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Abstract

Climate-induced shifts in plant phenology may adversely affect animals that cannot or do

not shift the timing of their reproductive cycle. The realized effect of potential trophic “mis-

matches” between a consumer and its food varies with the degree to which species rely on

dietary income and stored capital. Large Arctic herbivores rely heavily on maternal capital to

reproduce and give birth near the onset of the growing season but are they vulnerable to tro-

phic mismatch? We evaluated the long-term changes in the temperatures and characteris-

tics of the growing seasons (1970–2013), and compared growing conditions and dynamics

of forage quality for caribou at peak parturition, peak lactation, and peak forage biomass,

and plant senescence between two distinct time periods over 36 years (1977 and 2011–13).

Despite advanced thaw dates (7−12 days earlier), increased growing season lengths (15

−21 days longer), and consistent parturition dates, we found no decline in forage quality and

therefore no evidence within this dataset for a trophic mismatch at peak parturition or peak

lactation from 1977 to 2011–13. In Arctic ungulates that use stored capital for reproduction,

reproductive demands are largely met by body stores deposited in the previous summer

and autumn, which reduces potential adverse effects of any mismatch between food avail-

ability and timing of parturition. Climate-induced effects on forages growing in the summer

and autumn ranges, however, do correspond with the demands of female caribou and their

offspring to gain mass for the next reproductive cycle and winter. Therefore, we suggest the

window of time to examine the match-mismatch framework in Arctic ungulates is not at par-

turition but in late summer-autumn, where the multiplier effects of small changes in forage

quality are amplified by forage abundance, peak forage intake, and resultant mass gains in

mother-offspring pairs.
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Introduction

The strongest evidence on the climate-mediated effects of phenological mismatches on ani-

mals has primarily come from species that rely upon current food resources (i.e., dietary

income) to complete reproduction [1, 2–4]. Small animals are vulnerable to failures in income

from food resources that coincide with their commitments to breeding [5, 6]. Conversely,

large animals are more vulnerable to failures of prior income in stored capital that is used to

complete reproduction [7, 8]. For large animals, phenological or trophic mismatches empha-

size income failures when capital is already low and may be more vulnerable, to varying

degrees, to capital failures because their reproductive demands usually exceed current income

[9]. Thus, body size affects the strength of the relationship between current environmental

supply and animal demand that ultimately affects the response of a species to a particular

change in climate [10].

Climate warming has been associated with a shift in the phenology of forage production

and quality for large herbivores. In tropical savannas, warming has shifted the timing, dura-

tion, and extent of the annual rainy and dry seasons and their relative influences to primary

productivity [11, 12]. In the Arctic, warmer temperatures and changes to hydrologic regimes

have advanced the onset and extended the duration of the growing season [13], yet, the magni-

tude of the vegetative responses has varied [14, 15]. Similarly, population responses by large

herbivores may be mediated, in part, by their capacity to “match” the shifting availability of

forage resources with nutritional demands of reproduction [7] and (or) their capability to

establish nutritional stores essential for survival and early reproduction [16].

Climate-induced vegetative changes throughout the growing season have demonstrated

strong trends, yet there have been no documented trends in reproductive phenology of north-

ern ungulates such as caribou, reindeer (Rangifer tarandus), and muskoxen (Ovibos moscha-
tus). Reproductive phenology is closely related to photoperiod, the timing and duration of the

growing season, and the duration and severity of winter [17, 18]. Births are generally synchro-

nous by species during April to June [19], however, the actual timing of births relative to the

onset of the growing season varies with species and degree of reliance on stored capital [20].

Parturition precedes or coincides with the onset of the growing season and is timed to maxi-

mize the period of peak nutrient availability (nutrient concentration x abundance x digestibil-

ity) to mother-offspring pairs [21]. The trophic mismatch hypothesis for large herbivores

states that earlier green-up will shift peak nutrient availability away from peak nutritional

demand leading to lower productivity [22]. However, this hypothesized mechanism for evalu-

ating the influences of climate change on reproductive success in northern ungulates has not

been evaluated consistently. For example, in western Greenland [23] a mismatch in the timing

of peak parturition for caribou and the proportion of emergent forages was weakly correlated

with reduced survival of offspring (but contrary to [16]). This reported trophic mismatch per-

tained specifically to a single component of peak nutrient availability (i.e., N concentration or

forage quality). Similarly, survival to winter of roe deer (Capreolus capreolus) fawns declined

with an increasing mismatch in the onset of the growing season and fawning date [24]. Off-

spring survival of muskoxen may have responded negatively to mismatches between the onset

of the growing season and parturition in the year prior to birth [25]. In contrast, earlier springs

and more vegetatively productive growing seasons increased reproductive success for reindeer

in Fennoscandia [17] and survival of caribou neonates in Alaska [26], and recruitment in Sval-

bard reindeer was strongly related to late winter maternal mass not spring phenology [16].

