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Abstract

Global climate change not only leads to elevated seawater temperatures but also to episodic
anomalously high or low temperatures lasting for several hours to days. Scleractinian corals
are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their
mutualism with Symbiodinium spp. (coral bleaching) and potentially coral death. Conse-
quently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely,
gorgonian corals persist, with their abundance even increasing. How gorgonians react to
thermal anomalies has been investigated utilizing limited parameters of either the gorgo-
nian, Symbiodinium or the combined symbiosis (holobiont). We employed a holistic
approach to examine the effect of an experimental five-day elevated temperature episode
on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa
and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawa-
ter temperatures. Neither Symbiodinium genotypes nor densities differed between the ambi-
ent 29.5°C and 32°C. Chlorophyll a and cz per Symbiodinium cell, however, were lower at
32°C leading to a reduction in chlorophyll content in the branches and an associated reduc-
tion in estimated absorbance and increase in the chlorophyll a specific absorption coeffi-
cient. The adjustments in the photochemical parameters led to changes in photochemical
efficiencies, although these too showed that the gorgonians were coping. For example, the
maximum excitation pressure, Q,, was significantly lower at 32°C than at 29.5°C. In addi-
tion, although per dry weight the amount of protein and lipids were lower at 32°C, the overall
energy content in the tissues did not differ between the temperatures. Antioxidant activity
either remained the same or increased following exposure to 32°C further reiterating a
response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian
corals to modify symbiont, host and consequently holobiont parameters may partially
explain their persistence on reefs faced with climate change.
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Introduction

Global climate change affects many ecosystems, including coral reefs [1]. One aspect of climate
change is the rise of seawater temperatures that is anticipated to continue into the future [1, 2].
In addition, short-term fluctuations in prevailing temperatures over several hours or days are
also projected to occur more frequently [3-5]. Exposure to seawater temperatures even 2°C
above the mean summer maximum can adversely affect corals and their mutualistic endosym-
biotic dinoflagellate algae, Symbiodinium spp. [3]. Numerous studies have investigated the pre-
dominantly detrimental effects of elevated seawater temperatures on scleractinian coral—
Symbiodinium symbioses (reviewed in [6, 7, 8]), but such data on other abundant coral reef
cnidarians, such as octocorals, lag behind.

In the Caribbean, for example, over the past few decades, scleractinian coral cover has dra-
matically declined [9, 10] concurrent with a rise in seawater temperatures by 0.2-0.4°C/decade
between 1985 and 2006 [11]. On the other hand, the abundance of Caribbean octocorals, pre-
dominantly gorgonian corals, has remained the same or even increased [12-15]. In fact, gorgo-
nian corals constitute the dominant benthic fauna on many Caribbean reefs [13, 14, 16, 17],
where they provide food and shelter to a variety of invertebrates and fish [18-21]. Therefore,
in order to understand the future of Caribbean reefs, it is imperative to determine the effects of
potential stressors, such as elevated seawater temperatures, on gorgonian corals.

In corals, thermal stress often leads to a reduction in Symbiodinium numbers and/or the
amount of chlorophyll within the remaining Symbiodinium, which is commonly referred to as
coral bleaching [22]. The elevated temperatures can disrupt Symbiodinium photosynthesis by
hindering the repair of damaged photosystems [23], increasing the production of reactive oxy-
gen species (ROS) that impair the thylakoid membranes [24], and inhibiting enzymes respon-
sible for carbon fixation [25]. In addition, the production of high levels of nitric oxide (NO) in
thermally stressed Symbiodinium can result in apoptosis [26]. Sensitivity to thermal stress can
vary between different Symbiodinium clades and sub-cladal types [27, 28].

Detrimental effects on the Symbiodinium may alter the nutrient exchange between the part-
ners. Symbiodinium supply their host with carbohydrates, lipids, and essential and mycospor-
ine-like amino acids [29-31], while the host provides Symbiodinium with carbon, nitrogen,
nutrients, and an environment for photosynthesis [32-35]. Disruption of the symbiosis may
alter nutrient exchange between the partners, the amount of energy required to maintain
homeostasis, and drive the coral host and its symbionts to utilize their energy reserves [36].
For example, thermally stressed scleractinian corals and octocorals in the Indo-Pacific exhibit
a drop in tissue reserves like lipids, proteins and carbohydrates [37-40]. In scleractinian corals,
tolerance to, and the capacity to recover from, thermal stress is linked to the amounts of tissue
reserves available [41, 42].

Faced with stressors, Symbiodinium and corals can utilize several mechanisms to mitigate
dysfunction in their cells. By increasing the activities of antioxidant enzymes like superoxide
dismutase (SOD) they can convert superoxide to H,O,, and then further break H,0, down
with peroxidase (POX) and catalase (CAT) to water and O, [28, 43, 44]. Corals can also reduce
damage to proteins by increasing the production of heat shock proteins (Hsp) [43-45]. As in
Symbiodinium, the ability of corals to cope with thermal stress can vary between different host
taxa [43, 46]. For example, Porites cylindrica, which possessed higher levels of SOD and Hsp
than Stylophora pistillata, was better able to cope with, and recover from, thermal stress [43].

