therefore

remains a possibility for subsequent studies to test the results of using different approaches of

combining the two hazards. Note that the flood intensity (FHI) was also later normalized

between 0 and 1 to allow for the spatial combination with the DSI.

3.7 Risk profile approaches

Once the vulnerability and multi-hazard indices are estimated, the multi-risk profiles of all the

communities can be estimated by implementing Eq 2. Fig 7 shows how the derivation of the

final risk profile of the communities in the study areas.

Populations exposed to the hazards were not intersected or overlaid with the quantity, MH

as this was already captured in the vulnerability estimation pathway where the degrees of expo-

sure of the critical elements (people, farmlands, protected area etc.) were used. The quantity,

MH measures a spatially explicit assessment of the SES general exposure to the two hazards of

floods and drought.

3.8 Validation of risk and vulnerability indices

The robustness and the quality of the composite vulnerability indicator as well as the sound-

ness of the risk profiles in estimating the potential impacts of the hazards on the communities

studied were further tested. In this study, two main approaches are presented to evaluate the

results of the community level vulnerability and risk indices.

3.8.1 The concept of community impact score. A novel technique is introduced in this

study to validate the underlying models and assumptions used to develop the community risk

profiles with real historical impact data collected from at risk populations. To do this type of

risk model validation, which as far as available literature on risk assessment confirms has not

Table 2. Classification of drought frequency and intensity datasets.

Frequency Drought category Mean VHI (intensity) DSI at pixel level

9–10 Exceptional drought <35 5

7–8 Extreme drought 36–45 4

5–6 Severe drought 46–55 3

3–4 Moderate drought 56–65 2

1–2 abnormal drought 66–75 1

0 no drought >75 1

Classification according to the Jenks method implemented in ESRI ArcGIS and as modified from FAO GIEWS [48]. VHI is Vegetation Health Index and DSI

is Drought Severity Index.

doi:10.1371/journal.pone.0171921.t002
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been pursued, an approach to develop an impact score for each community cluster called

‘community impact score’ (CIS) is introduced. The CIS measures the cumulative impact of the

occurrence of the multiple hazards over a period of five years. During the field work as

described above, households were asked to recount the impact they had suffered over the last

five years as result of the occurrence of drought, floods and multiple hazard occurrence. The

impact assessment captured data on the following key variables.

• Population affected by floods (%) by community cluster

• Population affected by droughts (%) by community cluster

• Population affected by floods and droughts in the same year (%) by community cluster

• Average area of cropland affected per community (acres)

• Average number of livestock affected/killed by hazards

• Number of people killed by floods (human loss)

• Number of housing units destroyed or partially damaged by floods

• Economic value of properties (houses, personal effects etc.) destroyed by floods or fires occa-

sioned by prolonged drought.

The results of this detailed assessment are presented in the supporting information (S2

Table). To develop the CIS, these impact variables were first standardized to make any combi-

nation meaningful. The linear interpolation method was applied to standardize the impact var-

iables. This procedure results in standardized impact values on a scale of 1 to 4; with one being

the lowest impact level and 4 the category with the highest impact level. The linear interpola-

tion scheme (Eq 5) as applied in Morjani [52] was used to standardize all the variables. This

procedure first involves the determination of minimum and maximum impact levels and then

calculating the slope and intercepts of the impact level for each variable. The minimum and

maximum values were used as the known variables in the horizontal axis whilst the scale range

from 1 to 4 was used as the known variables in the vertical axis in the estimation of the slope

and intercept. The resulting slope and intercept values of the respective variables were then

applied to each impact variable value using Eq 5 below. This procedure resulted in standard-

ized impact variables, which were then multiplied to derive the CIS.

