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Abstract

Interactions between different phytoplankton taxa and heterotrophic bacterial communities

within aquatic environments can differentially support growth of various heterotrophic bacte-

rial species. In this study, phytoplankton diversity was studied using traditional microscopic

techniques and the bacterial communities associated with phytoplankton bloom were stud-

ied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from

the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvan-

net, a eutrophic lake in South Norway, during the growth season from June to August 2013.

Microscopic examination revealed that the phytoplankton community was mostly repre-

sented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results

revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria,

Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying rela-

tive abundances throughout the sampling season. Species level identification of Cyanobac-

teria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and

Woronichinia naegeliana. A significant proportion of the microbial community was com-

posed of unclassified taxa which might represent locally adapted freshwater bacterial

groups. Comparison of cyanobacterial species composition from HTS and microscopy

revealed quantitative discrepancies, indicating a need for cross validation of results. To our

knowledge, this is the first study that uses HTS methods for studying the bacterial commu-

nity associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the

value of considering results from multiple methods when studying bacterial communities.
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Introduction

In recent years, reports of cyanobacterial blooms in freshwater ecosystems attributed to eutro-

phication and global warming have increased [1–6]. Cyanobacteria rapidly form massive water

blooms under favorable conditions, causing economic, ecological and health problems [7–9].

Many bloom-forming species produce toxins and the types of toxin produced are dependent

on the species composition within the bloom [10–12]. Cyanobacteria coexist and interact with

heterotrophic bacterial groups commonly found in freshwater ecosystems [13, 14]. They may

produce various dissolved organic compounds and fix atmospheric nitrogen, supplying het-

erotrophic bacteria with substrates for growth [15–17]. Such compounds can differentially

support growth of heterotrophic bacteria species [18]. Therefore, it is likely that the composi-

tion of cyanobacterial blooms will structure the associated heterotrophic bacterial populations

[14].

Studies on phytoplankton cultures demonstrated a larger difference in bacterial community

structure between diatom and cyanobacteria as compared to different cyanobacterial cultures.

This is dependent on phytoplankton growth phase and the habitat of the associated bacterial

community (free-living within bloom vs attached to the phytoplankton cell surface) [18]. In

freshwater ecosystems, environmental conditions, including water temperature, residence

time and mixing, light intensity and quality, nutrient concentrations and grazing pressure

affect the development of cyanobacterial population [19].

Blooms in temperate regions, occur mostly during late summer and early autumn [6, 20]

and are dominated by Microcystis, Aphanizomenon, Anabaena together with the invasive spe-

cies e.g. Cylindrospermopsis raciborskii [21, 22]. Freshwater lakes are numerous in the Nordic

countries: Norway (65,000 lakes), Sweden (95,700 lakes) and Finland (187,888 lakes) [23].

Almost 40% of Norwegian water bodies are at risk from human influences such as acidification

and eutrophication; climate change is likely to exacerbate these problems in the future (www.

environment.no, Freshwater 2015). Reports have shown that increase in water temperature in

major European lakes, coupled with decreased duration of ice cover, has caused changes in the

life cycle of phytoplankton and promoted the invasion of toxic species from warmer regions

[3, 24].

Previous, culture-based, studies in Finland and Sweden have identified freshwater bacterial

groups Bacteriodetes, Proteobacteria, Firmicutes, Planctomycetes, Verrucomicrobia, Acidobac-
teria, Chloroflexi, and Thermomicrobia in association with cyanobacteria, along with poten-

tially pathogenic bacterial groups such as Pseudomonas, Aeromonas and Vibrio [13, 14].

Culture-dependent methods have shortcomings, as up to 95% of the microorganisms may

be uncultivable [25–27]. High throughput sequencing, in contrast to culture dependent stud-

ies, can detect a large majority of microbial taxa present. This helps generate a deeper under-

standing when comparing bacterial communities [18, 28]. In this study we have used HTS to

assess the bacterial community associated with phytoplankton during the blooming season in

the eutrophic Norwegian lake Akersvannet by targeting two hypervariable regions, V1-V3 and

V3-V4, of the 16S rRNA gene. To the best of our knowledge, this is the first study of the bacte-

rial community in a freshwater ecosystem in Norway using HTS 16S rRNA amplicon

sequencing.