In contrast to the plethora of studies on the effects of elevated temperatures on scleractinian
corals, only a handful of studies investigated the potential consequences of elevated seawater
temperatures on Caribbean gorgonians. These studies focused only on a few parameters such
as on the production of ROS, NO and Hsp90 [47, 48], the effects of pathogens on gorgonian
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corals at ambient and elevated temperatures [49-51] and the effects of ultraviolet radiation in
conjunction with elevated temperatures [52]. We decided to employ a holistic approach to
determine the effects of elevated temperature on multiple parameters of the gorgonian host,
the Symbiodinium and the subsequent holobiont in representative species of these important
Caribbean reef taxa.

Methods
Experimental setup

We assessed the effect of experimental short-term exposure to elevated temperature on the
gorgonian species Eunicea tourneforti, E. flexuosa, and Pseudoplexaura porosa. From each spe-
cies, 12 colonies located at a depth of 3-4m on a patch reef adjacent to the pier of the Instituto
de Ciencas del Mar y Limnologia (ICMyL), Universidad Nacional Auténoma de México
(UNAM), at Puerto Morelos, México (20°52’5.23"N, 86°51°58.92"W) were sampled. Field
permit was granted by Secretaria de Agricultura, Desarrollo Rural, Pesca y Alimentacion
(SAGARPA), permit No. GDOPA 08606.251011.3021. From each colony, two branches, 12—
14cm long, were excised, attached vertically onto PVC stands, and separated into two outdoor
flow-through aquaria. The temperature in both aquaria was controlled using an aquarium
chiller (0.5hp Delta Star, Aqua Logic, USA) and two heaters (1000W and 1800W EasyPlug
heater, Process Technologies, USA). To mimic light levels on the patch reef, garden shade
cloth was placed over the tanks to reduce the incident irradiance by about 50%.

For a 14-day acclimation period, the temperature in both aquaria was held at 29.5°C. This
temperature is similar to the ambient mean monthly summer (May-August) seawater temper-
ature on local shallow reefs ranging from 29°C to 30°C [53, 54]. After the 14 acclimation days,
the control aquarium was kept at the ambient 29.5°C, while the temperature in the treatment
aquarium was raised, 1°C/day over three days, to 32°C. The 32°C treatment represented a
2-3°C increase above typical summer temperatures and the predicted average sea surface tem-
perature by 2099 [55]. In addition, 32°C is 2°C greater than the bleaching threshold tempera-
ture of 30°C at this location (NOAA Coral Reef Watch Virtual Station Puerto Morelos,
Mexico). Indeed, exposure to 31.5-32°C is stressful for scleractinian corals from this area and
leads to coral bleaching [56-60]. When the treatment aquarium reached 32°C the experiment
began. The gorgonian branches were kept in the ambient and elevated temperature treatments
for five days following which the branches were processed.

Photochemical efficiency of photosystem Il

Throughout the experiment, the maximum (at dusk, Fv/Fm) and effective (at local noon, AF/
Fm®) photochemical yields were measured daily using a Diving PAM (Walz, Germany). Plastic
tubing attached to the distal end of the probe ensured a fixed distance between it and the gor-
gonian tissue. For each branch, the photochemical yields were measured at three locations, in
the upper one-third, middle, and lower one-third of the branch. The maximum excitation
pressure over photosystem II (Q,,) was determined by modifying the formula in Iglesias-Prieto
etal. [61] to Qy, =1 -[(AF/Fm‘at noon) / (Fv/Fm at dusk on the preceding day)].

Estimated absorbance

After the five experimental days, while each gorgonian branch was immersed in seawater
maintained at its respective experimental temperature (29.5°C or 32°C), the reflectance spec-
trum of a region located 2-4cm from the branch tip was recorded using the protocol described
in Ramsby et al. [62]. Reflectance was converted to estimated absorbance (D.), and D, at
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675nm was used to calculate light absorbed by Chl a, and the Chl a specific absorption coeffi-
cient (a* cp o) [63].

Sample processing

Following absorbance determination, a 2cm fragment, 2-4cm from the branch tip, was excised,
and its length and diameter were recorded. Both this fragment and the remaining branch were
flash-frozen in liquid nitrogen and stored at -80°C until further processing. To isolate Symbio-
dinium cells, the 2cm fragment was ground, and the cells were separated by filtration and a
series of washes with 0.2pum-filtered seawater (FSW) [64]. The Symbiodinium cells were re-sus-
pended in FSW and aliquots were taken for determination of density, chlorophyll content and
genetic identification.

Symbiodinium cell density and chlorophyll content

From one Symbiodinium aliquot, in a minimum of three 100yl subsamples, Symbiodinium
cells were counted using the FlowCAM Imaging Particle Analyzer (Fluid Imaging Technolo-
gies, Maine, USA), which pumps a liquid sample through a flow cell and captures images of
the microscopic particles suspended in it [65]. Symbiodinium were distinguished from other
particles (like cellular and sclerite debris) using a value filter based on their diameter, circle fit,
and red:blue color ratio. Symbiodinium cell counts were standardized to surface area of the
excised 2cm-long branch fragment. The Symbiodinium in a second aliquot were pelleted, the
FSW removed, and a mixture of acetone and dimethyl sulfoxide 95:5 v/v [64] was added for
24h to extract Chlorophylls a (Chl a) and ¢, (Chl ¢;,), and their concentrations determined
using the equations of Jeffrey and Humphrey [66]. The total amount of Chl g and ¢, extracted
was standardized to either the surface area of the excised 2cm-long fragment (Chl cm™) or the
number of Symbiodinium cells isolated from that branch fragment (Chl cell™).

