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Abstract

Background

The Subclass Coleoidea (Class Cephalopoda) accommodates the diverse present-day

internally shelled cephalopod mollusks (Spirula, Sepia and octopuses, squids, Vampyro-

teuthis) and also extinct internally shelled cephalopods. Recent Spirula represents a unique

coleoid retaining shell structures, a narrow marginal siphuncle and globular protoconch that

signify the ancestry of the subclass Coleoidea from the Paleozoic subclass Bactritoidea.

This hypothesis has been recently supported by newly recorded diverse bactritoid-like

coleoids from the Carboniferous of the USA, but prior to this study no fossil cephalopod

indicative of an endochochleate branch with an origin independent from subclass Bactritoi-

dea has been reported.

Methodology/Principal findings

Two orthoconic conchs were recovered from the Early Eocene of Seymour Island at the tip

of the Antarctic Peninsula, Antarctica. They have loosely mineralized organic-rich chitin-

compatible microlaminated shell walls and broadly expanded central siphuncles. The mor-

phological, ultrustructural and chemical data were determined and characterized through

comparisons with extant and extinct taxa using Scanning Electron Microscopy/Energy Dis-

persive Spectrometry (SEM/EDS).

Conclusions/Significance

Our study presents the first evidence for an evolutionary lineage of internally shelled cepha-

lopods with independent origin from Bactritoidea/Coleoidea, indicating convergent evolution

with the subclass Coleoidea. A new subclass Paracoleoidea Doguzhaeva n. subcl. is estab-

lished for accommodation of orthoconic cephalopods with the internal shell associated with

a broadly expanded central siphuncle. Antarcticerida Doguzhaeva n. ord., Antarcticeratidae

Doguzhaeva n. fam., Antarcticeras nordenskjoeldi Doguzhaeva n. gen., n. sp. are described

within the subclass Paracoleoidea. The analysis of organic-rich shell preservation of A. nor-

denskjoeldi by use of SEM/EDS techniques revealed fossilization of hyposeptal cameral
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soft tissues. This suggests that a depositional environment favoring soft-tissue preservation

was the factor enabling conservation of the weakly mineralized shell of A. nordenskjoeldi.

Introduction

The present-day shelled coleoid cephalopods, comprising the two genera Spirula and Sepia,

have a long evolutionary history with indisputable earliest records of rostrum-bearing coleoids

in the Early Carboniferous [1, 2]. Recent recognition of the Early–Late Carboniferous bactri-

toid-like coleoids [3–9] supports the idea that Coleoidea originated from the Bactritoidea [10–

12]. The Late Carboniferous Shimanskya from Western Texas, Brewster Country, Marathon

Basin; USA, has a Spirula/Sepia shell-wall type characterized by absence of nacreous layer. This

shell-wall type has been earlier known in the fossil spirulid genus Adygeya from the Early Cre-

taceous of north-western Caucasus [13] and is atypical for the externally shelled cephalopods,

in which a nacreous layer forms the bulk of the shell-wall thickness [14–20]. Thus, Shimanskya
demonstrates the evolutionary stability of the Spirula/Sepia shell-wall type through a period of

about 330 million years. Another Late Carboniferous coleoid genus, Donovaniconus (order

Donovaniconida), retained a shell wall with nacreous layer, as in bactritoids, but secreted a ros-

trum-like sheath upon it and an ink sac, which is not the case with the bactritoids [4]. The

chemical data that would clarify whether the original shell composition in Shimanskya and

Donovaniconus was organic-rich, as in Sepia and Spirula, are yet absent. However, data are

available from the cuttlebone of the Eocene cuttlefish Mississaepia to show that shell wall and

septa were rich in a chitin-compatible component and had a high content of nitrogen [21, 22].

The extant Sepia secretes an ultra-lightweight, high-stiffness organic-rich biomaterial that effi-

ciently maintains neutral buoyancy at considerable habitation depths [23–27]. In various ecto-

cochleate cephalopods, irrespective of their systematic affiliation, the wall typically consists of

the outer prismatic, nacreous and inner prismatic layers [14–20] but rare forms among them

have additional layers on the standard shell wall [28–30]. These layers imply a capability to

stretch the mantle onto the external shell surface, producing an internally shelled condition

that, at first glance, is similar to that in Spirula and Sepia.

The present paper reports a new subclass Paracoleoidea Doguzhaeva n. subcl. It is based on

a unique Early Eocene straight-shelled cephalopod, Antarcticeras nordenskjoeldi n. gen., n. sp.,

from Seymour Island, Antarctic, that is characterized by thin microlaminated organic-rich

shell wall, non-biomineralized septa, a central broadly expanded siphuncle, and an unusually

broad septal foramen. The shell wall characteristics indicate the internalization of the shell.