Materials and methods

Study site and sampling

Lake Akersvannet is situated in Stokke Municipality, Vestfold County (South Norway). The

lake has a mean depth of 6 m, maximum depth of 13 m and a total area of 2.4 km2 (Fig 1). It is
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an important wetland habitat for birds during the spring and autumn migration. During sum-

mer and fall cyanobacterial blooms occur frequently [29]. The lake is ice-covered during the

winter. The lake is surrounded by agricultural land and is used for recreational activities

including water sports and fishing. The first documented bloom at this lake was identified as

Aphanizomenon flos-aquae (NIVA 1959). Lowering of the water level due to canalization dur-

ing the year 1968 led to a shift in species composition. By the year 1994, the phytoplankton

community was dominated by species of Anabaena and Aphanizomenon and the dinoflagellate

Ceratium hirundinella [30].

This study was conducted in close cooperation with Vestfold County administration and

the group of land owners surrounding the lake. In accordance with “Section IV” of the “Preser-

vation regulations for Lake Akersvannet nature reserve” (www.lovdata.no) and “Section 3.3”

of the “Management plan for Lake Akersvannet” (www.fylkesmannen.no), specific permission

for taking water samples for research and educational purposes is not needed. Water samples

were collected monthly from June to August 2013. Samples were taken at the sampling point

indicated in Fig 1 (59.25˚ N 10.33˚ E). Separate one liter water samples were collected at depths

of 0 m, 2 m and 4 m respectively. Net samples (25 μm pore size) for microscopic analysis were

Fig 1. Map showing Lake Akersvannet. The sampling point is indicated by a blue circle [source; Mapping Authority (Norwegian Geographical Survey),

www.norgeskart.no]. The insert in the right-hand corner shows the position of the lake on the map of southern Norway.

doi:10.1371/journal.pone.0173408.g001
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collected at the same time and location. Samples were immediately transferred to a cooled

chamber and stored at 4˚C.

Chemical analysis

The chemical analysis of water quality parameters was performed in accordance with Norwe-

gian standards (NS): pH (NS 4720), oxygen (NS 5813), total nitrogen (TN) (NS 4743), total

phosphorus (TP) (NS 4725, 1984) and chlorophyll a (NS 4766 (1/1983)). Ammonia (NH4
+)

and nitrate (NO3
-) were analyzed on Dionex ICS 1100 ion chromatograph (Thermo Fisher Sci-

entific, California, USA) according to the manufacturer’s instructions.

Toxin analyses

Enzyme-Linked Immunosorbent Assay technique (ELISA) with Microcystin ADDA ELISA

Kit (product No. 520011) from Abraxis (Abraxis LLC, Warminster PA) was used for the

microcystin analyses. All samples were freeze-thawed twice to lyse the cells and release the

microcystins into the water. An AccuReader (Metertech, Taiwan) model 965 was used to read

the absorbance at 450 nm.

Qualitative and quantitative analyses of phytoplankton

Net samples were fixed with Lugol solution and examined under 100 and 400 x magnification

for qualitative determination of the phytoplankton community (S1 Table). Phytoplankton

enumeration was performed by Utermöhl inverted microscope technique using a 10ml sedi-

mentation chamber. Species identification was performed according to Tikkanen and Willén

[31] (S2 Table).

DNA extraction

For each sampling date, three 1L samples, collected at depths of 0 m, 2 m and 4 m were avail-

able. Each sample was filtered through four to five 1.2 μm pore size, 47 mm diameter GF/C fil-

ters (Whatman, Norway). Each set of filters was cut into fragments in mm-sized pieces with a

disposable sterile scalpel blade and incubated in XS buffer for 120 min and subjected to DNA

extraction using the Xanthogenate-SDS (XS) method [32]. DNA pellets were washed twice

with 70% ethanol, air-dried and suspended in 50μl TE buffer (10 mM Tris-HCL, 1 mM EDTA

pH 8). The DNA extract from each set of filters were pooled to prepare one DNA pool per

sampling depth. DNA pools from each sampling depth (0, 2 and 4 m) were then combined,

giving an integrated sample. This integrated sample was then split into two equal volumes

(replicates), and each replicate was used as a template for amplification and sequencing of

V1-V3 and V3-V4 target regions of the 16S rRNA gene.