Genetic identification of Symbiodinium

The Symbiodinium in a third aliquot were also pelleted, their DNA extracted, and the internal
transcribed spacer 2 region (ITS2) of the ribosomal DNA was PCR amplified using the proto-
col of LaJeunesse et al. [67], with an addition of a final extension step of 30min at 72°C to
reduce the formation of heteroduplexes [68]. The amplified product was separated with Dena-
turing Gradient Gel Electrophoresis (DGGE) on a polyacrylamide gel containing a 45-80%
gradient of urea [67], with modifications described in Shirur et al. [64]. Banding profiles were
compared between samples, and prominent bands from unique profiles were excised, re-
amplified, and sequenced [69]. Some DGGE profiles contained multiple prominent bands,
and in E. flexuosa, with the exception of the lowest band, the others were heteroduplexes (Fig
1). These bands were re-amplified [67, 68], and their constituents were separated on a poly-
acrylamide gel with a 55-75% denaturant gradient. The resulting bands were then excised, re-
amplified, and sequenced. In addition to the ITS2, the microsatellite locus Sym15 was ampli-
fied [70], and its flanker regions were used for Symbiodinium lineage identification [71-74].
Both the ITS2 and Sym15 loci were sequenced at the DNA Lab at Arizona State University.
DNA sequences were compared to those in GenBank, and novel sequences deposited to
GenBank.

Biochemical composition

Using the protocols described in Shirur et al. [64], from ground lyophilized gorgonian branch
pieces the amount of sclerites, protein, lipid, carbohydrate and refractory content per dry
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Fig 1. DGGE gel of Symbiodinium types hosted by the Caribbean gorgonian corals Eunicea
tourneforti, E. flexuosa and Pseudoplexaura porosa. Bands characteristic of a particular Symbiodinium
type are marked with white arrows. Black arrow heads denote heteroduplexes formed during the PCR
process.

doi:10.1371/journal.pone.0171032.9001

weight (%g DW) and the amount of protein, lipid, carbohydrate and refractory content per
organic matter (%g OM) were determined. The protein, lipid and carbohydrate content within
the organic matter and their specific enthalpies of combustion [75] were then used to calculate
the total energy content of tissue reserves [76].

Enzyme activity

To quantify enzyme activity, proteins were extracted from 5cm-long frozen branch fragments
using the protocol of Mydlarz and Harvell [77]. The activities of SOD, POX, and CAT in the
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final supernatant (crude protein extract) were measured using a Synergy HT microplate reader
(Biotek, USA). To determine SOD activity, 5ul of the extract was diluted in 15ul of PBS (pH
7.8) and the activity was quantified at 37°C using the SOD assay kit (Sigma-Aldrich, USA). To
measure POX activity, the protocol described in Shirur et al. [78] was modified, such that the
reaction was initiated by adding 20mM H,0, to E. fourneforti samples, and 25mM H,O, to E.
flexuosa samples. The optical density at 470nm was recorded every minute for 30min. To mea-
sure CAT activity, a 5yl aliquot of the crude extract was diluted in 150ul of 50mM H,O, (in
50mM PBS, pH 7.0), and the breakdown of H,O, was tracked at 240nm every 30s for 20min.
Both POX and CAT assays were run at room temperature (25-27°C), and from the linear por-
tion of the curves, their activities were calculated as the change in optical density per minute
over an 8min and 10min interval, respectively. CAT activity was further converted to mM
H,0, scavenged during the assay from a standard curve generated using different concentra-
tions of H,O, [79-81]. Activities of all three enzymes were normalized to protein content of
the aliquot used in each assay [77, 79, 82], and are reported as AAbs,so,m mg protein™ and
AAbS70nm min™ mg protein” for SOD and POX respectively, and mM H,0, scavenged min™
mg protein™ for CAT [77, 79-85].

Protein content (mg/ml) of the extract was quantified using the RED660™ Protein Assay Kit
(G-Biosciences). Enzyme activity in P. porosa branches could not be determined because the
high mucus and lipid content interfered with the assays. Similarly, we could not obtain reliable
values for CAT activity in E. tourneforti. Therefore, the activities of SOD and POX were deter-
mined for both Eunicea species, but CAT activity was only obtained for E. flexuosa.

Statistical analyses

We used linear mixed effects models fit by the restricted maximum likelihood method to ana-
lyze the data. For the majority of the data, the two fixed effects in the model were the gorgonian
species (E. tourneforti, E. flexuosa and P. porosa) and temperature (ambient and elevated).
Data on photochemistry was analyzed with a similar mixed effects model, with the time of
sampling as the third fixed effect. Since multiple colonies were sampled per species, inter-col-
ony variation was accounted for in the mixed model by nesting each colony within its parent
species, and treating it as the random effect. For some parameters, samples from one of the
two branches from the same colony were not measured (e.g. sample loss), therefore data from
that particular colony were excluded from the statistical analysis of that parameter.

For all data, residuals were examined for normality and homogeneity of variances, and data
were square, square root, log or reciprocal transformed when these assumptions were violated
(S1 Table). When significant species by temperature interactions were detected, they were
explored using six non-orthogonal planned contrasts. The first three contrasts tested the effect
of elevated temperature on each species separately. The other three contrasts were pairwise
comparisons testing whether the magnitude of the effect of temperature differed between the
three gorgonian species. For the photochemical efficiency of photosystem II parameters, AF/
Fm‘and Q,, had significant temperature by time interactions and they were explored with five
orthogonal planned contrasts that tested the effect of elevated temperature on each day sepa-
rately. For Fv/Fm, significant species by temperature by time interaction were explored with
27 non-orthogonal planned contrasts. The first 15 contrasts tested the effect of elevated tem-
perature on each species on each experimental day. Then for each species, subsequent con-
trasts tested whether the magnitude of the effect of temperature differed between each
consecutive day (day 1 versus 2, 2 versus 3, 3 versus 4, and 4 versus 5). P-values for all non-
orthogonal planned contrasts were corrected using the method of Holm [86]. All analyses
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were performed using the packages “Ime4” [87], “ImerTest” [88] and “multcomp” [89] with
the R software version 3.0.2 [90].