The central siphuncle illuminates the ancestry of a new subclass from the subclass Orthocera-

toidea. The phylogenetic significance of the unique Eocene cephalopod from Antarctica is

discussed.

Materials and methods

Material

Two specimens of fragmentary preserved straight shells from the La Meseta Formation [31–

35] on Seymour Island, Antarctica, are examined. The age of the shells is dated as Ypresian,

Early Eocene (for Geological setting and Palaeoenvironment, see S1 Text [36–53]). They are

stored in the collections of the Department of Palaeobiology at the Swedish Museum of Natu-

ral History under depository numbers NRM-PZ Mo 167764, NRM-PZ Mo 167765 and are

available upon request. These shells are described as Antarcticeras nordenskjoeldi n. gen., sp.

Eocene orthoconic cephalopod
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(see Systematic Paleontology herein). A coiled nautilid, Euciphoceras sp. (NRM-PZ Mo 167766),

from the La Meseta Formation on Seymour Island is examined with the purpose to evaluate the

ultrastructural preservation of the cephalopod shell material in these rocks (see Supporting ma-

terials). Recent beach-collected specimens of Spirula spirula from Cuba (NRM-PZ Mo 167767)

and Sepia officinalis from south Portugal (NRM-PZ Mo 1677648) are studied for comparison of

shell wall composition between modern coleoids and A. nordenskjoeldi. The specimen NRM-

PZ Mo 167764,which is cut longitudinally, provided detailed information on shell structures

and ultrastructures of A. nordenskjoeldi. The specimen NRM-PZ Mo 167765 is studied in surface

view and gave additional evidence of enrichment of the shell wall with organic material.

Methods

The specimens were analyzed using light microscopes and SEM/EDS. Complete description of

the material and methods are given in the Supporting Online Material (S1 Text).

Nomenclatural Acts

The electronic edition of this article conforms to the requirements of the amended Interna-

tional Code of Zoological Nomenclature, and hence the new names contained herein are avail-

able under that Code from the electronic edition of this article. This published work and the

nomenclatural acts it contains have been registered in ZooBank, the online registration system

for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated

information viewed through any standard web browser by appending the LSID to the prefix

“http://zoobank.org/”. The LSID for this publication is: urn:lsid:zoobank.org:pub:955FB82C-

06BA-4CA8-8E63-C1145DC31376. The electronic edition of this work was published in a

journal with an ISSN, and has been archived and is available from the following digital reposi-

tories: PubMed Central, LOCKSS, DiVA (http://www.diva-portal.org/).

Results

Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/

EDS)

Analyses of A. nordenskjoeldi under SEM/EDS revealed a unique combination of morphologi-

cal, ultrastructural and chemical traits; they are: (1, 2) chambered, longiconic conch; (3, 4, 5)

thin microlaminated shell wall, having no nacreous layer; (6, 7) a central/or slightly sub-cen-

tral, broadly expanded siphuncle; (8) notably large (0.6 shell diameter) septal foramen, 2–6

times wider than that of all other known cephalopods; (9, 10, 11) deep, thin, organic septa; (12,

13) thin suborthochoanitic septal necks; (14, 15) thin non-mineralized connecting rings; (16)

inorganic-organic mural, epi- and hyposeptal cameral deposits; (17) hyposeptal cameral soft

tissues; (18) lack of endosiphuncular deposits; (19, 20) lack of a rostrum and pro-ostracum;

(21) irregular mineralization of the shell wall evidenced by the variable content of calcium

(5.4% -27.8%); (22) inorganic-organic shell wall composition indicated by high content of

nitrogen (up to 7. 8%) and additionally by lower (less than 1%) content of manganese, iron,

nickel, copper, zinc, barium, thallium and lead (Figs 1A–1G, 2A–2C, 3, 4A–4C, 5A–5C and

6A–6G; S1, S2A, S2B, S3, S4A, S4B, S6A, S6B and S8A–S8H Figs; Table 1).

The prismatic mural, epi- and hyposeptal cameral deposits have, in comparison with the

shell wall, higher average values of calcium (24% and 16.6%, respectively), carbon (27.6% and

18. 4%), nitrogen (7.05% and 4. 7%), magnesium (0.9% and 0.4%), potassium (0.9% and 0.2%),

approximately similar values of oxygen (55.2% and 59.9%) and strontium (0.2% and 0.2%),

but lower average values of copper (0.1% and 0.5%), zinc (0.5% and 0.7%), and lead (0.2% and

Eocene orthoconic cephalopod

PLOS ONE | DOI:10.1371/journal.pone.0172169 March 1, 2017 3 / 20

http://zoobank.org/
http://www.diva-portal.org/


0.4%) (Fig 6A–6H; Table 1). The differences between the cameral deposits and the shell wall

indicate an originally different chemical composition of these two shell structures. The con-

tents of calcium and carbon, which are 1.5 times higher in epi- and hyposeptal cameral depos-

its than in the shell wall (Fig 6A–6H; Table 1), suggest stronger mineralization of the cameral

deposits and largely organic composition of the shell wall. Besides, the epi- and hyposeptal