PCR amplification and paired-end illumina sequencing

PCR amplification and sequencing was performed at Biomedicum Functional Genomics Unit,

University of Helsinki, Finland. Each DNA replicate was used as template for amplifying two

hypervariable regions of the 16S rRNA gene, using primers pairs V1-V3-27F (AGAGTTTGAT
CMTGGCTCAG), V1-V3-519R (GWATTACCGCGGCKGCTG) [33], V3-V4-341F (CCTACGG
GNGGCWGCAG) and V3-V4-805R (GACTACHVGGGTATCTAATCC)[34]. Illumina adapter

overhang sequences were attached to the 5’ end of each primer. PCR amplification and

sequencing was performed according to Illumina’s 16S Metagenomic Sequencing Library

Preparation guide (Part # 15044223 Rev. B). After PCR amplification the libraries were quanti-

fied using a Qubit Fluorometer (dsDNA HS) and the size of each library was estimated using
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the Agilent 2100 Bioanalyzer (DNA HS). The PCR libraries were normalized, pooled and then

sequenced using the Illumina MiSeq System. Sequencing was performed using MiSeq 2 × 300

bp paired-end strategy and MiSeq Reagent Kit V3. For each replicate, as PCR amplicons from

two different 16S hypervariable regions were pooled together and sequenced, no further bar-

coding was required [35].

Data analysis

The sequence reads were analyzed using UPARSE v8.0.1623 [36], which allows accurate identi-

fication of Operational Taxonomic Units (OTU‘s) (http://drive5.com/usearch/manual/

uparse_pipeline.html). The raw paired-end sequence reads were merged using the command

usearch -fastq_mergepairs with maximum expected error threshold set at 1.0. The merged

reads were filtered on the basis of sequence quality using fastq_filter program, setting maxi-

mum expected error threshold to 0.5 and minimum sequence length to 250 bp. After quality

filtering, the reads were aligned against the 16S rRNA sequences of the RDP database using the

Aligner tool [37] in the RDP pipeline available at Ribosomal Database Project (RDP Release 11,

Update 4), and endpoints were identified in order to allow their sorting into V1-V3 and

V3-V4 reads. For both classes of reads, dereplication was performed to collapse identical reads

into one single sequence. Following dereplication, abundance sorting was done and singletons

were discarded. OTU‘s were clustered at 3% divergence threshold and chimeras were elimi-

nated using UCHIME [38]. Representative sequences for each OTU were selected and RDP

classifier (16S rRNA training set 14) (S1 and S2 Texts) [39] was used to assign taxonomy.

OTU’s assigned to Archaea and Chloroplast were filtered out and OTU tables were generated.

Random subsampling of the OTU tables for both target regions (S3 and S4 Texts) was per-

formed using script single_rarefaction.py in QIIME (Quantitative Insights Into Microbial Ecol-

ogy package 1.9.1)[40]. Shared OTU’s between replicates were computed using script

shared_phylotypes.py (S5 and S6 Texts). Diversity indices (Chao1, ACE and Shannon diversity)

were calculated for the subsampled OTU tables using script alpha_diversity.py. The OTU’s

were further classified using BLAST analysis [41] using nucleotide database (nt/nr) with uncul-

tured/environmental sample sequences excluded. OTU’s were only assigned to a species, if the

sequence similarity was� 98% and no other species showed the same level of similarity.

Where this was not achieved, the RDP taxonomic assignment was retained.

Accession numbers

The raw 16S rRNA dataset from Lake Akersvannet sample are available at Sequence Read

Archive (SRA) under study SRP095055.

Results

The environmental conditions and phytoplankton biomass in Lake Akersvannet during the

sampling season 2013 are shown in Table 1. TN ranged from 1.5 to 1.8 mg/l and TP varied

between 90 and 148 μg/l. The highest water temperature (20.7˚C) was recorded in August. The

highest concentration of microcystin (0.5 μg/l) was detected in August. In June and July, the

concentration of microcystin was below the detection limit of 0.15 μg/l.