Results
Symbiodinium parameters

Exposure to five days at the elevated temperature of 32°C did not lead to a significant change
in Symbiodinium density (Fig 2A, Tables 1 and 2, S1 Table). On the other hand, Chl a and ¢,
contents per Symbiodinium cell were significantly lower after five days at elevated temperature
than their levels in branches held at ambient temperature (Fig 2B, Table 1, S1 Table). This sig-
nificant difference in Chl a per cell was primarily driven by P. porosa since the Chl a content
per Symbiodinium cell in branches of the Eunicea species exposed to the elevated temperature
did not significantly differ from levels in branches maintained at ambient temperature

(Table 2). In conjunction with no significant change in Symbiodinium density but a decrease
in chlorophyll per Symbiodinium cell, the amounts of Chl a and ¢, per surface area of gorgo-
nian branches were significantly lower after five days at elevated temperature compared to
their content in branches held at ambient temperature (Fig 2C, Table 1, S1 Table). The effect
of temperature on Chl a and ¢, content was significantly less in the Eunicea species than in P.
porosa (Table 2). Consequently, the Chl a:c; ratio in the Eunicea species did not differ between
ambient and elevated temperatures while it did in P. porosa (Tables 1 and 2, S1 Table).

Fv/Fm, AF/Fm‘and Q,, did not significantly differ between the upper, middle and lower
regions of each branch, and therefore the values from these regions were pooled. In the three
gorgonian species, Fv/Fm in branches exposed to elevated temperature were significantly
lower than in those maintained at ambient temperature (Fig 3A-3C, S1 Table). In P. porosa,
Fv/Fm at elevated temperature declined over time, such that there was a larger reduction in
Fv/Fm after four and five days than during the first three days of exposure to elevated tempera-
ture (Fig 3C). In contrast to Fv/Fm, AF/Fm‘in the Eunicea species did not differ between the
two temperatures, while in P. porosa a 10% reduction in AF/Fm‘at the elevated temperature
was significant compared to the control (Fig 3D-3F, S1 Table). This significant difference was
probably driven by the first days at the elevated temperature. Examining AF/Fm‘of the three
gorgonian species throughout the experiment showed that on days 1, 3, and 4 there were no
differences in AF/Fm‘between branches at ambient and elevated temperatures, on day 2 there
was a reduction in AF/Fm‘at elevated temperature, but on day 5 AF/Fm‘was actually signifi-
cantly higher at the elevated compared to the ambient temperature (Fig 3D-3F, S1 Table).
Mirroring the changes in photochemical efficiency, Q,, after two and three days at elevated
temperature was significantly higher than the Q,, in branches held at ambient temperature
(Fig 3G-31, S1 Table). But after four and five days, Q,, in branches exposed to the elevated
temperature was actually significantly lower than Q,, in branches maintained at ambient tem-
perature (Fig 3G-3I).

Gorgonian branches exposed to elevated temperature exhibited significantly lower esti-
mated absorbance, D, and greater a* ¢y , compared to branches maintained at ambient
temperature (Tables 1 and 2, S1 Table). The pattern in a* ¢y, , was driven by the significant dif-
ferences in P. porosa a* ¢y, , since the a* ¢y, , in branches of the Eunicea species did not signifi-
cantly differ between branches at ambient or elevated temperatures (Table 2).

Symbiodinium genotypes

Based on the ITS2 region of the ribosomal DNA, five different Symbiodinium types within
clade B resided in the three gorgonian species (Fig 1). All 12 E. tourneforti colonies hosted a
newly named Symbiodinium type B41 (Fig 1, Genbank accession no. KX344963). E. flexuosa
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Fig 2. Symbiodinium parameters in branches of the Caribbean gorgonian corals Eunicea tourneforti,
E. flexuosa and Pseudoplexaura porosa exposed to ambient and elevated temperatures.
Symbiodinium (Sym) density (A), and chlorophyll a (Chl a) content per Symbiodinium cell (B), and per surface
area (C) after five days at ambient, 29.5°C (gray) or elevated, 32°C (white) temperatures. Data are

mean = SE. Mixed model analyses that yielded significant species (species), temperature (temp) and/or
interaction (int) effects are noted in the panels, (*) denotes comparisons in which the interaction term was
significant and the planned contrast analyses detected significant temperature effects. Sample sizes in panels
A, B, Cwere 11,9, and 10 in E. tourneforti, 12, 11 and 11 in E. flexuosa, and 10 in A-C in P. porosa.

doi:10.1371/journal.pone.0171032.9002

also hosted new Symbiodinium types, with four colonies containing Symbiodinium type B41la
(Fig 1, Genbank accession no. KX344964), and the remaining eight colonies associating with
Symbiodinium type B41b (Fig 1, Genbank accession no. KX344965). Among P. porosa colo-
nies, nine colonies harbored the previously characterized Symbiodinium type Bli (Fig 1, [72]:
Genbank accession no. GU907636), one colony hosted the new Symbiodinium, type B42 (Fig
1, Genbank accession no. KX344981), while the remaining two colonies simultaneously
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Table 1. Symbiodinium and holobiont parameters in branches of the Caribbean gorgonian corals Eunicea tourneforti, E. flexuosa and Pseudo-

plexaura porosa after exposure to ambient (29.5°C) or elevated (32°C) temperatures for five days.