IVst ¼ Integerð½slope � IV� þ intþ 0:5Þ ð5Þ

Fig 7. The modular structure of the WESCRI.

doi:10.1371/journal.pone.0171921.g007
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Where IV is the impact variable, IVst is the standardized impact variable and “int” is the

intercept. The derived CIS was then scaled between 0 and 1 to correspond to the multi-risk

index. Two statistical model validation tools were used to assess how well the risk model

approximate actual disaster impacts. The Root Mean Square Error (RMSE) and the Coefficient

of determination (r2) [53,54] were used.

3.8.2 Sensitivity analysis. The sensitivity of the vulnerability model was analyzed by

examining the sources of variation in the model output to determine the contribution of the

input variables to this variation. The study favored the use of local sensitivity analysis, which

allows the influence of one varying variable to be studied while all the other variables are held

constant. A local sensitivity analysis could reveal complementary information that has policy

relevance, allowing policy makers to understand the variables which when intervened, could

have significant impact on the overall vulnerability of the communities [25]. This is important

for the objective of this study which seeks to identify variables contributing to household’s vul-

nerability and risk and to support programmatic interventions at the community level. In this

study, sensitivity was analyzed by way of volatility of the variable to be changed in relation to

its original state. In accordance with Damm [14], OECD [47] and Groh et al. [55], volatility is

measured by the standard deviation of community vulnerability index across all community

clusters in each study area.

4. Results and discussion

The results and discussion for all the sub-components are presented in the supporting infor-

mation (S3 File), where exposure, susceptibility and capacity are separately discussed. Also in

S3 File, tables showing the community rankings for all sub-components are presented and dis-

cussed. Exposure is presented in Table A of S3 File, susceptibility rankings in Table B of S3 File

and lack of capacity is presented in Table C of S3 File.

4.1. The West Sudanian Community Vulnerability Index (WESCVI)

Following the three tier-aggregation procedures, the sub-indices of exposure, susceptibility

and lack of capacity were combined to develop the composite vulnerability index and mapped

in GIS (Fig 8). This composite index measures the degree of vulnerability across all community

clusters in the study areas. To illustrate the variability of vulnerability across the clusters, five

classes of vulnerability have been developed using the Quantile classification method. The clas-

ses range from 1, for lowest vulnerability level to 5, for highest vulnerability level. The same

classification method was used for all the vulnerability sub-components of exposure, suscepti-

bility and capacity, which explains the different value ranges of the classes between study sites.

Results show that in the Vea study area, the Samboligo community cluster is the most vul-

nerable area with a vulnerability score of 0.50. It is followed by communities in the Kula River

drain (0.48) and Balungu (0.46). In this context, the level of exposure of these communities

explains the high vulnerability. For instance, although the Kula River communities have the

highest capacity to cope and adapt to changing climate patterns (see Table C in S3 File) and

relatively moderate level of susceptibility, its high level of exposure (Table A in S3 File) affects

its overall vulnerability score. In the case of Samboligo, high levels of susceptibility and rela-

tively low capacity to cope and adapt make it highly vulnerable even though its exposure to

the hazards is relatively much lower. Balungu’s high vulnerability status results from moderate

to high level scores recorded for all three vulnerability components. It has moderate levels of

vulnerability rankings of 4, 3 and 5 out of 13 community clusters for exposure, susceptibility

and lack of capacity, respectively. This means that in vulnerability analysis, a consistent moder-

ate ranking of an area or system will ultimately put the community or system into a high
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vulnerability class. In the Vea area, Samboligo emerges as the hotspot of vulnerability due its

lowest level of coping capacity, poor adaptive capacity and generally poor state of its ecosys-

tem. It is also highly susceptible to droughts and floods as results of inherent poverty and high

dependency ratios, poor housing and lack of infrastructure. The results of the household sur-

vey show, that as much as 93% of its inhabitants have poor housing conditions living in pri-

marily mud and thatch houses which are easily damaged by flash floods and torrential rains.

On the other hand, the Beo-Adaboya, Kolgo Anateem and Kanga are clusters with the least

vulnerable levels. In the Kanga area, moderate levels of susceptibility are mitigated by low

exposure (0.13 in Table A in S3 File), high coping and adaptive capacities and generally robust

ecosystems.