Phytoplankton community composition: Microscopic identification

Total phytoplankton biomass varied between 0.4 and 16 mg/l (Table 1) with mean biomass of

5.9 mg/l. Microscopic examination revealed variation in species composition of the phyto-

plankton community throughout the sampling season. Cyanobacteria represented 77% of total

Phytoplankton bloom associated microbial communities
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phytoplankton biomass in July, whereas the dinoflagellate Ceratium hirundinella dominated

the community in August (96%). Species level morphological identification of Cyanobacteria
showed the presence of Aphanizomenon flos-aquae (June-August), Microcystis aeruginosa
(June-August), Chroococcous turgidus (June) and Woronichinia naegeliana (August). Aphani-
zomenon dominated the cyanobacterial community throughout the season. The proportion of

Microcystis was increased in August (S2 Table).

Bacterial community composition based on 16S rRNA amplicon

sequencing

In total, 16,548 V1-V3 and 35,028 V3-V4 reads were obtained using RDP classifier (38). These

were assigned to 255 and 502 bacterial OTU’s respectively.

Further analysis using BLAST allowed identification of 14 V1-V3 OTU’s at species level

and three at genus level; similarly, 66 and nine V3-V4 OTU’s could be identified at species and

genus level respectively (S3 Table). Six V1-V3 and 30 V3-V4 OTU’s, were highly similar

(� 99%) to unclassified bacterial strain reported in other studies (S4 Table). Taxonomic classi-

fication using RDP classifier and BLAST were largely in agreement. There were two discrepan-

cies at phylum level.

Bacterial richness and diversity indices (Alpha diversity) are shown in Table 2. Diversity

was highest in July. Diversity was higher for the V3-V4 region than for V1-V3. Replicates gave

comparable diversity estimates for each month, except August; August A had fewer OTU’s

and lower diversity estimates. Comparison of phylotypes revealed that 76% of V1-V3 and 82%

of V3-V4 OTU’s detected in August A were shared with August B (S5 and S6 Texts).

After completion of taxonomic analysis, 255 V1-V3 OTU’s were assigned to 11 phyla and

one group of “Unclassified Bacteria”, and 502 V3-V4 OTU’s were assigned to 17 phyla and

one group of “Unclassified Bacteria”. A comparison of taxonomic distribution of reads

Table 1. Environmental parameters and phytoplankton biomass in Lake Akersvannet during the sam-

pling season 2013.

Environmental Parameters June July August

Temp (˚C) * 17.3 (± 0.3) 19.1 (± 0.6) 20.7 (± 2)

pH* 8.2 (± 0.1) 8.7 (± 0.3) 8.3 (± 0.5)

O2 (%)* 90 (± 2) 103 (± 9) 90 (± 15)

Total Nitrogen (mg/l) * 1.8 (± 164) 1.7 (± 30) 1.5 (± 300)

Total Phosphorus (μg/l) * 111(± 12) 90 (± 47) 148 (± 57)

Ammonia (μg/l) * 53 (± 92) 0 223 (± 76)

Nitrate (μg/l) * 1590 (± 310) 1530 (± 62) 710 (± 16)

Chlorophyll a (μg/l) ** 9 (± 1) 30 (± 3) 52 (± 0)

Total phytoplankton biomass (mg/l) *** 0.4 1.4 16

Biomass of Cyanobacteria (mg/l) *** 0.1 1.2 0.1

Cyanobacteria (% of total phytoplankton) 24 77 1

Biomass of Ceratium hirundinella (mg/l) *** 0.04 0.05 15.4

Ceratium hirundinella (% of total phytoplankton) 11 3.5 96

Microcystin (μg/l) ** <0.15 <0.15 0.5 (± 0.8)

* mean values for depth 0-4m,

** mean values from photic zone,

*** mixed sample from photic zone.

Numbers in parentheses show standard deviation

doi:10.1371/journal.pone.0173408.t001
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between the two 16S rRNA target region libraries is shown in Tables 3 and 4. This comparison

showed that 10 phyla were shared between both target regions, whereas respectively 1 and 7

phyla were exclusively identified in V1-V3 and V3-V4 sequence library. Phylum level distribu-

tion of reads for both the target regions is shown in Fig 2. The proportion of reads belonging

to “Unclassified Bacteria” and Proteobacteria-alpha is higher in V1-V3 than V3-V4, whereas

the proportion of Verrucomicrobia and Bacteriodetes is higher in V3-V4 sequence library.