Parameter E. tourneforti(10) E. flexuosa (11) P. porosa (10)

Ambient Elevated Ambient Elevated Ambient Elevated
Symbiodinium density (10° cells cm?) | 1.73+0.23 (%) 1.70+£0.28 (%) 1.35+£0.25 (7 1.34+0.30 (M) 422+0.68 |6.48+1.01
Chlorophyll a content (pg cell™™) 2.88+0.24 (#) 3.31+0.98 (#) 4.85+1.29 2.69+0.59 4.77+1.71 1.20+0.11
Chlorophyll c; content (pg cell™") 0.78 £ 0.06 (#) 0.8210.21 (#) 1.55+0.44 0.82+0.17 1.25+0.44 |0.35+£0.03
Chlorophyll a content (ug cm) 4.77 £0.53 3.49+0.37 3.84+0.46 2.53+0.37 12.92+0.60 |6.87+0.47
Chlorophyll c; content (ug cm™) 1.30£0.15 0.93+0.11 1.15+0.11 0.78+0.11 3.43+0.15 |2.03+0.14
Chlorophyll a:c, ratio 3.6910.08 3.86+0.13 3.29+0.13 3.24 +0.06 3.78+0.06 |3.39+0.09
D,, estimated absorbance of Chl a 0.44 £0.04 (M) 0.38+0.04 (V) 0.56 £ 0.03 (V) 0.43+0.04 (M) 0.74+0.04 |0.56+0.03
a*cm 2 (m?>mg™ Chl a) 0.02 £ 0.004 0.03+0.002 0.04 +£0.003 0.04 +0.003 0.01£0.001 | 0.02+0.001
SOD activity 782.91 £33.46 (%) | 787.84 +43.97 (%) | 485.19+26.27 (N) | 423.57+15.55 (") | NA NA
POX activity 0.23+0.03 (1) 0.52+0.10 (1) 0.56+0.15 ($) 0.36 +0.06 (%) NA NA
CAT activity NA NA 196.47 +33.86 (*) | 173.61+19.77 (N) | NA NA
Sclerite content (%g DW) 84.12+1.18 (") 85.62+1.40 (N 80.88+1.22 (M) 81.71+1.25 (") 50.97+1.81 | 56.18 +2.31
Refractory content (%g DW) 12.13+1.25 11.47 £1.57 13.10+1.14 12.62 +1.38 21.09+0.71 [19.44+1.24
Protein content (%g DW) 0.65 +0.06 (V) 0.48+£0.04 (M) 1.84+£0.16 () 1.53+0.14 (N 9.97+0.56 |8.37+0.59
Lipid content (%g DW) 2.44+0.21 2.15+0.21 2.96+0.25 2.71+0.26 14.81+£0.98 | 12.89£0.92
Carbohydrate content (%g DW) 0.95+0.10 (") 0.93+0.05 1.60+£0.12 (M) 1.48+0.07 3.16 £ 0.21 3.12+0.31
Refractory content (%g OM) 73.94 £2.25 74.81+2.32 66.33+2.43 67.26 £3.10 43.27+£1.31 |44.47+£1.59
Protein content (%g OM) 4.14+0.26 (V) 3.55+0.33 (V) 9.95+0.89 (V) 8.75+0.89 (V) 20.28+0.78 | 19.15+0.60
Lipid content (%g OM) 15.64 £ 1.44 15.33+1.77 1557 +1.23 15.53+1.82 29.94+1.07 |29.30+£1.40
Carbohydrate content (%g OM) 6.15%0.65 (V) 7.04£0.65 (V) 8.65+0.73 (V) 8.38+0.58 (V) 6.51+0.42 |7.31+0.78
Energy content (kJ g”' OM) 8.26+0.72 8.00+0.80 9.94+0.74 9.70+£0.99 17.81+0.45 | 17.38+0.58

Values are mean + SE. (n) = number of different colonies with branches both at ambient and elevated temperatures andn=8(!), n=9 (#),n=10($), n= 11
(%), n =12 (») designating other sample sizes. a* o o = Chlorophyll (Chl) a specific absorption coefficient, SOD = Superoxide dismutase (AAbs,so mg
protein™'), CAT = Catalase (mM H,0O, scavenged min™' mg protein™'), POX = Peroxidase (AAbs,7, mg protein™'), DW = Dry weight, OM = Weight of organic
matter, NA = Not available and pertains to assays that could not be conducted.

doi:10.1371/journal.pone.0171032.t001

Table 2. Summary of the results of a linear mixed effects model analyses testing the effect of elevated temperature on Symbiodinium parameters
in the Caribbean gorgonian corals Eunicea tourneforti (ET), E. flexuosa (EF) and Pseudoplexaura porosa (PP).