Fig 1. Shell morphology of Antarcticeras nordenskjoeldi. A–C, G, NRM-PZ Mo 167764; D, E, NRM-PZ

Mo 167765; Early Eocene (Ypresian); Seymour Island, Antarctica. A, An orthoconic shell fragment with three

complete chambers, thin semi-transparent shell wall and lobate sutures. B, Partially exposed septum and

broad central septal neck at the adapical shell fracture. C, Deep septa and broad central septal necks

indicative of a central broadly expanded siphuncle; longitudinal section. D, An orthoconic shell with lobate

sutures. E, Close-up of D, thin semi-transparent shell-wall with inserted grains of a matrix indicative of a

loosely mineralized shell wall. F, Sketch of internal shell structure. G, Close-up of left side of shell on C. Cr,

connecting ring (dot line); ch, chamber outside siphuncle (blue); s, septum (green); sf, septal foramen; si,

siphuncle (yellow); sw, shell wall (black).

doi:10.1371/journal.pone.0172169.g001
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cameral deposits have lower values of the elements known not to be used in the shells of extant

cephalopods: copper, zinc, and lead (Table 1). This may indicate that the epi- and hyposeptal

cameral deposits are less contaminated by metals than the shell wall. In recent coleoids soft tis-

sues are easily contaminated by metals from the seawater [54–56], thus the occurrence of met-

als in the shell wall of A. nordenskjoeldi may be due to contamination of the organic matter.

The tested orthocone is characterized by a high content of nitrogen (Fig 6A–6G; S8A–S8G Fig;

Fig 2. Shell ultrastructure in Antarcticeras nordenskjoeldi. NRM-PZ Mo 167764. Early Eocene

(Ypresian); Seymour Island, Antarctica. A, Microlaminated shell wall (to the left) and prismatic cameral

deposits on each side of septum; B, C, Close-up of A; ch1, ch2, the first and the second preserved cameras;

ecd, episeptal cameral deposits; hcd, hyposeptal cameral deposits; mcd, mural cameral deposits; s, septum;

sw, shell wall.

doi:10.1371/journal.pone.0172169.g002

Fig 3. Antarcticeras nordenskjoeldi. NRM-PZ Mo 167764. Early Eocene (Ypresian); Seymour Island,

Antarctica. Microlaminated shell wall; longitudinal shell section; outer shell surface to the left; inner shell

surface to the right; direction towards shell aperture is top right corner.

doi:10.1371/journal.pone.0172169.g003

Eocene orthoconic cephalopod
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Table 1): up to 8% in the shell wall and in the matrix in the siphuncle. However, the highest

values of nitrogen are detected in mural, epi- and hyposeptal cameral deposits (12.8%) and the

wing-like structure (10.8%). In contrast to the orthocone, nitrogen is missing in the shell wall

of Euciphoceras (S5, S7A and S7B Figs).

Thus, the organic-rich composition of the microlaminated shell wall of A. nordenskjoeldi is

evidenced by the variable content of calcium and high content of nitrogen (up to 8%), which is

a reliable indicator of non-fossilized organic material [57]. Copper, zinc and lead in the shell-

wall similarly suggest that it originally contained an amount of organic material.

Fig 4. Antarcticeras nordenskjoeldi. NRM-PZ Mo 167764. Early Eocene (Ypresian); Seymour Island, Antarctica. A, Prismatic epi- and hyposeptal cameral

deposits and microlaminated, microgranular cameral soft tissues; median shell section. B, C, Close-up of A. Cst, cameral soft tissue remains; ecd, episeptal

cameral deposits; hcd, hyposeptal cameral deposits; s, septum; sn, suborthohoanitic septal neck.

doi:10.1371/journal.pone.0172169.g004
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Comparison of shell structures between A. nordenskjoeldi and other

recent and fossil cephalopods

Inorganic-organic (no nacre), or calcium carbonate (with nacreous layer) shell wall.

Of the characters revealed in A. nordenskjoeldi (see above), the traits known in Spirula (Fig 7A;

[13, 27]), Sepia (Figs 7B, 8 and 9); [13, 21–23]) and extinct coleoids [6, 9, 13, 21–25, 55–60] are:

Fig 5. Antarcticeras nordenskjoeldi. NRM-PZ Mo 167764. Early Eocene (Ypresian); Seymour Island, Antarctica. Hyposeptal cameral soft tissues. A,

general view. B, C, enlargements of A to show a microglobular ultrastructure of cameral soft tissues, median shell section. Cst, cameral soft tissue; ecd,

episeptal cameral deposits; hcd, hyposeptal cameral deposits.

doi:10.1371/journal.pone.0172169.g005

Eocene orthoconic cephalopod
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inorganic-organic shell wall material (Table 1); shell wall lacking nacreous layer (Figs 2A–2C

and 3; S8A and S8B Fig), septa without columnar nacre (Figs 4A–4C, 5A and 5B; S3, S6A and

S6B Figs) and with relatively high content of nitrogen, which is a reliable indicator of non-fos-

silized organic substance [21, 23, 57]. In contrast, the nautilid Euciphoceras (S5, S10 and S11

Figs) lacks the listed characteristics above.