Overall proportions of unclassified OTUs were higher in the V1-V3 library (71%) than the

V3-V4 (61%) (S5 Table).

The phylum and genus level bacterial community distribution is shown in Figs 3 and 4

respectively. The bacterial community was dominated by 5 phyla; namely Actinobacteria, Pro-
teobacteria, Cyanobacteria, Verrucomicrobia and Bacteriodetes along with “Unclassified Bacte-

ria” in varying proportions. Cyanobacteria were detected throughout the sampling period, but

Table 2. Richness and Biodiversity indices for L. Akersvannet during the sampling season 2013.

Sampling month Observed OTU’s

(V1-V3)

Observed OTU’s

(V3-V4)

Chao1

(V1-V3)

Chao1

(V3-V4)

ACE

(V1-V3)

ACE

(V3-V4)

Shannon diversity

(V1-V3)

Shannon diversity

(V3-V4)

June A 138 272 152 340 151 324 5.6 6.4

June B 141 272 157 333 161 329 5.5 6.5

July A 188 385 215 422 211 415 5.8 7.2

July B 179 389 201 403 202 407 5.8 7.3

August A 46 107 63 137 66 137 1.9 2.2

August B 86 187 161 246 158 242 2.7 3.5

doi:10.1371/journal.pone.0173408.t002

Table 3. Comparison of taxonomic distribution of reads between V1-V3 and V3-V4 target regions.

Phylum V1-V3 region V3-V4 region

OTU count Read count Percent OUT count Read count Percent

Acidobacteria 5 167 1.01% 20 640 1.83%

Actinobacteria 15 844 5.10% 31 2303 6.57%

Armatimonadetes 2 10 0.06% 5 113 0.32%

Bacteroidetes 23 259 1.57% 124 5732 16.36%

Candidate division WPS-1 0 0 0% 1 13 0.04%

Candidatus Saccharibacteria 0 0 0% 1 20 0.06%

Chlamydiae 0 0 0% 1 2 0.01%

Chloroflexi 0 0 0% 3 6 0.02%

Cyanobacteria 6 6958 42.05% 10 10834 30.93%

Firmicutes 1 65 0.39% 1 378 1.08%

Gemmatimonadetes 0 0 0% 3 96 0.27%

Hydrogenedentes 0 0 0% 1 37 0.11%

Nitrospirae 0 0 0% 1 12 0.03%

Parcubacteria 2 10 0.06% 6 28 0.08%

Planctomycetes 8 144 0.87% 24 1230 3.51%

Proteobacteria* 121 6201 37.47% 185 9534 27.22%

Spirochaetes 1 9 0.05% 0 0 0%

Unclassified Bacteria 69 1852 11.19% 47 1039 2.97%

Verrucomicrobia 2 29 0.18% 38 3011 8.60%

Total 255 16548 100% 502 35028 100%

* Please refer to Table 4 for class level breakup of phylum Proteobacteria.

doi:10.1371/journal.pone.0173408.t003
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dominated both sequence libraries in August. Genera identified were Aphanizomenon (GpI),
Microcystis (GpXI), Synechococcus (GpIIa), Pseudanabaena (GpVI), Planktothrix and Woroni-
chinia. Species level distribution of total cyanobacterial reads is shown in Fig 5. The same dom-

inant cyanobacterial genera and species were identified from both the 16S rRNA target regions

(data in S3 Table).

Comparison of microscopic and sequence-based cyanobacterial

species distribution

The cyanobacterial species distribution derived from microscopic and sequence-based analysis

is compared in Table 5. The same major species were found with both methods, but relative

species abundance estimates differed.