Parameter Species Temp Species * Temp (P<0.05)

(P<0.05) (P<0.05) ET EF PP Magnitude of the effect

AvsE AvsE AvsE AvsE ETvs EF ETvs PP EFvs PP

Symbiodinium density (10° cells cm) (ET-EF)<PP -
Chlorophyll a content (pg cell™™) - > - - > - < -
Chlorophyll ¢, content (pg cell™") - >
Chlorophyll a content (ug cm) (ET-EF)<PP > -
Chlorophyll c; content (ug cm) (ET-EF)<PP > > > - <
Chlorophyll a:c; ratio (ET-PP)>EF - - - > - < -
D, estimated absorbance of Chl a ET<EF<PP >
a*cp 2 (M?>mg’ Chl a) EF>ET>PP < - - < - - <

Comparisons where P < 0.05 are further delineated with ‘<‘ or “>‘ to denote the trend in the differences, and those where P> 0.05 are indicated with ‘-. In
case of a significant interaction, planned contrast analyses were run to test the effect of temperature (A = Ambient, 29.5°C, E = Elevated, 32°C) on each
species, and the magnitude of the effect on each possible species pair combinations. P values were adjusted using the Holm’s method [86].

Chl = Chlorophyll, Temp = Temperature, a* ¢ o = Chl a specific absorption coefficient.

doi:10.1371/journal.pone.0171032.1002
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Fig 3. Symbiodinium photochemical parameters in branches of the Caribbean gorgonian corals Eunicea tourneforti, E. flexuosa
and Pseudoplexaura porosa exposed to ambient and elevated temperatures. The maximum (A-C) and effective (D-F) photochemical
yields, and the maximum pressure over photosystem Il (G-I) of Symbiodinium in branches exposed to ambient, 29.5°C (solid line, gray
circles) and elevated, 32°C (dashed line, open circles) temperatures for five days. Data are mean + SE, with n = 8 for E. tournefortiand E.
flexuosa and n = 6 for P. porosa. (*) indicate significant temperature effects detected in the planned contrast analyses of the three-way
interaction for Fv/Fm.

doi:10.1371/journal.pone.0171032.g003

associated with types Bli and B42 (Fig 1). All sequence files are available from the Genbank
database (accession numbers KX344963, KX344964, KX344965, KX344981). Hosting different
Symbiodinium types within a gorgonian species did not affect the parameters measured and
therefore all branch pairs (ambient and elevated) were used in the analyses. Regardless of the
Symbiodinium type hosted, in all three gorgonian species, the elevated temperature did not
cause a change in Symbiodinium type.
In addition to the three gorgonian species hosting different Symbiodinium types, these Sym-
biodinium belonged to three different lineages. Symbiodinium type B41 in E. tourneforti
belonged to one Symbiodinium lineage (Genbank accession no. KX344969). Although E. flex-
uosa hosted both Symbiodinium types B41la and B41b, the Sym15 flanker sequences, and hence
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the lineage, were identical for both types (Genbank accession no. KX344973). Similarly, even
though P. porosa hosted Symbiodinium type B1i, B42, or a mixture of both, the Sym15 flanker
sequences of both types were identical (Genbank accession no. KX344977). As with the ITS2
types, elevated temperature did not alter the microsatellite Sym15 flanker regions in the
respective colonies and species.

Biochemical composition of tissues

Per dry weight (%g DW)), sclerite content was significantly higher, while protein and lipid con-
tents were significantly lower, in gorgonian branches exposed to 32°C than in those main-
tained at ambient temperature (Fig 4A-4C, Table 1, S1 Table). Protein content per organic
matter (%g OM) was also significantly lower in gorgonian branches exposed to elevated tem-
perature than in those held at the ambient temperature (Table 1, S1 Table). On the other hand,
the carbohydrate content per dry weight and per organic matter, the lipid content per organic
matter, and the total energy content of the tissues did not significantly differ between branches
held at ambient and elevated temperatures (Table 1, S1 Table).

Enzyme activity

Compared to ambient levels, exposure to 32°C for five days did not cause a significant change
in the SOD activity in branches of both Eunicea species (Table 1, S1 Table), and CAT and POX
activity in E. flexuosa branches (Table 1, S1 Table, CAT: Paired t test, t;; = 0.74, P = 0.475). In
contrast, five days at 32°C significantly increased POX activity in branches of E. tourneforti
compared to the branches held at the ambient temperature (Table 1, S1 Table).

Discussion

Thermal fluctuations that expose coral reefs to anomalously high or low seawater temperatures
for several hours or days are projected to occur more frequently in the future [3-5]. In sclerac-
tinian corals subjected to experimental conditions simulating such events, a 50-80% reduction
in Symbiodinium density often occurs [39, 43, 91-96]. Subsequently, scleractinian corals may
recover from the bleaching event. Conversely, the loss of Symbiodinium, compounded with the
other stress responses, may lead to the demise of the host [39, 43, 94-96]. While we mimicked
a short term thermal event by exposing branches of three gorgonian species, Eunicea tourne-
forti, E. flexuosa, and Pseudoplexaura porosa, to an elevated 32°C seawater temperature, the
Symbiodinium densities in these branches did not significantly differ from Symbiodinium den-
sities in branches from the same colonies maintained at the ambient temperature of 29.5°C.
Furthermore, in P. porosa, Symbiodinium densities at the elevated temperature were actually
higher, not lower, compared to those at the ambient temperature, although not significantly so
(Fig 2). The ability to continue hosting the same Symbiodinium density at elevated tempera-
tures may be one reason why Caribbean gorgonians are maintaining or increasing their abun-
dance on Caribbean coral reefs while scleractinian coral cover is declining [9, 10, 12-15].