Thus, with respect to its inorganic–organic shell-wall composition, A. nordenskjoeldi is

comparable with the shelled coleoids Spirula (Fig 7A), Sepia (Figs 7B, 8 and 9; [22, 23]) and the

Eocene Mississaepia [21, 22] but differs from the ectocochleates herein exemplified by the

Eocene nautilid Euciphoceras sp. (S5, S10 and S11 Figs).

Organic-rich septa (no columnar nacre), or septa with columnar nacre. In having

organic-rich septa (Figs 4A and 5A–5C; S3, S6A and S6B Figs), A. nordenskjoeldi is similar to

the Eocene coleoid Mississaepia [21, 22], Spirula [61], Sepia [27] and the Late Carboniferous

belemnoid Donovanicous [4], which have septa formed by lamellar-fibrillar nacre [27]. In con-

trast, the ectocochleate cephalopods have columnar nacreous septa [14–20].

Large or small septal foramen. A notably large (0.6 shell diameter) septal foramen (Fig

1C and 1F), 2–6 times bigger than that of all other cephalopods (S5 and S9 Figs), distinguishes

the studied cephalopod from known coleoids as well as ectocochleates. In Spirula and in fossil

coleoids, the septal foramen is about 0.1–0.2 shell diameter [61–66]; in Paleozoic ectocochleate

Fig 6. Antarcticeras nordenskjoeldi. (NRM-PZ Mo 167764). The organic-rich shell composition evidenced by high content of nitrogen in the shell wall (A, B)

and episeptal cameral deposits at places near septal neck (C, D) and shell wall (E–G).

doi:10.1371/journal.pone.0172169.g006

Eocene orthoconic cephalopod
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cephalopods, including those with a broadly expanded central siphuncle (S9 Fig), it is 0.1–0.4

of the shell diameter [67, 68].

Central or marginal siphuncle. The central, or slightly sub–central, siphuncle (Fig 1A,

1C, 1F; S2A Fig) distinguishes A. nordenskjoeldi from Sepia, which has a siphonal zone instead

of a tubular siphuncle, from the Late Cretaceous–Cenozoic belosaepiids, spirulirostrids,

belemnoseids, missisaepiids and spirulids, in which a tubular siphuncle is marginal, or sub-

marginal [13, 22, 62–66, 69–73]; from Mesozoic orthoconic cephalopods, with the exception

of the Early Cretaceous orthocerid Zhuravlevia insperata, which has, however, a small (about

0.1–0.2 shell diameter) septal foramen and columnar nacre in shell wall and septa [18], and

from Carboniferous coleoids (2–4, 6, 9).

Thus, in having a central/or slightly sub-central siphuncle, A. nordenskjoeldi is similar to

the Ordovician–Early Cretaceous subclasses Orthoceratoidea and Actinoceratoidea but differs

from the? Ordovician, Silurian–Late Permian Bactritoidea [49] and? Late Devonian, Early Car-

boniferous–Recent Coleoidea.

Broadly expanded or narrow siphuncle. The broadly expended siphuncle distinguishes

A. nordenskjoeldi from Spirula and Late Carboniferous and Cretaceous spirulids, which have a

narrow siphuncle [3, 13, 61, 63, 65].

Table 1. Antarcticeras nordenskjoeldi; Early Eocene; Seymour Island, Antarctica.