In the Dano study area, the hotspots of vulnerability are the Yo, Bolembar and Loffing-

Yabogane community clusters. The Yo area remains the highest vulnerable area due its high

susceptibility to the hazards and weak capacities. It also has a moderate exposure ranking of 5

out of 13 clusters. The vulnerability of the communities in the Yo cluster results mainly from

its low levels of coping and adaptive capacities. Only 37% of its inhabitants have adequate local

knowledge regarding droughts and floods coping strategies, DRR measures, etc. This coupled

with a meager percentage of households having access to alternate food and income sources

(12.5%) and an absolute illiteracy level makes the Yo area a hotspot of vulnerability in the com-

mune of Dano in Burkina Faso.

In the Dassari study area, Porga, Tankouri and Firihoun are the three top vulnerability hot-

spots with Tihoun, Dassari and Koulou being the least vulnerable areas. The high levels of

exposure in the Porga area counteracts its moderate levels of susceptibility and capacity, mak-

ing it the most vulnerable area in the Dassari arrondissement of Benin. This high exposure

results primarily from two indicators, ‘insecure settlement’ and ‘agricultural area in hazard

zones’. All the settlements in the area (100%) are located in high flood and drought intensity

zones whilst over 33% of their agricultural land is also found in high flood intensity zone. The

study revealed frequent destruction of settlements by wild fires due to prolonged drought con-

ditions and also by flash floods. As much as 90% of all houses are made of mud and thatch and

are of poor quality. These houses are hastily constructed after each disaster. These settlements

Fig 8. The Composite community vulnerability index. Note that the class ranges for the three maps differ

because each represents a distinct study area. The vulnerability indices for the study areas are presented

together here just to conserve space and they are not intended for comparisons.

doi:10.1371/journal.pone.0171921.g008
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may be inexpensive to build but are more physically vulnerable to hazards such as floods and

increase the risk to physical injury to those who live in them [56].

4.2 Risk profiles from multiple hazards

By combining the vulnerability and the multi-hazard indices through the arithmetic multipli-

cative function in GIS (Eq 2), the multi-risk profiles of all communities in the study area were

quantified in line with our research objective. This multi-risk profile represents the combined

effect of the occurrence of multiple hazards and their interaction with vulnerable SES. It mea-

sures the extent to which households within the communities will be impacted by floods,

droughts and a combination of them.

In Fig 9, the result of the WESCRI is presented and shows contrasting levels of risk among

community clusters.

Also presented in Fig 10 is a Digital Elevation Model (DEM) of the three study areas show-

ing that low lying areas generally exhibit high total risk to the two hazards.

In the Vea study area, the Kula River drain and Vea Main drain remain the hotspot of risk

to droughts and floods. Communities in these areas are characterized by high exposure to

floods [16] and droughts and at the same time have the highest levels of vulnerability. The

study shows the strong effect of exposure to hazards have on the overall risk faced by a com-

munity. This is evident from the relatively good scores recorded by the two clusters in the vul-

nerability sub-components of susceptibility and capacity to cope, adapt and state of ecosystem.

Kula River drain in particular has the highest capacity in the Vea area, yet it has the highest

vulnerability and subsequently is amongst the high risk areas due primarily to its exposure to

Fig 9. The Risk profiles of two community clusters in the Vea and Dano study area. Following the

approach in the World Risk Index [25,34], the risk indices have been translated into five qualitative

classification scheme of very high (5), high (4), medium (3), low (2) and very low (1). Classification algorithm

employed is the Quantile method. In this figure, two levels of factors contributing to final community risk are

presented. The first is the three major components of risk, which are exposure, susceptibility and lack of

capacity. The second level shows the relative contribution of each indicator to first, the sub-component such

as exposure and then to final risk. Only indicators contributing to more than 5% of the final risk are shown.