Although the elevated temperature did not significantly alter the Symbiodinium density in
the three gorgonian species, the Symbiodinium in branches of the gorgonian corals did react to
the change in environmental conditions by modifying other Symbiodinium parameters. For
example, at 32°C there was less Chl a and Chl ¢, per Symbiodinium cell which, in turn, affected
the amount of chlorophyll per surface area (Fig 2). Absorbance was less and, concomitantly, a*
was more at the elevated temperature. Chlorophyll content can be altered over short timescales
in response to changes in the environment (reviewed in [97]), and is a quicker response than
Symbiodinium re-population, following symbiont loss, which can take from six weeks [58] to
over two years [98].
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Fig 4. Biochemical parameters in branches of the Caribbean gorgonian corals Eunicea tourneforti, E.
flexuosa and Pseudoplexaura porosaexposed to ambient and elevated temperatures. Sclerite (A),
protein (B) and lipid (C) contents per dry weight (%g DW) after five days at ambient, 29.5°C (gray) and
elevated, 32°C (white) temperatures. Data are mean + SE. Mixed model analyses that yielded significant
species (species) and/or temperature (temp) effects are noted in the panels. Sample sizes in panels A, B, C
were 12,12, and 10 in E. tourneforti, 12, 12 and 11 in E. flexuosa, and 10 in A-C in P. porosa.

doi:10.1371/journal.pone.0171032.9004

The adjustments in pigments and subsequent light capture could in turn affect photochemi-
cal efficiency. In scleractinian corals, thermal stress can hamper symbiont photochemistry and
photosynthesis [57, 91, 92], resulting in reductions in both Fv/Fm and AF/Fm‘[43, 99, 100],
leading to Q,, values of 0.8 or above [99, 101, 102]. In the three gorgonian species, Fv/Fm at
the elevated temperature was reduced, but Fv/Fm can also be lower due to activation of
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photoprotective processes [103]. In the Eunicea species, AF/Fm‘did not mirror the reduction
in Fv/Fm and was not affected by the elevated temperatures (Fig 3). In P. porosa a 10% signifi-
cant reduction in AF/Fm‘occurred, but this reduction was much smaller than the >50% reduc-
tion in AF/Fm‘recorded in thermally stressed scleractinian corals [43, 99, 100]. Furthermore,
looking at daily changes in AF/Fm‘in all three gorgonian species demonstrated that by day 5,
AF/Fm‘was actually higher at the elevated than at the ambient temperature. Lastly, in all three
gorgonian species, the Q,,, in branches exposed to 32°C was either similar to or lower than
the Qy, in branches held at the 29.5°C ambient temperature, with Q,, values being lower

than 0.5 (Fig 3). Given the numerous parameters related to photosynthesis, in addition to the
maintenance of symbiont densities, the Symbiodinium appeared to not be photosynthetically
compromised.

Concomitantly, the elevated temperature did not lead to a change in the Symbiodinium
genotypes in any of the three gorgonian symbioses. Lack of symbiont turnover either over
time [104, 105] or following environmental perturbation or disease in gorgonian corals ([49,
78], Ramsby et al. unpubl., McCauley et al. unpubl.), other octocorals [106] and in numerous
studies on scleractinian coral species [107-111] and sea anemones [27] has been demonstrated
repeatedly. Although the gorgonians did not change their symbiont complement, the three
gorgonian species did host different Symbiodinium types (Fig 1), and analysis of the microsat-
ellite Sym15 flanker region indicated that these Symbiodinium belonged to three distinct line-
ages of the “B1” radiation (72, 112]. Symbiodinium type B41 in E. tourneforti in our study
(previously referred to as B1l in [64]) fell within the same Symbiodinium lineage as the Symbio-
dinium hosted by E. flexuosa at >20m depth [73] and Symbiodinium endomacracis that associ-
ate with the scleractinian coral Madracis sp. [74] in the Caribbean. Symbiodinium types B4la
and B41b (previously referred to as B1b in [64]) which we found in E. flexuosa, belong to a sep-
arate lineage that includes the Symbiodinium inhabiting E. flexuosa found at <5m depth [73].
Symbiodinium types Bli and B42 found in P. porosa belong to a novel lineage. Given the lack
of a change in Symbiodinium, any response and potential acclimation to the stressor was
accomplished by modifying parameters within the existing host/symbiont genotypic combina-
tion. The gorgonian species hosting different Symbiodinium, with these symbionts exhibiting
different physiologies [62], may have contributed to the differences between the response of
the gorgonian species to the elevated temperature.