Element Matrix in

shell

Shell

wall

Mural cameral

deposits

Episeptal cameral

deposits

Hypo-septal

cameral deposits

Soft tissue remains,

organic debris

Mandible-like plate in

adoral camera

Carbon 9.0–33.2 15.0–

54.4

9.8–15.7 9.8–47.0 16.7–45.3 11.2–33.8 10.4–15.8

Nitrogen 0.0–8.0 0.0–7.0 0.0–13.5 0.0–16.3 no data 0.0–6.1 10.8

Oxygen 45.7–62.7 37.5–

69.2

52.4–65.6 32.7–59.5 39.9–55.7 42.2–67.0 47.0–52.7

Sodium 0.0–5.9 0.0–1.0 0.0–0.2 0.0–0.3 0.0–0.1 0.0–3.7 no data

Magnesium 0.0–7.5 0.0–1.0 0.0–1.4 0.4–1.0 0.0–1.0 0.0–4.1 0.9–1.2

Aluminium 0.0–8.8 0.0–4.0 no data no data no data 0.0–5.2 no data

Silicon 0.1–30.3 0.0–

14.7

0.0–0.1 no data no data 0.0–11.2 no data

Phosphorus 0.0–0.4 0.0–1.6 0.0–0.7 no data 0.0–0.1 0.0–0.2 no data

Sulfur 0.0–0.3 0.0–0.2 no data 0.0–0.2 no data no data no data

Potassium 0.0–1.6 0.0–0.1 0.0–0.1 0.0–1.1 0.0–0.4 0.0–3.0 no data

Calcium 0.1–27.8 1.92–28 10.3–31.0 15.5–39.7 14.2–26.7 0.0–39.7 30.8–33.6

Manganese 0.0–0.1 0.0–0.2 0.0–0.1 no data no data no data no data

Iron 0.0–6.3 0.0–0.2 0.0–0.1 0.0–0.4 0.0–0.2 0.0–7.6 no data

Nickel 0.0–0.1 0.0–0.1 0.0–0.5 no data 0.0–0.5 no data no data

Copper 0.0–1.0 0.0–0.9 no data 0.0–1.3 0.0–0.4 no data no data

Zinc 0.0–0.7 0.0–0.8 0.0–0.7 0.0–0.4 0.0–0.8 0.0–0.0 no data

Bromine 0.0–1.6 0.0–2.1 no data no data no data no data no data

Strontium 0.0–1.3 0.0–0.7 0.0–0.5 0.0–1.1 0.0–0.5 0.0–0.2 no data

Tin 0.0–0.4 0.0–07 no data no data no data 0.0–0.7 no data

Barium 0.06 0.0–0.3 0.0–0.3 0.0–1.1 0.0–0.3 0.0–0.6 no data

Thallium 0.0–0.4 no data no data no data no data 0.0–0.7 no data

Lead 0.0–0.4 0.0–0.5 0.0–0.2 no data 0.0–0.2 0.0–0.4 no data

NRM-PZ Mo 167764, NRM-PZ Mo 167765. Energy-dispersive spectrometry data on elemental composition (in percent of total weight).

doi:10.1371/journal.pone.0172169.t001
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The broadly expended siphuncle is a joint feature of A. nordenskjoeldi (Fig 1C and 1F),

Orthoceratoidea and Actinoceratoiea (67, 68, 74). However, the endosiphuncular deposits that

are weakly developed in some orthocerids but well developed in actinocerids (67, 68, 74) are

missing in A. nordenskjoeldi. Therefore, there is more similarity of central siphuncle structure

between A. nordenskjoeldi and orthocerids than between this genus and actinocerids.

Discussion

The inorganic–organic shell-wall composition characterizes Recent Spirula, Sepia, and Eocene

Mississaepia (Coleoidea), and is herein shown in A. nordenskjoeldi; hence these cephalopods

are similar with respect to shell-wall material. In addition, a microlaminated shell ultrastruc-

ture apparently resulting from a high content of the chitin component in septa of Spirula and

shell-wall and septa in Sepia, and of the chitin-comparable component in shell wall/septa in

Mississaepia, is here shown to be a character of A. nordenskjoeldi as well. However, in having

no external shell structure that would protect the thin laminated shell wall from the outside

(Fig 1A, 1B, 1D, 1E; S2B, S4A and S4B Figs), A. nordenskjoeldi differs from three above-men-

tioned genera, as in Sepia (Fig 8B) and Mississaepia a dorsal shield coats the outer shell surface;

Fig 7. High content of organics indicated by high content of nitrogen (in percent of total weight) in (A) shell wall of Spirula spirula, Cuba, and (B) mural part of

septum of Sepia officinalis, East Atlantic, Portugal.

doi:10.1371/journal.pone.0172169.g007
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in Spirula, this is the outer plate [13]. In the diverse Early Carboniferous–Late Cretaceous

superorder Belemnoidea, a rostrum was secreted above the shell wall. Therefore, A. nordensk-
joeldi has a microlaminated shell wall structure and in vivo organic-rich shell-wall composi-

tion, which indicate the internal shell position, as in coleoids, but in having no outer protective

shell structure it is unique among cephalopods. It is worth noting that microlaminated

organic-rich material is unknown in ectocochleates but typical for pro-ostraca of belemnoids

and is therefore an attribute of the internal shell [56, 58–60]. The thin film-like non-mineral-

ized septa of A. nordenskjoeldi (Figs 4A and 5A; S3 Fig) are most similar to those of the Eocene

Mississaepia [22] and Recent Sepia (Figs 7B and 8). The prismatic cameral deposits enriched in

organics are like those of belemnites [66]. The thin septal necks of A. nordenskjoeldi (Figs 4A,

5A and 6A; S6B Fig) are yet unknown in any other cephalopods. In Spirula, well-mineralized

long holochoanitic septal necks consisting of lamellar-fibrillar nacre are strongly attached to

the shell wall [61]. In Sepia, the thin septa are achoanitic and formed by lamellar-fibrillar nacre

[27]. In the Eocene sepiid Mississaepia, lamellar-fibrillar nacre lines thin chitinous septa [22].