Characteristics of the Arctic growing season have large influences on primary productivity,

which in turn affect maternal body mass, parturition rate, maternal provisioning, and (or) off-

spring mass of large herbivores [27, 28]. Timing and magnitude of nutritional demands of
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parturient females vary with degree of reliance on maternal capital. Although reproductive

investment occurs along a continuum from capital to income [6], the nutrient allocation data

clearly demonstrate that for caribou [28, 29], as in other Arctic ungulates [8], the N source for

reproduction is primarily from maternal capital. The nutritional demands of reproduction for

females increase from birth to peak lactation, which occurs approximately three weeks after

parturition [30]. However, the amount of maternal capital necessary for reproduction may be

reduced by dietary income either through modification of milk production and (or) by forage

availability to offspring. Subsequently, a female’s “investment” in her offspring rapidly declines

as her offspring acquires progressively more nutrients from forages other than milk and

increasingly abundant forage resources are preferentially deposited into her somatic tissues

[29]. Indeed, the remainder of the growing season is marked by rapid mass gains in mother-

offspring pairs. Evaluation of the mismatch hypothesis has focused primarily on parturition

date [23] and less so on the nutritionally demanding period of early lactation [31]. Addition-

ally, examinations of potential climate-induced trophic mismatches in other periods of the

growing season (e.g., peak biomass in mid-summer and vegetative senescence in the autumn)

that may influence mother-offspring mass have largely been overlooked (except for [32, 33]).

To advance the understanding of the climate-mediated forage influences on northern

ungulates, we evaluated the trophic mismatch hypothesis as suggested for caribou [23]. Specifi-

cally, we examined whether a trophic mismatch occurred between resource availability (as

indexed by N concentration in forages at the start of the growing season) and peak parturition

and peak lactation. We compared the temporal changes in the window of seasonal plant

growth with the quality of food available to a caribou herd with a consistent timing of parturi-

tion (1–7 Jun [34]). We evaluated the long-term changes in the temperatures, timing, and

length of the growing seasons (1970–2013), and compared growing conditions and dynamics

of forage quality (N concentration) in four important forages of caribou at peak parturition,

peak lactation, peak forage biomass, and plant senescence between the growing seasons of

1977 and 2011–13 in three ecoregions in the Alaskan Arctic. Support for the trophic mismatch

hypothesis (as stated in [23]) would require warming trends to result in 1) earlier initiation of

plant growth and 2) decreased forage quality in 2011–13 compared to 1977 at peak parturition

and (or) peak lactation on birthing grounds. Further, we used this investigation to discuss the

match-mismatch framework and present additional hypothetical elements that may influence

the potential climate-mediated effects on the nutrition of northern ungulates throughout the

growing season.

Materials and methods

We studied a 200-km transect spanning three Arctic ecoregions along the Dalton Highway on

the North Slope of the Brooks Range in Alaska. These ecoregions are underlain with thick con-

tinuous permafrost and contain several north to south gradients in latitude (~4˚), elevation

(0–2,400 m), annual precipitation (140–260 mm), and vegetation. Although these ecoregions

have similar average winter temperatures (November—March; approx. -24˚C), summer tem-

peratures (June-August) are quite different (2000–2009; Scenarios Network or Alaska and Arc-

tic Planning, CRUTS3.1, http://www.snap.uaf.edu/data.php).