Discussion

The mean phytoplankton biomass over the study period was 5.9 mg/l, making this lake hyper-

eutrophic according to Brettum and Andersen [42]. Many factors regulate the composition of

phytoplankton communities, but TN, TP and the ratio between TN and TP are considered

particularly important [43, 44]. These parameters fluctuated moderately around means of TN

1.6 mg/l (SD ± 0.1 mg/l) and TP 116.3 μg/l (SD ± 23 μg/l) in this study. Although the low TN:

TP ratios observed (10 to 18), were favorable for cyanobacterial blooms, the blooming organ-

ism was instead C. hirundinella, which also favors low TN: TP (i.e. < 7) as has been reported

earlier in the literature [45–48]. It plausible that once a Ceratium bloom was established, it sup-

pressed cyanobacterial bloom by competition for light and nutrients or by grazing [48, 49].

The increased proportions of Cyanobacteria observed in the 16S sequence library in August,

could be due to the increase in water temperature (20.7˚C) (Table 1). This temperature is opti-

mal for growth of Aph. flos-aquae but suboptimal for M. aeruginosa. The lowest temperature at

which Aph. flos-aquae can grow is reported to be 8˚C [50]; optimum being 15 to 28˚C [51],

whereas M. aeruginosa can grow slowly at 15˚C [52]; optimum being 27.5 to 32˚C [51, 53].

Aph. flos-aquae has higher photosynthetic ability at lower temperatures as compared to M. aer-
uginosa [52]. In August, ammonium levels rose markedly and this was accompanied by an

increase of M. aeruginosa (which favors ammonium as nitrogen source) [54, 55]. This would

in turn explain the increase of microcystin in August.

Comparison between the two target regions

Although less discriminatory than full length 16S rRNA sequencing, high throughput sequenc-

ing of shorter hypervariable regions (V1 to V9) using universal primers has become common

practice in microbial community studies [35, 56]. Different hypervariable regions have been

Table 4. Comparison of class level taxonomic distribution of proteobacterial reads between V1-V3 and V3-V4 target regions.

Phylum Proteobacteria V1-V3 region V3-V4 region

OTU count Read count Percent OTU count Read count Percent

Proteobacteria- Oligoflexia 0 0 0% 1 1 0.01%

Proteobacteria-α 82 5502 88.73% 66 2718 28.51%

Proteobacteria-β 14 346 5.58% 56 2644 27.73%

Proteobacteria-γ 8 185 2.98% 35 2665 27.95%

Proteobacteria-δ 2 30 0.48% 15 386 4.05%

Unclassified "Proteobacteria" 15 138 2.23% 12 1120 11.75%

Total 121 6201 100% 185 9534 100%

doi:10.1371/journal.pone.0173408.t004
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targeted in different studies with no one region being preferred over others [57, 58]. In our

study we have utilized two of the most commonly used primer pairs, targeting the V1-V3 and

V3-V4 region of the 16S rRNA gene respectively [59]. Of the ten phyla detected by both primer

sets, five (Cyanobacteria, Proteobacteria, Actinobacteria, Acidobacteria and Parcubacteria)

showed similar abundance profiles in both target sequence libraries, while the other five (Bac-
teriodetes, Verrucomicrobia, Armatimonadetes, Firmicutes and Planctomycetes) were markedly

more abundant in the V3-V4 library. Eight phyla were detected by only one of the primer sets.

This suggests that the primers used in this study selectively detect certain phyla and neither is

truly universal [34]. For cyanobacteria, however, the results were highly concordant, suggesting

Fig 2. Phylum level distribution of reads for V1-V3 and V3-V4 hypervariable region.

doi:10.1371/journal.pone.0173408.g002
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that both primers sets have similar coverage for this phylum. Although the overall proportion

of phylum Proteobacteria in both libraries was comparable, Alphaproteobacteria were higher in

proportion in the V1-V3 library. This variation might be explained by higher coverage of

V1-V3 primers for class Alphaproteobacteria as seen in studies conducted in other environ-

ment, but will require further experimentation to confirm these findings for freshwater envi-

ronment [60]. The proportion of unclassified Bacteria and overall unclassified genera was

greater in the V1-V3 library. Thus, use of different sets of universal primers can lead to differ-

ent apparent community structures. During PCR amplification, target sequences that do not

precisely match the universal primers will be either less efficiently amplified or lost completely

[61] and use of particular sets of universal primers can lead to under- or over-estimation of

taxa [35].