Comparison of shell structures between A. nordenskjoeldi and other Recent and fossil ceph-

alopods (see above) shows that the Spirula/Sepia type of shell characters, such as: organic-rich

shell wall and septa, lack of nacreous layer in shell wall and lack of columnar nacre in septa,

would have identified the Eocene A. nordenskjoeldi as a coleoid. However, the central, broadly

expanded siphuncle in A. nordenskjoeldi speaks against membership of the subclass Coleoidea,

thought to be derived from Palaeozoic bactritoids having narrow marginal siphuncles [10, 11].

Rather, these features suggest an origin in Paleozoic Orthoceratoidea possessing central or

slightly sub-central siphuncles that are broadly expanded in some forms (S9 Fig) and free from

endosiphuncular deposits.

The investigated Early Eocene orthoconic cephalopod A. nordenskjoeldi reveals the crisis

characterized by "a prolonged interval during which the group virtually completely disappears

Fig 8. Sepia officinalis, East Atlantic, Portugal. High content of organics indicated by high content of

nitrogen (in percent of total weight) in septum (EDS data); p, pillar zone; s, septum.

doi:10.1371/journal.pone.0172169.g008
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from the paleontological record. . .the group became so restricted in taxonomic scope and in

habitat that fossil representatives are great rarities or have not yet been identified at all" [74]. A

new higher-order taxon is warranted for A. nordenskjoeldi as it shows non-complementary

relationship between the morphological (central siphuncle) and ultrastructural (coleoid type

shell wall and septum composition and ultrastructures) traits that suppresses its affiliation to

any known high-level taxon in the class Cephalopoda. The placement of A. nordenskjoeldi
either within a high-level taxon characterized with a marginal siphuncle and coleoid type shell

wall composition (Coleoidea) or in a high-level taxon characterized by the Nautilus-like ecto-

cochleate shell wall composition and ultrastructure would equally in every case conflict with a

monophyly of the subclasses Coleoidea or Ortoceratoidea. The subclass Coleoidea Bather has

been based on an assumed unique event of shell internalization in the evolution of

Fig 9. Sepia officinalis, East Atlantic, Portugal. High content of organics in dorsal shield indicated by high

content of nitrogen (in percent of total weight) (EDS data).

doi:10.1371/journal.pone.0172169.g009
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cephalopods. The find of A. nordenskjoeldi indicates a second event of shell internalization

indicative of a new taxon of equal rank to Coleoidea, herein described as subclass

Paracoleoidea.

Based on A. nordenskjoeldi, after the Late Cretaceous mass extinction, there were three,

rather than two, evolutionary lineages of internally shelled cephalopods: the Spirula, Sepia and

Antarcticeras lineages. They are characterized by apparently different strategies of buoyancy reg-

ulation and, therefore, by different swimming activity. In the Spirula lineage, the buoyancy reg-

ulation strategy involves the usage of a narrow tubular siphuncle inherited from the bactritoid

ancestors but enforced by means of elongation of the septal necks and strengthening of the sep-

tal neck/shell wall conjunction [61]. The living members of this lineage inhabited large depths

diapasons–from several meters to about 1500 m. However, they have less broad geographic dis-

tribution and limited biodiversity than Sepia. In the Sepia lineage, the buoyancy regulation strat-

egy apparently involved the transformation of a tubular siphuncle into a more effective “open”

siphonal zone that allowed overcoming the limited capacities of the tubular siphuncle. This

strategy is thought to be the most effective way of buoyancy regulation and is associated with

extensive geographic distribution and high taxonomical diversity of living representatives [27].

In the Antarcticeras lineage, the buoyancy strategy evidently involved the usage of a broadly

expanded siphuncle modified by means of significant broadening of the septal foramen.

The presence of a coleoid-like organic-rich shell wall in an Eocene straight-shelled cephalo-

pod having central or slightly sub-central broadly expended siphuncle, seemingly derived

from ectocochleate forms outside the bactritoids, prompts a reevaluation of the evolutionary

history of Cephalopoda with respect to internalization of the shell, up till now thought to be a

unique event in cephalopod evolution [10, 11, 63, 65, 70–75]. Internalization of the shell may

have happened at least twice, followed by parallel or convergent evolution of shell ultrastruc-

tures and composition. The highly diverse Ammonoidea, extinct by the end of the Cretaceous,

are generally accepted as a sister group to Coleoidea [10, 11], and although evidence is avail-

able for at least partial encroachment of the shell-secreting mantle onto the shell exterior in