The Alaskan Arctic Coastal Plain ecoregion (hereafter the Coastal Plain) is bounded on the

north and the west by the Arctic Ocean, on the east by the Alaskan-Yukon border and on the

south by the Brooks Range foothills [35]. Current average daily temperature in summer is near

7˚C. The Coastal Plain is a poorly drained, treeless plain covered by thaw lakes and wetland

complexes interspersed with ice-wedge polygons and slightly acidic to neutral soils. The pri-

mary vegetative community is wet graminoid that is typically dominated by water sedge
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(Carex aquatilis) and tall cottongrass (Eriophorum angustifolium) with mosses and dwarf

shrubs typically on hummocks. The Coastal Plain rises gradually from sea level to approxi-

mately 180 m in the Arctic Foothills to the south.

The Arctic Foothills ecoregion (hereafter the Foothills) is a mostly treeless band of plateaus

and hills between the Coastal Plain and the Brooks Range [35]. Current average daily tempera-

ture in summer is 11˚C with daytime maximum temperatures approaching, and sometimes

exceeding, 25˚C in late June. The hills and valleys are better drained with fewer lakes than the

Coastal Plain. Predominant vascular species include tussock cottongrass (E. vaginatum), Bige-

low’s sedge (C. bigelow), diamond-leaf willow (Salix pulchra), mountain cranberry (Vaccinium
vitis-idaea), and dwarf birch (Betula nana) in the uplands; water sedges in the lowlands; as well

dwarf scrub communities in drier or exposed sites at higher elevations near the boundary of

the Northern Brooks Range ecoregion (approx. 425–600 m [36]).

The Northern Brooks Range ecoregion (hereafter the Brooks Range) consists of rugged and

steep mountains (800–2,400 m) that span the east-west extents of northern Alaska [35]. Cur-

rent average daily temperature in summer is 11˚C with lower daily maximums than the Foot-

hills. Unstable mountainsides are sparsely covered with dwarf scrub vegetation whereas mesic

sites in the valleys are covered with graminoid herbaceous communities especially on the

northern boundary along the Foothills. Erect shrub tussock tundra on acidic soils is dominated

by willow and dwarf birch, tussock cottongrass, and other sedges (Carex spp.), typically Bige-

low’s sedge, with mosses and fruticose lichens abundant in the understory [36].

The Central Arctic herd is the primary caribou population inhabiting this area. Since regu-

lar monitoring of this herd began in 1975, the Central Arctic herd increased from 5,000 to

70,000 by 2010 [37], but has recently declined to 22,000 (Alaska Department of Fish and

Game, unpublished data). This herd typically migrates in May from the Brooks Range and

calves in early June between the Colville and Canning Rivers on the Coastal Plain [38]. Peak

parturition occurred during 1–7 June [34, 37]. As summer progresses, caribou may move

south off the Coastal Plain towards the Foothills to seek out areas that minimize harassment by

parasitic insects. Later, as plants senesce, animals move south to fall and winter ranges in the

Foothills and along the northern and southern slopes of the Brooks Range [39].

Broad scale characteristics of the growing season (1970–2013)

To document long-term trends in temperature and phenology of the growing season in the

central Alaskan Arctic (Fig 1), we used average monthly temperatures from 1970–2013 to

assess temperature trends and estimate day of thaw, day of freeze, and length of the growing

season for each year and ecoregion. Monthly temperature data were extracted from subsets of

each ecoregion along the Sagavanirktok River (approx. 80 km wide) from downscaled data sets

derived from historical observations (1970–2009; CRUTS3.1; http://www.snap.uaf.edu/data.

php) as well as observations from Natural Resources Conservation Service’s SNOTEL sites in

northern Alaska [2000–2013; Prudhoe Bay (1177), Sagwon (1183), and Imnaviat Creek (968);

http://www.wcc.nrcs.usda.gov/snotel/Alaska/alaska.html). Mean monthly temperatures were

used to describe monthly temperature trends for May—September 1970–2013.

To estimate the day of thaw and freeze for each year and ecoregion, we regressed the

monthly mean temperatures from January to June (day of thaw) and July to December (day of

freeze); estimated the fractional month when monthly mean temperature = 0˚C; and multi-

plied by 365.24 to estimate the day of the year when thaw (�0˚C) or freeze (�0˚C) occurred

(similar to http://ckan.snap.uaf.edu/dataset/historical-derived-dof-dot-logs-771m-cru-ts). We

assumed the length of the growing season was the day of thaw subtracted from the day of

freeze for each year [40]. Linear regression, 95% confidence intervals of slopes, and coefficients

Caribou, forages, and climate
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of determination (r2) were used to evaluate trends in temperature and characteristics of grow-

ing seasons within each ecoregion since 1970 [41]. To evaluate temperatures and characteris-

tics of the growing seasons in the years of forage sampling (1977 and 2011–13) relative to long-

term trends, we used residuals of the regressions of temperature, days of thaw and freeze, and

length of the growing season on year (1970–2013).