In addition to elevated temperature potentially affecting Symbiodinium, the entire symbiosis,
including the host may be detrimentally affected [113]. Activation of cellular mechanisms to
deal with stressors could increase the amount of energy required to maintain homeostasis [45,
114], and thereby alter metabolism, and consequently the biochemical composition of tissues. In
our study, compared to branches maintained at the ambient temperature, gorgonian branches
exposed to elevated temperature exhibited higher sclerite content driven by lower protein and
lipid contents per dry weight (Fig 4), and also lower protein content when protein was assessed
per organic matter. Thus, as seen in scleractinian corals [39, 115], exposure to elevated tempera-
ture led to a reduction in the amount of tissue biomass present within gorgonian branches.
Compared to scleractinian corals, however, this reduction was relatively small. For example, in
bleached scleractinian corals, total biomass, mean protein, lipid and carbohydrate contents can
be 40-70% lower [98, 116], and mean energy content can be 22-37% lower [115] compared to
tissues of unbleached corals. In our study, in the branches of the Eunicea species and P. porosa,
protein per organic matter at the elevated temperature was only 6.5-14.3% lower compared to
branches at ambient temperature. Furthermore, lipid, carbohydrate, and total energy content in
tissues did not significantly differ between the gorgonian branches at ambient and elevated tem-
peratures. Thus, despite some changes in biomass and protein content, exposure to elevated
temperature did not affect the amount of energy available to these gorgonian species.
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An integral part of maintaining the symbiosis under thermal stress involves managing the
levels of ROS produced in the chloroplasts of Symbiodinium and the mitochondria of the host
[26, 44, 117]. Oxidative outbursts after exposure to elevated temperature have been recorded
in Caribbean gorgonian corals, and their magnitude can vary between species [47]. Both Sym-
biodinium and their host cnidarian possess antioxidant enzymes that neutralize ROS [26, 28,
43, 44]. In this study, SOD activity did not significantly vary between branches of the Eunicea
species at ambient and elevated temperatures. Therefore, despite the nearly two-fold difference
in SOD activity between the Eunicea species, basal levels of SOD in both species were sufficient
to convert any excess O, to H,0, [44, 45]. H,O, itself is damaging because it can readily dif-
fuse across membranes from one partner to the other, affect distant cell organelles, and trigger
apoptosis [26, 44]. The enzymes POX and CAT neutralize H,O,. POX activity in E. tourneforti
was two times higher in branches exposed to elevated temperature than in those maintained
at ambient temperature while in E. flexuosa branches, POX and CAT activity did not differ
between the two temperatures. Therefore, the Eunicea species maintained or increased the
activities of antioxidant enzymes when exposed to elevated temperature indicating that they
managed oxidative stress.

Looking at Symbiodinium, holobiont and enzymatic parameters, the three gorgonian-Sym-
biodinium symbioses examined dealt with the potential stress of elevated temperature,
although the way in which they did so differed. In P. porosa many Symbiodinium parameters
were modified in response to the elevated temperature. Not only did the largest reduction in
Fv/Fm occur in P. porosa but Fv/Fm also progressively declined with the duration of exposure
to elevated temperature. A reduction in chlorophyll content of symbiont cells also only
occurred in P. porosa. Among the three species P. porosa has the highest symbiont density and
pigment content in tissues, and the lowest a* ¢y , (this study, [62, 64]). These parameters along
with attributes of the photosynthesis-irradiance curves, led Ramsby et al. [62] to hypothesize
that the symbionts in P. porosa were comparatively less efficient at absorbing and utilizing
light than those in E. tourneforti. Since high light levels can exacerbate thermal stress, the inef-
ficient utilization of light may alleviate the negative effects of elevated temperature, and pro-
mote photoacclimation through adjusting photochemistry over losing symbiont cells from
tissues. Furthermore, net photosynthesis in P. porosa is two to three times higher than in E.
tourneforti [62], and P. porosa possess significantly greater amounts of tissue reserves than the
Eunicea species (this study, [64]). Thus, the low efficiency of photosynthesis per symbiont cell
coupled with high net photosynthesis and tissue resources may enable P. porosa to tolerate dis-
ruptions in symbiont photosynthesis that may occur when exposed to elevated temperature.

In the Eunicea species, the modifications that occurred in the symbioses were predomi-
nantly at the holobiont rather than the symbiont level. Exposure to elevated temperature led to
greater reductions in mean protein content per organic matter in tissues of E. tourneforti
(14.30%) and E. flexuosa (12.11%) than in those of P. porosa (6.51%) and to a doubling of POX
activity in E. tourneforti. Even under ambient conditions, the Eunicea species had lower Sym-
biodinium density, pigment content, and energy reserves than P. porosa (this study, [64]). Due
to the lower tissue resources at their disposal, the Eunicea species may attenuate changes in
symbiont parameters by maintaining or increasing antioxidant activity to survive unfavorable
conditions.

In the literature, bleaching of Caribbean gorgonian corals is seldom reported [118-121]
and the three gorgonian species in our study did not exhibit a decline in Symbiodinium density
although a reduction in the amount of chlorophyll per gorgonian surface area did occur, with
P. porosa having a larger drop than within the Eunicea species. The varied responses of the gor-
gonian corals in our study match the inter-species differences in a visual assessment of bleach-
ing on the reef [121]. In a 2005 bleaching event in Puerto Rico, 22% of Pseudoplexaura spp.
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colonies bleached [121]. In contrast, bleaching was observed in only a few E. flexuosa colonies
and none of the other Eunicea species bleached [121]. Our study, however, suggests that even
with a reduction in chlorophyll at 32°C, Symbiodinium photosynthesis in P. porosa was not
compromised, and therefore the changes in pigment content were potentially part of an accli-
matory response. This may explain why, with the exception of Muricea sp., the gorgonian spe-
cies that were observed bleached in 2005 survived the thermal event [121]. Furthermore, in the
2005 bleaching event, bleaching in the Caribbean gorgonian species occurred much after most
scleractinian corals, hydrocorals and zoanthids had bleached [121]. Taken together, the
response of the gorgonian symbioses to elevated temperature in this study, and the few reports
on bleaching in gorgonian corals [118-121], suggest that in the Caribbean, gorgonian corals
may be comparatively more tolerant to thermal stress than many scleractinian coral species.

Supporting information

S1 Table. Results of the mixed effects model analyses testing the effect of elevated tempera-
ture (32°C) on Symbiodinium (Sym) and holobiont parameters in the Caribbean gorgonian
corals Eunicea tourneforti, E. flexuosaand Pseudoplexaura porosa.
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