some genera [28–30], ammonoids are fundamentally ectocochleates, as are bactritoids and

orthoceroids. The organic-rich shell, so far known as a coleoid-type shell structure resulting

from the internalization of the shell, therefore turns out to be convergent. An alternative inter-

pretation is that the condition of a narrow siphuncle and septal foramen, otherwise known to

be stable in bactritoid and coleoid cephalopods, has been modified in the Antarcticeras lineage

to produce a hitherto unknown type of internally shelled cephalopod that has overcome the

limitations of the condition by expanding the siphuncle and septal foramen to allow for effi-

cient buoyancy control. In this interpretation, the broadly expanded central siphuncle is a con-

vergent feature with that of orthoceratoids. Of these two interpretations, the first one is, in our

opinion, more probable. Convergence of habitat-related features is common among recent

coleoids [76]. Thus, we suggest that a separate evolutionary lineage of internally shelled cepha-

lopods, characterized by original inorganic–organic shell composition and broadly expanded

central siphuncles, originated in the Late Paleozoic. It survived the end-Triassic and Creta-

ceous mass extinctions and lived on at least into the Early Eocene. Potential descendants of A.

nordenskjoeldi among extant coleoids are not obvious; the lineage is most probably extinct.

Although this lineage is so far indicated by a single Early Eocene A. nordenskjoeldi in Antarc-

tica, the unique extra-ordinal combination of morphological, ultrastructural and chemical

traits of the shell in this form motivates the erection of a new high-level taxon of equal rank

with Coleoidea, which is described herein as subclass Paracoleoidea.

Recently described extinct forms [9, 22, 65, 69, 70, 72, 73] essentially increased fossil records

of Coleoidea but yielded no taxa with a central siphuncle similar to A. nordenskjoeldi. In vivo
inorganic-organic shell composition, in combination with physical and geochemical factors

Eocene orthoconic cephalopod
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within the depositional environment that are favorable for soft-tissue fossilization, likely con-

tributed to the preservation of A. nordenskjoeldi. The composition of the shell wall of A. nor-
denskjoeldi cannot yet be characterized in more detail; however, it is similar to the chitin in the

aptychi, rather than to the shell wall, of the juvenile ammonites characterized by the aragonite

shell composition (Fig 10).

Systematic paleontology

Subclass Paracoleoidea Doguzhaeva n. subcl.

(Monotypic; diagnosis as for order.)

Order Antarcticerida Doguzhaeva n. ord.

(Monotypic; diagnosis as for family.)

Family Antarcticeridae Doguzhaeva n. fam.

urn:lsid:zoobank.org:act:30BC128F-3E2F-45CC-B384-E40F9FDFC464

(Monotypic; diagnosis as for genus.)

Genus Antarcticeras Doguzhaeva n. gen.

urn:lsid:zoobank.org:act:CC19DF36-765C-464E-8CB7-13667CE9F522

Fig 10. Structural differences between fossilized chitin of aptychi and aragonite shell wall of crushed juvenile

ammonites preserved in the body chamber of the Aptian ammonite Deshayesites, Central Russia, Ulyanovsk. Ip,

inner prismatic layer; na, nacreous layer; op, outer prismatic layer.

doi:10.1371/journal.pone.0172169.g010
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(Diagnosis as for type species.)

Derivation of generic name. After the Swedish South Polar Expedition vessel “Antarctic”.

Type and only species Antarcticeras nordenskjoeldi n. sp.

Species Antarcticeras nordenskjoeldi Doguzhaeva n. gen., n. sp.

urn:lsid:zoobank.org:act:1CDE8B47-2D2D-46B1-B745-BF9F3CD5FC66

(Figs 1A–1G, 2A–2C, 3, 4A–4C, 5A–5C and 6A–6C; S1–S3, S4A, S4B and S6A Figs; Table 1)

Diagnosis: Shell inorganic-organic, longiconic; angle of expansion 3–7˚; smooth surface;

rounded cross-section; no constrictions at sutures; shell wall thin, inorganic-organic, microla-

minated, without nacreous layer; siphuncle central, or slightly sub-central, broadly expanded;

septal foramen broad, rounded, about 0.6 of shell diameter; septal necks thin, non-mineralized,

suborthochoanitic; connecting rings thin, non-mineralized; septa thin, supposedly chitinous,

deeply concave; sutures transverse or indistinctly inclined; with two deep broad lobes; epi- and

hyposeptal, and mural cameral deposits present.

Derivation of specific name: In honor of Otto Nordenskjöld, leader of the Swedish South

Polar Expedition 1901–1903.

Holotype: NRM-PZ Mo 167764.

Paratype: NRM-PZ Mo 167765.

Repository. Swedish Museum of Natural History, Department of Palaeobiology; Stockholm.