Major contributory factors to risk are: AFIS = access to alternative food and income sources; SE-CropT = crop

type or the proxy of crop diversification practices; ADP = agricultural dependent population; SS-QH = quality

of housing; SE-DSD = length of dry season duration; CC-EMC = presence of emergency management

committee; C-A AHHIPA = annual household income; CA-Lit = levels of adult population above age 15;

CA-GLaM = good leadership and management at the community level and CIPC = caloric intake per capita.

doi:10.1371/journal.pone.0171921.g009
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floods and droughts. This means that an area will still be classified as having significantly high

multiple risk levels when unusually high exposure levels are combined with moderate levels of

susceptibility, no matter how strong its capacity to cope and adapt to the hazards might be.

The reverse is also true as poor state of inherent conditions and lack of capacity could still

place an area at high risk although its exposure to the hazards is low. This is the case of Sambo-

ligo where its low exposure index of 0.297 does not mitigate the high negative scores in suscep-

tibility (0.594) and lack of capacity (0.614). Balungu cluster of communities shows reverse

situation where high levels of vulnerability (Fig 8) are compensated by very low levels of multi-

ple hazards occurrence. Therefore, we need the detailed knowledge of the communities’ spe-

cific risk profiles to adjust risk prevention and adaptation measures that may be available in

the locality.

In Fig 9, the detail risk profiles of two community clusters each in the Vea and Dano study

areas are presented and show the main causative factors of risk in the area. In the Vea study

area, the two community clusters all fall into the high risk index category and a look into the

indicators contributing to this high risk class show that both clusters have similar underlying

risk profiles. In both cases, exposed elements is the highest causative factor to total risk, con-

tributing 38.3% in the Kula River drain cluster and 34.7% in the Vea main drain cluster.

Although these areas have moderate susceptibility levels, they fall into high risk category as a

result of the extremely high exposure levels (Fig 9). There are also similar profiles at the sub-

component level, exposed elements in both clusters are more influenced by agriculture area in

hazard zones, agricultural dependent population (ADP) and insecure farms whilst Alternate

Food and Income Sources (AFIS) is the main cause of communities’ lack of capacity. However,

the Dano community clusters present different risk profiles. Although both clusters, Sarba and

Dano sector 1,2,4 fall in a low risk category, their risk profiles are markedly different from

each other. Exposed elements contribute far less to risk (24.4%) in the Sarba area and far more

to risk in the Dano sector (34.8%). Whilst three indicators, dry season duration (DSD), caloric

intake per capita (CIPC) and housing are the main drivers of susceptibility in the Sarba cluster,

only CIPC and population density have a significant contribution to susceptibility in the Dano

Fig 10. Digital Elevation model of the three study areas (From Asare-Kyei et al. [16].

doi:10.1371/journal.pone.0171921.g010
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sector 1,2,4 cluster. These results show that different communities can be part of the same risk

category, but the underlying factors defining their risk levels can be fundamentally different

from each other. It is therefore incumbent on policy makers and practitioners to understand

the detail causative factors of risk to deploy interventions that effectively targets the principal

factors affecting risk in a given area.

In the Dano study area, Yo, Loffing-Yabogane as well as Bolember and Gnipiere are the

hotspots of risk. These areas are also the hotspots of vulnerability. However, in the Complan

community cluster, vulnerability is comparatively lower because of low levels of multiple haz-

ards occurrences pushing the communities in the area into a medium risk class. The high level

of risk in these community clusters are due to underlying poor socio-economic conditions.

Only 37% of its inhabitants have adequate local knowledge regarding droughts and floods cop-

ing strategies, DRR measures etc. This coupled with a small percentage having access to alter-

nate food and income sources (12.5%) and an absolute illiteracy level in most clusters (100%)

makes the area a hotspot of vulnerability and risk.