Site specific growing conditions and forage quality (1977 and 2011–13)

To compare growing conditions at our sample sites between 1977 [42] and 2011–13 through-

out the growing season (12 May—Sep 30), we used daily temperatures within each ecoregion

from existing weather databases (1977) and data loggers at our 9 sampling locations (2011–

2013; Fig 1). For 1977, we downloaded hourly temperature data (http://www.ncdc.noaa.gov/

cdo-web/) from Barter Island (Coastal Plain), Prudhoe Bay (Coastal Plain), Deadhorse

(Coastal Plain), Franklin Bluffs (Foothills), Happy Valley (Foothills), and Galbraith Lake

(Brooks Range) and summarized hourly temperatures by day. Except for Barter Island, the

availability of consecutive daily temperature data was poor for the Coastal Plain in 1977.

Fig 1. The locations of weather stations and sampling locations to monitor nitrogen content of

caribou (Rangifer tarandus) forages and ambient air temperatures throughout the growing seasons

of 1977 and 2011–13 in three ecoregions (Coastal Plain, Foothills, and Brooks Range) along the

Dalton Highway, North Slope of the Brooks Range, Alaska; distribution of the Arctic ecoregions in

Alaska are shown in the inset.

doi:10.1371/journal.pone.0171807.g001
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Average daily temperatures at Barter Island throughout the growing seasons of 1973–1980

were strongly correlated to daily temperatures at Prudhoe Bay [n = 698; r = 0.95] and Dead-

horse [n = 331; r = 0.94]. We, therefore, used data from Barter Island and the following equa-

tions to model missing temperatures for Prudhoe Bay and Deadhorse to estimate growing

conditions in 1977 on the Coastal Plain (Fig 1): Prudhoe (average daily temperature ˚C) =

1.178�Barter Island (average daily temperature ˚C) + 1.772; Deadhorse (average daily tempera-

ture ˚C) = 1.283�Barter Island (average daily temperature ˚C) + 1.152.

In 2011–13, we used data loggers (UA-002-64; Onset Computer Corporations, Bourne,

MA) housed in solar radiation shields (SRS100; Ambient Weather, Chandler, AZ) to monitor

hourly temperatures (˚C) at each sampling location. Loggers and shields were approximately 1

m above the ground on wooden dowels (3.2 cm in diameter); hourly temperatures for each

plot were summarized by day and year. To index cumulative summer “warmth” or growing

conditions for forages, average daily temperatures were converted to thaw degree days (thaw

degree day is average daily temperature > 0˚C) and summed to create cumulative thaw degree

days curves by ecoregion for 1977 and 2011–13. In order to identify potential differences in

temperature readings from sensors at existing weather stations and data loggers, we used linear

regression to examine the correlation between daily mean temperatures at Deadhorse and data

loggers in 2011–13. Temperatures recorded at nearby data loggers (<18 km) were strongly

correlated to the Deadhorse station (n = 405, r = 0.97, slope ± 95CI = 1.0 ± 0.02; weather sta-

tion data was also used as input in long-term datasets to evaluate characteristics of the growing

season).

Collection and processing of forage samples. Similar to forage collections in 1977 [42],

in 2011–13, we collected samples of current annual growth of 4 important foods for caribou

[tussock cottongrass, water sedge, louseworts (Pedicularis spp.), and diamond-leaf willow]

[43–45] approximately every 2 weeks (28 May–25 September) at 9 sampling locations along a

200-km transect. Representative samples (approx. 20–100 g) of forages were collected over

large areas (approx. 5 ha) at approximately the same time (10th and 25th of each month ± 2.5

days) and locations [42]. In the field, we stored samples in paper bags in protected, shaded,

and dry locations at ambient temperatures with constant air flow. Upon return from the field

(�6 days following collection), samples were dried in a forced-air oven at 50–55˚C to constant

mass [46], and stored at room temperature until processing. Samples were ground through a

1.27-mm screen in either a Wiley (Thomas Scientific, Swedesboro, New Jersey, USA) or cen-

trifugal mill (Retsch ZM 200, Haan, Germany) and analyzed for total N content with an ele-

mental analyzer (CNS2000; LECO, St. Joseph, MI, USA). Nitrogen content was expressed on

the basis of dry matter content, which was determined by drying to constant mass at 80˚C in a

convection oven.