Locality and horizon: NRM 8, below IAA 1/90 (Ungulate Site), Seymour Island, Graham

Land, Antarctica. Cucullaea I shell bed, TELM 4, Ypresian, early Eocene, Paleogene.

Conclusions

Our study presents the first evidence of an internally shelled fossil cephalopod with central

siphuncle. SEM/EDS analyses of longiconic shells of the Eocene cephalopod A. nordenskjoeldi
show an organic-rich microlaminated shell wall that indicates its secretion as an internal shell,

like that of Recent Sepia. It is associated with thin non-mineralized septa. A. nordenskjoeldi
indicates a previously unknown evolutionary lineage of internally shelled cephalopods with

broadly expanded central or slightly sub-central siphuncle, herein described as subclass Para-

coleoidea Doguzhaeva. This lineage supposedly originated within Late Paleozoic externally

shelled Orthoceratoidea with central siphuncle broadly expanded between septa and free from

endosiphuncular deposits. It evolved independently from the Bactritoidea/Coleoidea lineage.

A. nordenskjoeldi shows that the endocochleate condition was not restricted to coleoids.

Supporting information

S1 Text. Materials and methods. Geological setting and depositional environment.

(PDF)

S1 Fig. Antarcticeras nordenskjoeldi n. sp.; Early Eocene; Seymour Island, Antarctica.

NRM–PZ Mo 167764. Lateral view through semi-transparent shell wall on four lobate sutures.

Ch, chamber; ml, mandible–like structure; s, septum; sn, septal neck.

(TIF)

S2 Fig. Antarcticeras nordenskjoeldi n. sp.; Early Eocene; Seymour Island, Antarctica.

NRM–PZ Mo 167764. Transverse adapical (A) and adoral (B) shell fractures showing rounded

shell cross section, broad septal neck attached to the shell wall on A and mandible–like struc-

ture on B.

(TIF)

S3 Fig. Antarcticeras nordenskjoeldi n. sp.; Early Eocene; Seymour Island, Antarctica.

NRM–PZ Mo 167764. The traces of thin organic structure-less septum squeezed between
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prismatic episeptal cameral deposits (right side) and granular hyposeptal cameral soft tissue

remains (left side) at septal neck. Cst, cameral soft tissue remains; ecd, episeptal cameral depos-

its; s, septum; sn, septal neck.

(TIF)

S4 Fig. Antarcticeras nordenskjoeldi n. sp.; Early Eocene; Antarctica, Seymour Island.

NRM–PZ Mo 167765. A, Ventrolateral view on the partially exposed chambers of the phrag-

mocone with extensive mural cameral deposits. B, Enlargement of Fig 1E to show remains of

thin brown organic septa. C, chamber; mcd, mural cameral deposits; os, organic septum; sw.

shell wall.

(TIF)

S5 Fig. Euciphoceras sp.; Early Eocene; Antarctica, Seymour Island. NRM–PZ Mo 167766.

Median shell section showing sub-central narrow siphuncle.

(TIF)

S6 Fig. Antarcticeras nordenskjoeldi n. sp.; Early Eocene; Antarctica, Seymour Island.

NRM–PZ Mo 167764–2. A, hyposeptal cameral soft tissues lining the adapical septal surface.

B, enlargement of A showing thin suborthochoanitic septal neck and microglobular ultrastruc-

ture of hyposeptal cameral soft tissue. Ch, chamber; hcst, hyposeptal cameral soft tissue; s, sep-

tum; sn, cyrtochoanitic septal neck.

(TIF)

S7 Fig. EDS data on elemental composition of a mandible-like structure on S2B. Note a

peak of nitrogen indicative of non-fossilized organic material [57].

(TIF)

S8 Fig. Antarcticeras nordenskjoeldi n. sp.; Early Eocene; Seymour Island, Antarctica.

NRM–PZ Mo 167764. Energy-dispersive spectrometry data on chemical composition of shell

wall (in percent of total weight).

(TIF)

S9 Fig. A central, broadly expanded siphuncle of the Late Devonian pseudorthocerid

Arpaoceras; R. Arpa, Armenia. Median shell section ([43]; modified). esd, episeptal cameral

deposits; hsd, hyposeptal cameral deposits; s, septum; sf, siphuncular foramen; si, siphuncle;

sn, septal neck.

(TIF)

S10 Fig. Euciphoceras sp.; Early Eocene; Antarctica, Seymour Island. NRM–PZ Mo 167766.

Columnar nacre of shell wall, median shell section.

(TIF)

S11 Fig. Euciphoceras sp.; early Eocene; Antarctica, Seymour Island. NRM–PZ Mo 167766.

Energy-dispersive spectrometer data on shell wall chemical composition. A, median shell sec-

tion showing position of the spectrum taken. Ch, chamber of the phragmocone; s, septum; sw,

shell wall. B, An energy-dispersive spectrometer graph showing spectrum 2 in A.

(TIF)
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