Fig 3. Phylum level distribution (%) of bacterial community in Lake Akersvannet from June to August 2013.

doi:10.1371/journal.pone.0173408.g003
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Comparison of community richness and diversity estimates showed greater diversity for

V3-V4 than for V1-V3 libraries. Such discrepancies have been reported in other studies [35,

61]. Replicates gave comparable diversity estimates, except for samples August A and B. Even

after random subsampling was performed, August A had fewer OTU’s than August B. Such

discrepancies have been reported in other studies and attributed to errors in PCR amplifica-

tion, library preparation or sequencing steps [61]. In our case as both target regions were

equally depleted of OTUs in August A, the discrepancy is most probably due to differences in

sequencing efficiency as V1-V3 and V3-V4 were sequenced together but amplified separately.

The bacterial community was dominated by five phyla; Proteobacteria, Bacteriodetes, Cya-
nobacteria, Actinobacteria and Verrucomicrobia in varying proportions throughout the study

period. Genus level taxonomic identifications showed the presence of a great diversity of low

abundance taxa. Previous studies refer to these low abundance taxa as “rare biosphere”. It has

been suggested that members of the rare biosphere may play important roles in the bacterial

community, despite their scarcity [18, 62]. In addition to the rare biosphere, many unclassified

OTU’s were detected, suggesting that as-yet undescribed bacterial groups with unknown

Fig 4. Genus level distribution (%) of bacterial community in Lake Akersvannet from June to August 2013. Genera with abundance <0.5% were

combined and represented as “Others”.

doi:10.1371/journal.pone.0173408.g004
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metabolic capabilities are an important part of the lake microbiota, a matter which warrants

further investigation. The large proportion of unclassified bacterial taxa also suggests that taxa

peculiar to the Norwegian freshwater environment may be absent from the cultured and

sequenced species represented by commonly used 16S rRNA databases.

Bacterial community distribution

Bacteriodetes, predominantly Flavobacteriia and Sphingobacteriia dominated the bacterial

community throughout the sampling season. These are mostly chemoorganotrophs, that are

well adapted to bloom conditions due to their ability to degrade complex biomolecules [18, 63,

64] such as algal-derived material [65] including cyanobacterial toxins [13]. Flavobacteriia and

Sphingobacteriia have been found in high numbers during episodes of phytoplankton blooms

[66], particularly cyanobacterial blooms in freshwater ecosystems [14, 67]. A study conducted

in Sweden in 2007 reported multiple populations of Flavobacteriia in a bloom of cyanobacteria,

without any seasonal succession and suggested that resource availability (organic matter)

might be the driving force behind Flavobacteriia community structuring [64]. The genus Fla-
vobacterium, is known to contain species that can lyse Microcystis cells [68] and degrade

Fig 5. Species level distribution (%) of cyanobacterial community in Lake Akersvannet from June to August 2013.

doi:10.1371/journal.pone.0173408.g005

Phytoplankton bloom associated microbial communities

PLOS ONE | DOI:10.1371/journal.pone.0173408 March 10, 2017 12 / 22



cyanobacterial hepatotoxins [13]. Member of this genus are also able to degrade complex

organic molecules [64]. The dominant Flavobacterium taxon in June (OTU_11, V3-V4 library)

showed high sequence similarity to a microcystin-degrading strain (Flavobacterium sp. AKB-

2008 TE28) isolated in a previous study [13]. Fluviicola, another dominant genus of class Flavo-
bacteriia detected in June and August is reported to contain species responsible for denitrifica-

tion [69].