Nitrogen content by day of the year. Based on a priori knowledge from similar work on

nitrogen dynamics in reindeer (R. tarandus) forages in Alaska [47, 48], we used regression

to fit linear, quadratic, and cubic functions to estimate N content for each forage species on

day of the year by ecoregion and period of collection (1977 and 2011−13). The large-scale

changes in climate that occurred from 1970–2013 was considered the treatment, thus data in

1977 were considered control and 2011–13 the treatment. Additionally, exploratory (S1 and

S2 Figs) and preliminary analyses (S1 Table; examined the main fixed effects of day of the

year and year by ecoregion and species in 2011–13) supported pooling 2011–13 data, as year

was not a significant factor in 8 of 12 models. Adjusted coefficients of determination (r2
a or

R2
a) were used to assess if additional polynomials improved the fit of the regression equation

to the data, thus unlike coefficients of determination, additional parameters do not necessar-

ily increase this measure of fit [41]. We used the best fit models and “predictnl” in Stata 11.2

(College Station, TX, USA) to estimate N content (± 95% confidence limits) by day of the

Caribou, forages, and climate
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year for each forage species and ecoregion throughout the growing seasons of 1977 and

2011–13. Model estimates were set according to the growing season’s earliest (Coastal Plain:

day 164 in 2012; Foothills and Brooks Range: day 152 in 2012) and latest (all ecoregions: day

267 in 2012) days of the year that forage was sampled across all years of collection within

each ecoregion and in some cases. For each forage species and ecoregion, we used 95% confi-

dence intervals to compare N content between 1977 and 2011–13 for 4 important periods for

the Central Arctic herd, including: 1) peak parturition (early June: days of year = 152−158

[34, 37]), 2) peak lactation (3 weeks after peak parturition: 173−179 [30]), 3) peak forage bio-

mass (late July: 209−215; D. Gustine, unpublished data); and 4) plant senescence (the autum-

nal equinox; 261−267).

Results

From 1970–2013, temperature trends for all ecoregions indicated warmer growing seasons,

however, the strength of the warming trend was strongest on the Coastal Plain which is the

birthing grounds of the Central Arctic caribou herd. Average temperatures increased in

May (0.05˚C�yr-1), June (0.04˚C�yr-1), July (0.03˚C�yr-1), and September (0.06˚C�yr-1) on the

Coastal Plain, while temperatures increased in June (0.03–0.04˚C�yr-1) and September (0.04–

0.05˚C�yr-1) in the Foothills and Brooks Range (S2 Table).

Recent growing seasons of all the ecoregions started 7−12 days earlier (Fig 2a), ended 9−10

days later (Fig 2b), and lasted 15−21 days longer than in 1970 (Fig 2c). In the Coastal Plain,

growing seasons always started later and typically froze earlier than other ecoregions (Fig 2a

and 2b). Growing seasons on the Coastal Plain were approximately 14−17 and 20−23 days

shorter than the Foothills and Brooks Range, respectively (Fig 2c). In 1977, thaw occurred 7−9

days later across ecoregions than expected from the regression results. Indeed, the day of thaw

in 1977 was the second latest day of thaw in the 44-year record (Fig 2a). There were very few

similarities among growing season characteristics across ecoregions and years during 2011−13

(Fig 2). However, on the Coastal Plain in 2011−13, the days of thaw occurred 8 days earlier

(average; range = 2–13 days) and the growing season was 11 days longer (0–20 days; Fig 2c)

than in 1977.

The growing seasons of 2011−13 were warmer than 1977 in the Coastal Plain and the

Brooks Range. The Coastal Plain was cooler in 1977, as measured by cumulative thaw degrees,

through peak calving and lactation [peak parturition (mean, range): 1977 = 8.8, 2.2–16.9 and

2011–13 = 17.6, 13.1–21.0; peak lactation: 1977 = 80.6, 73.6–86.5 and 2011–13 = 156.6, 132.7–

181.7)]. Thermal differences between 1977 and 2011−13 were most pronounced at peak bio-

mass in all ecoregions (Fig 3).