In the Dassari study area, Porga, Sétchindiga followed by Dassari and Tankouri are the risk

hotspots. The medium vulnerability profile of Sétchindiga was not enough to mitigate the

effects of high multiple hazards occurrence and, as can be seen in Fig 9, pushes the communi-

ties in the area to high risk levels. Similarly, Dassari has a significant lower level of vulnerability

(Fig 8), yet high occurrence of multiple hazards eventually increases its overall risk to droughts

and floods.

Maximum risk level for all community clusters studied is in the Yo area of Dano whilst the

Meba Pari community clusters have the least risk levels. Also, communities in the Kula River

drain registered significant high risk. The statistically significant high risk faced by people in

the Dano area results from poor socio-economic systems, high exposure to droughts and rain-

storms. The household survey found several cases of collapsed buildings due to flash floods

and generally poor living standards as evident in the high vulnerability scores estimated.

4.3 Results and discussion of the CIS validation concept

The CIS estimated above was compared with the simulated risk index to determine the robust-

ness of modelling procedures. In the Vea study area, the RMSE of the estimated WESCRI was

relatively low at 0.29, R2 was found to be 0.45. In the Dano study, RMSE of the estimated

WESCRI was also found to be 0.29, R2 was estimated at 0.76. The RMSE was lower for both

study areas indicating that the multi-risk model closely approximates the observed impacts of

the hazards. In the Dano study area, as much as 76% of the variance in observed impact of haz-

ards was explained by the risk model whilst 45% of the variability in observed hazard impact

was explained in the Vea study area by the multi-risk modelling procedures (Fig 11).

Fig 11. Relationship between simulated risk (WESCRI) and observed disaster impacts (CIS). Left chart

represents the Vea study area with the trendline below: LogWESCRI ¼ 0:1045� LogCISþ 1:4828 Right chart

shows the Dano study area with the trendline below: LogWESCRI ¼ 0:0511� LogCISþ 1:4367

doi:10.1371/journal.pone.0171921.g011
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These levels of variance are considered relatively high against the background of uncertain-

ties associated with the observed impact data. The impact data as recounted by at risk popula-

tions were derived from memory and there were no systematically documented records of the

impacts of the hazards. Most of the respondents were able to recount only the high intensity

or magnitudes of the hazards and small impact events were generally not recalled. In the Das-

sari study area, the responses were found to be highly inconsistent and were subsequently dis-

carded. Therefore, no validation based on reported impacts was possible. Fig 11 shows the

strong linear relationship between the observed disaster impact and the modelled output of

multi-risk index. As can be seen from Fig 11, despite the difficulties in recounting disaster

impacts from memory, communities with high simulated disaster risk generally experienced

high observed disaster impacts. This shows the vulnerability and risk models can generally be

used in predicting high and low risk areas in the study areas with reasonable error margin.

4.4 Sensitivity analysis

In this study, six scenarios based on observed relationships between the input variables

(indicators) and the vulnerability composites were carried out to understand which inputs

accounted more to a community’s vulnerability profile. Table 3 presents the mean volatility of

the six different scenarios compared to the original vulnerability estimations. In the Vea study

area, volatility ranged from 0.05 to 0.06. Overall, the mean volatilities for all three study areas

are found to be very low indicating that the sensitivity of the composite vulnerability index to

the varied or excluded indicator is negligibly low. This means that the aggregation technique

introduced, the weighting system applied as well as the modelling procedure followed resulted

in robust estimates and that the final indices are largely unaffected by changes in single indica-

tors. Similar results were found by Damm [14] in mapping flood risk in Germany.

5.0. Conclusions

The aim of this study was to carry out a multi-hazard risk assessment to floods and droughts

using a bottom-up participatory process at the community level to derive community risk pro-

files and to develop a new concept for quantitative validation of risk assessment. The study

analyzed a coupled SES based on three sets of indicators for the three case studies that have

been verified and ranked by at risk population and local stakeholders. The study quantifies vul-

nerability and risk with the aim to support practitioners and policy makers with detailed infor-

mation about vulnerability and risk profiles at the community level. This aspect of identifying

high risk communities by mapping risk hotspots in the study areas is particularly relevant for

practitioners and policy makers.