With a few exceptions, the best fit models to estimate the change in N content in forages

throughout the growing seasons of 1977 (n = 153) and 2011−13 (n = 511) were curvilinear.

Overall, models fit well for willow (mean R2
a = 0.91), and adequately for tussock cottongrass

(0.69), water sedge (0.68), and louseworts (0.55; S3 Table).

Forage quality (as indexed by N content) generally peaked at the beginning of the growing

season and declined to senescence in all ecoregions (Fig 4; S5 Table). In contrast to the trophic

mismatch prediction of decreased forage quality for fixed dates [23] in warmer 2011–2013 (S5

Table) compared to cooler 1977, there were no significant differences in N concentration dur-

ing parturition or lactation. On the contrary, on the Coastal Plain where caribou gave birth, no

emergent forages were even available for collection during peak parturition in either 1977 or

2011−13 (i.e., growing season had not started yet). In the Foothills, N concentration was higher

in 1977 for cottongrass and water sedge at peak calving and lactation, however, this area was

not typically used by caribou at these times.

Caribou, forages, and climate
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Fig 2. Estimates of the a) day of thaw, b) day of freeze, and c) length of the growing season in three ecoregions (Coastal Plain,

Foothills, and Brooks Range) along the Dalton Highway, North Slope of the Brooks Range, Alaska; vertical lines denote years of

forage sampling; and the confidence intervals (95%) of all slopes did not include zero (r2 = 0.11–0.44).

doi:10.1371/journal.pone.0171807.g002

Caribou, forages, and climate
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Fig 3. Growing conditions, as indexed by cumulative thaw degree days, throughout the growing

seasons of 1977 and 2011–13 when caribou forages were collected within the a) Coastal Plain, b)

Foothills, and the c) Brooks Range ecoregions on the North Slope of the Brooks Range in the Alaskan

Arctic. Shading denotes the periods of interest (days of year): peak parturition (152–158), peak lactation

(173–179), peak forage biomass (209–215), and senescence (261–267).

doi:10.1371/journal.pone.0171807.g003

Caribou, forages, and climate
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Discussion

Despite the advanced thaw date and increased growing season length (Figs 2 and 3) on the

birthing grounds, the growing season had not commenced at peak parturition in 1977 or

2011–13 and we found no reduction in forage quality at peak lactation (Fig 4). Consequently,

there was no support herein for the occurrence of a trophic mismatch (as defined in [23]) at

the onset of the growing season for this population. The environmental conditions for a tro-

phic mismatch in forage quality to occur were clearly in place, however, counter to observa-

tions in Greenland [23] but similar to elsewhere [16, 17, 49], key emergent forages were not

available to reproductive females until approximately 4–11 days after peak parturition (Fig 4).

Thus a “mismatch” in the onset of the growing season and reproductive phenology appears to

be the norm for caribou in the Alaskan Arctic. Similarly, there has been no temporal trend in

the timing of peak N concentration in forages or reproductive phenology of other Rangifer sp.

populations in Fennoscandia [16, 17] as well as other vertebrates in the North American Arctic

[14].

Arctic ungulates have committed maternal capital by giving birth before income is available

as new plant growth. The resources required by Arctic ungulates to complete reproduction are

established in the previous summer and fall [29]. The heterogeneity of Arctic systems at peak

parturition selects for a capital breeding strategy in large mammals that must use large areas to

complete their life history [50]. The responses of large herbivores may vary widely with the

Fig 4. Nitrogen content (%) in four primary forages of caribou throughout the growing seasons of 1977 and 2011–13 within the Coastal Plain (top

row), Foothills (middle row), and the Brooks Range (bottom row) ecoregions in the Alaskan Arctic; shading denotes the periods of interest (days

of year): peak parturition (152–158), peak lactation (173–179), peak forage biomass (209–215), and senescence (261–267). Model estimates were

limited to the earliest and latest dates that current annual growth were available for all periods within each ecoregion.

doi:10.1371/journal.pone.0171807.g004
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responses of Arctic plants to climate change because productivity of populations is tied to

plant production through the entire growing season not just at the onset.

Growing seasons

As has been typical of northern systems, the Alaskan Arctic experienced increased tempera-

tures and advances in the phenology of growing seasons over the last 44 years. Trends in tem-

perature and characteristics of the growing seasons were indicative of a strong warming signal:

growing seasons were warmer, started earlier, ended later, and lasted longer (S2 Table and Fig

2). Even though Alaska apparently “cooled” in the first decade of the 21st century, northern

Alaska has undergone a distinct warming trend in the summer months since the late 1970s

[51]. Increases in temperature (S1 Table) were consistent with longer-term trends reported for

the region [52]. Satellite-based indices of vegetative phenology and soil thaw corroborated our

estimates suggesting growing seasons in the north start 4–17 days earlier than in the 1980s

[53–55]. Further, modeling efforts estimated that leaf out started approximately 10 days earlier

in 2013 than in 1970 [56]. Our estimates of changes in the length of the growing season from

1970 (0.37 days�yr-1) were similar to those reported in the Canadian Arctic (0.41 days�yr-1

[14]), as well as from a biome-level assessment of soil temperatures in the North American

tundra (0.42 days�yr-1 [55]), but shorter than estimates in Svalbard (0.58 days�yr-1 [57]) or

Greenland (0.77 days�yr-1 [58]). Although longer growing seasons may not necessarily mean

warmer growing seasons (Fig 2b), growing seasons on the birthing grounds (i.e., Coastal

Plain) started earlier (Fig 2a) and were 42% warmer in 2011–13 than 1977 (Fig 3a), similar to

the 37% increase observed over a 22-year time series in the Canadian Arctic [14].

Reproductive investment and trophic mismatch

Reproductive investment strategies can magnify (income breeders) or dampen (capital breed-

ers) the consequences of a mismatch in peak resource demand and availability [7]. For income

breeders, which predominantly rely on forage resources in late gestation and lactation, mis-

matches between reproductive and vegetative phenology may reduce fitness and population

growth rates [24]. Conversely, the maternal reserves of capital breeders are deposited late in

the previous growing season and are used to offset limited food availability in early reproduc-

tion. Therefore, capital breeders may experience weaker trophic feedbacks [7] to the timing of

food availability and, possibly, a lag in the effect of a mismatch. Capital breeders, which include

muskoxen [8, 25], Soay sheep (Ovis aries) [7], and Rangifer sp. [17, 28, 29], rely heavily on

maternal reserves throughout reproduction and are robust to trophic mismatches at parturi-

tion and during lactation [16]. Similar to other circumpolar Rangifer populations [17, 28, 49,

59, 60], in the central Alaskan arctic, peak parturition was at least one week prior to the avail-

ability of spring re-growth of forages (Fig 4), and females likely depended heavily on maternal

capital to support their offspring early in the growing season. Despite several decades of

increasing temperatures (S1 Table; Fig 2) and dynamic population changes, the timing of peak

parturition has remained consistent for northern Alaskan caribou populations [37, 61–63].

Meanwhile (as recently summarized in Veiberg et al [16]), caribou responses in western

Greenland were similarly diverse: there was wide spatial variation in productivity of caribou in

the West Greenland, which included the observations reported in Post and Forchhammer

[23], when populations were stable or increasing [64–66].

Recruitment in capital breeders is not influenced by forage quality (N content) alone but by

the combination of quality and quantity throughout the growing season and its effect on the

dynamics of maternal capital and offspring growth. Spatio-temporal variation in forage charac-

teristics and foraging conditions [67, 68] induce a capital reproductive investment strategy (in
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sensu [28]). Forage abundance has large effects on the capacity of mothers to replenish and

establish body stores [17, 69], thus recruitment is indirectly affected by environmental variation

through changes in maternal reserves [7, 16]. However, dynamics of forage quality interact

strongly with forage abundance to dictate timing of peak resource availability and, thereby,

rates of nutrient gain. Therefore, we suggest that to effectively evaluate the mismatch hypothesis

[70] it is crucial to determine the timing of peak resource demand and peak resource availability

relative to the investment strategy of reproduction of the species of interest [10]. For example,

in caribou, peak N demands of lactation occur approximately 3 weeks after parturition and are

met primarily with body reserves but are offset with intake of emergent forages [29, 30]. After

this period, lactating females rapidly shift their resource allocation to somatic tissues rather than

offspring with protein deposited preferentially to fat [71]. Peak resource availability is a product

of forage biomass, N concentration, and digestibility. Although the onset of the growing season

in the Arctic typically coincides with peak N content (Fig 4), emergent forage biomass is very

low but highly digestible at this time [72, 73]. Similar to the Canadian Arctic [74], peak forage N

availability (e.g., kg digestible N � ha-1) on the Coastal Plain likely occurs after the peak demands

of lactation but before the peak of forage biomass (Fig 4; D. Gustine, unpublished data) [75].