Table 3. Mean volatility between 6 different vulnerability scenarios.

No. Scenario Mean volatility

Vea Dano Dassari

1 Equal weights of all indicators 0.050 0.071 0.048

2 Excluding Agricultural Dependent population 0.046 0.075 0.036

3 Excluding insecure settlement, population density, Soil organic carbon (Basfonds for Dano), Ability to survive crisis

(alternate food % income source for Dano) and access to extension

0.049 0.051 0.036

4 Increased Agricultural Dependent population by 10% 0.056 0.074 0.043

5 A. Increased by 10% Agriculture area, population density, Caloric Intake per Capita and B. decrease by 10% SOC (Bas

fonds in Dano & Dassari) and annual household income

0.057 0.076 0.043

6 Excluding number of dependents (Dano & Dassari, Vea) and distance to market (Vea) 0.047 0.066 0.039

Minimum 0.046 0.051 0.036

Maximum 0.057 0.076 0.048

doi:10.1371/journal.pone.0171921.t003
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The study found that exposed elements are directly related to the pattern of flood and

drought hazard intensities and consequently are key determinants of vulnerability. Besides the

proximity to hazards, a major driving factor influencing community exposure is the indicator

measuring the share of the population engaged in agriculture. This finding confirms the asser-

tions by Adger et al. [56] and O’Brien et al. [57] that high Agricultural Dependent Population

(ADP) means that a higher percentage of people are exposed to a climate sensitive sector of

agriculture. In the study areas, rain-fed agriculture predominates [13] further aggravating peo-

ple’s exposure to irregular rainfall. High ADP suggest lack of other employment options and

therefore in the event of crop failures, farmers and their dependents have few opportunities to

earn additional income [56,57].

The study found that an area will still be classified as having significantly high risk levels

when unusually high exposure levels are combined with moderate levels of susceptibility, no

matter how strong its capacity to cope and adapt to the hazards might be, (see Fig 9, particu-

larly, Vea main drain and Kula clusters). The reverse is also true. However, poor state of inher-

ent conditions and lack of total capacity could still place an area in high vulnerability zone

although its exposure to the hazards is low. Therefore, it is very critical to understand the com-

position of factors contributing to the overall risk for the design of appropriate and adjusted

disaster risk reduction measures.

Using five-year historical impact data collected from at risk populations, a novel technique

was introduced to validate the underlying models and assumptions used to construct the risk

profiles. The concept of CIS was thus introduced and measures the cumulative impact of mul-

tiple hazards in the study areas. Against the background of large uncertainties associated with

the observed impact data, this study found relatively high levels of variance explained, 76% for

the Dano study area and 45% for the Vea study area.

The results of the local sensitivity analysis show that the mean volatilities for all three study

areas were very low; ranging from a low of 0.036 to a high of 0.076 indicating that the compos-

ite indicator is largely stable. This kind of local sensitivity analysis is useful for understanding

the relative importance of the changed or varied indicator, an analysis which has implications

for policy makers to understand the variables which when intervened upon, could affect the

vulnerability index. For instance, the risk profiles shown in Fig 9 showed that varying agricul-

tural areas in hazard zones in two community clusters (Kula river drain and Vea main drain)

will have significant effect in the level of vulnerability and overall risk faced by the SES in those

areas. Policy makers could therefore implement interventions aimed at reducing cropland area

in high hazard zones.

In an attempt to deal with the on-going scientific debate on whether or not to include the

exposure component in vulnerability assessment, this study provided an alternative approach

where the degrees of exposure of elements in the SES (spatial dimension of exposure) are con-

sidered as contributing to the SES total vulnerability, rather than using the SES’s general expo-

sure as part of vulnerability or rather than excluding the exposure term altogether. This

procedure therefore eliminates a key drawback of the summation conceptualization of vulner-

ability which could place a community in a high vulnerability class although its exposure may

be zero.