This coincides with a decline in milk intake by offspring [30] while forage intakes and body

masses are increasing for both mothers and their offspring in direct response to increases in for-

age abundance. Body mass gains during this period for mother-offspring pairs are critical for

conception in adult females [34] and overwinter survival and recruitment [16]. Therefore, com-

plementary to Veiberg et al [16], we suggest the appropriate window of time to examine the

match-mismatch framework in Arctic ungulates is not at parturition but in late summer-

autumn, where the multiplier effects of small changes in forage quality [76] are amplified by for-

age abundance, peak forage intake, and resultant mass gains in mother-offspring pairs.

Foraging windows [10] for Arctic herbivores may shift with the spatial and temporal diver-

sity of terrain, vegetation, and phenology. Although the onset of the growing season has typi-

cally occurred earlier as a result of warming (Fig 2a) [13], the direction and magnitude of the

effect of vegetative responses to warming has varied across the Arctic [14, 15]. Phenological

trends in vegetation in the Arctic are site dependent [13], thus phenological responses to

warming are most likely heterogeneous across space and time [14, 15]. Responses are dynamic

within forage groups as warmer springs in the high Arctic may increase N concentration in

some sedge species, while warmer summers may increase the rate of lignification in others

[14]. Inter-annual variation in forage abundance has also been estimated to be both low and

high in response to temperatures [77, 78], while timing of peak forage abundance has typically

remained static despite increases in temperature in the Arctic growing seasons [77]. Neverthe-

less, climate shifts are expected to continue to substantially increase vegetative biomass in Arc-

tic systems, with most of the change due to the expansion of shrubs [79]. These shifts in

temperature regimes, habitat composition, and forage abundance and quality will hypotheti-

cally affect the duration of foraging windows. Thus, we expect that heterogeneous vegetative

responses to climate in spatially and phenologically diverse environments will spur similarly

diverse responses among populations of caribou and other Arctic herbivores.

Conclusions

Despite earlier thaw dates and warmer temperatures, we did not observe an advance in the

timing of peak N concentration (i.e., forage quality) as expected under the trophic mismatch

hypothesis (in sensu [23]). Evidence herein suggests that trophic mismatches for caribou in

Alaska were not likely at parturition because caribou appear to use maternal capital to buffer

lack of green forages at parturition and (or) temporal variance in forage quality and abundance
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[7, 28, 80]. Thus, the generalizability of the spring trophic mismatch hypothesis may be limited

for caribou populations [16]. Rather, climatic influences on peak resource availability during

the period of rapid forage intakes and mass gains (i.e., late summer to fall) may have stronger

effects on reproductive success than maternal mismatch with forage quality alone at parturi-

tion. Independent of insect harassment, we hypothesize that earlier springs, increases in forage

biomass [17, 26], longer growing seasons, and shifts in forage quality in summer-autumn

ranges will provide nutritional benefits throughout the growing season to reproductive females

[16]. However, given the wide spatial variation in shifts of phenology, abundance, and quality

of forage; the capacity of migratory caribou to shift birthing and summering ranges [81] and

to forage selectively and rapidly [82]; the marked behavioral and physiological plasticity evi-

dent in Rangifer; as well as the diversity of circumpolar habitats occupied by this species [83],

we expect a diverse response among populations of caribou to continued climate warming.
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Foothills (middle row), and the Brooks Range (bottom row) ecoregions in the Alaskan Arc-

tic; shading denotes the periods of interest (days of year): peak parturition (152–158), peak

lactation (173–179), peak forage biomass (209–215), and senescence (261–267). Model esti-

mates were limited to the earliest and latest dates that current annual growth were available for

all periods within each ecoregion.

(TIF)

S2 Fig. Relationship between the predicted (Fig 4) and observed nitrogen content (%) by year

in four primary forages of caribou on North Slope of the Brooks Range, Alaska, 2011–13.

(TIF)
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