The point is that, in reality, people are still vulnerable even though they may not be exposed

to any obvious hazard due to inherent depressed socio-economic conditions and intersection

of its elements with some hazards that may not be too apparent to the people. However, even

in the face of obvious lack of physical hazards, elements within the SES such as its farmlands,

protected areas etc. could still be exposed, albeit partially or remotely due to cross scale interac-

tions. This phenomenon is very common in the study areas where existing socio-economic

conditions in most cases is very dire and leaves people vulnerable even though there are no
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obvious physical exposure. In the final risk assessment, however, where there is no SES general

exposure, risk will be zero even though vulnerability could be high. This is the upside of the

multiplicative effect which was finally used to estimate the risk index. This area of risk assess-

ment where a system could still be vulnerable even though there may not be obvious linkages

to physical hazards requires further studies.

The study provides a framework for conducting risk assessment for multiple cultural and

social contexts spanning three countries using indicators developed from a bottom-up partici-

patory process (see S3 Table). Unlike risk assessment from classical approaches, the differential

risks from these three study areas therefore uniquely represents actual risks faced by its SES as

identified by the at risk populations. At the same time, the study sets the pathway for conduct-

ing risk assessment using a unified indicator set if so desired by practitioners or policy makers.

It must be noted however that, practitioners or policy makers desiring to conduct multiple

hazard risk assessment based on the methodologies presented in this study need to have several

scientific competencies to be able to follow all the approaches outlined here.

Studying risk profiles of rural communities also provides an insight on how to situate vul-

nerability, risk and climate change adaptation efforts within the context of the community’s

sustainable development agenda and can help to develop appropriate, inclusive and well inte-

grated mitigation and adaptation plans at the local level. To cope with climate change and

achieve poverty reduction, it is essential to pursue actions at sector and community levels [58]

and we believe the present study contributes greatly to efforts in this direction. Another key

output is development of comprehensive methods allowing practitioners to conduct similar

community level assessment and to continue to update the risk profiles. Generally, vulnerabil-

ity and risk assessment are rarely verified against impact data. This is because such impact data

are rarely available in the level of detail and/or spatial scale required. We attempted here to

validate the computed risks by introducing the novel and pioneering concept of CIS which

remains improvable but can allow for a first estimation of the validity of risk indices in global

scientific studies of climate risk assessment.
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23. MARTIN R., LINSTÄDTER A., FRANK K. & MÜLLER B. 2016. Livelihood security in face of drought–

Assessing the vulnerability of pastoral households Environmental Modelling & Software, 75, 414–423.

24. WELLE, T., BIRKMANN, J., RHYNER, J., WITTING, M. & WOLFERTZ, J. 2013. World Risk Index

2013: Focus: health and healthcare Berlin, ISBN: 978-3-9814495-3-2.: United Nations University -EHS

& Alliance Development Works.

25. BIRKMANN, J., WELLE, T., KRAUSE, D., WOLFERTZ, J., SUAREZ, D.-C. & SETIADI, N. 2011. World

Risk Report 2011. Berlin: United Nations University-EHS.

Community risk profiles

PLOS ONE | DOI:10.1371/journal.pone.0171921 March 1, 2017 24 / 26

http://dx.doi.org/10.1007/s00267-008-9237-9
http://www.ncbi.nlm.nih.gov/pubmed/19037691
http://www.undp.org/content/undp/en/home/ourwork/crisispreventionandrecovery/overview.html
http://www.undp.org/content/undp/en/home/ourwork/crisispreventionandrecovery/overview.html


26. WORLD BANK 2010a. Review and quantitative analysis of indices of climate change exposure, adap-

tive capacity, sensitivity and impacts: World Development Report 2010: Development and Climate
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