Actinobacteria have been found in various aquatic habitats and are considered to be ubiqui-

tous members of the freshwater ecosystem, especially in the lake epilimnia [66, 70, 71]. In this

study, the phylum was represented by Actinomycetales and Acidimicrobiales, two of the most

abundant freshwater Actinobacterial orders [66, 72]. The ratio of allochthonous to autochtho-

nous carbon sources, which may vary greatly during period of phytoplankton bloom, can be

selective for different Actinobacterial species [73]. Actinobacteria have been previously associ-

ated with blooms of diatoms and cyanobacteria [14, 18, 71, 74, 75]. In this study, their abun-

dance declined markedly from June to July while the cyanobacterial abundance increased.

This might be due to water temperature increasing above the optimum for Actinobacteria [75]

and/or competition from other, faster growing, bacterial phyla [76]. Ilumatobacter, one of the

dominant Actinobacteria genera in June (V3-V4 library), are known to thrive in environments

with elevated phosphorous levels [77], as found in L. Akersvannet.

In this study, Verrucomicrobia comprised 8.6% of the bacteria detected in the V3-V4

library. Although most studies report low abundance of Verrucomicrobia, much higher abun-

dance was reported in a recent culture independent study [66, 78]. Verrucomicrobia abundance

may have previously been underestimated due to poor cultivability and methodological biases

[66, 78–80]. They are known degraders of algal polysaccharides and organic matter [81–83].

Hence their presence during a phytoplankton bloom is not unexpected [84]. A representative

of Subdivision3 (OTU_8, V3-V4 library), which dominated in July, showed high sequence sim-

ilarity to a strain known to degrade laminarin, one of the most abundant algal polysaccharides

in nature [83].

Most of the OTU’s belonging to Actinobacteria and Verrucomicrobia, detected in this study

were highly similar to isolates previously identified in North American lakes [83, 85], which

Table 5. Comparison of microscopic and sequence-based cyanobacterial species distribution (L. Akersvannet 2013).

Identified June July August

Mic 16S 16S Mic 16S 16S Mic 16S 16S

Cyanobacterial Species (V1-V3) (V3-V4) (V1-V3) (V3-V4) (V1-V3) (V3-V4)

Aphanizomenon flos-aquae 95.80% 31.5% 47.9% 99.80% 16.5% 19.7% 77.30% 50.62% 68.7%

Microcystis aeruginosa 2.10% 26% 11.5% 0.20% 29.5% 19.9% 14% 42.86% 25.1%

Chroococcous turgidus 2.10% 0% 0% 0% 0% 0% 0% 0% 0%

Woronichinia naegeliana 0% 4.0% 4.4% 0% 49.8 54.6% 8.70% 5.90% 5.4%

Synechococcus sp. 0% 38.3% 28.6% 0% 4.2 5.1% 0% 0% 0%

Pseudanabaena sp. 0% 0.3% 0.4% 0% 0% 0% 0% 0.62% 0.9%

Unclassified Cyanobacteria 0% 0% 0% 0% 0% 0.1% 0% 0% 0%

Synechococcus rubescens 0% 0% 7.1% 0% 0% 0.1% 0% 0% 0%

Planktothrix rubescens 0% 0% 0% 0% 0% 0.5% 0% 0% 0%

Total 100% 100% 100% 100% 100% 100% 100% 100% 100%

(Mic) Abundance (percentage of cyanobacteria) based on microscopic biomass estimation.

(16S) Abundance (percentage of cyanobacteria) based on 16S gene abundance data. Only cyanobacterial reads are included in the analysis. The values

shown are the average of two replicates.

doi:10.1371/journal.pone.0173408.t005
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suggests that these strains are geographically widespread. Comparable reports, suggesting that

unique capabilities of these groups allow them to compete successfully in lakes with diverse

trophic states have been published [70, 86].

Proteobacteria represented a significant portion of the bacterial community, which is in

agreement with other studies [74, 87, 88]. Many of the most prevalent and well-studied fresh-

water bacterial groups belong to Betaproteobacteria [66, 89]. Paucibacter (Betaproteobacteria)

is represented by a single dominant OTU (OTU_6) which showed high sequence similarity to

Paucibacter toxinivorans, a novel species isolated from lake sediment. P. toxinivorans can

degrade the cyclic cyanobacterial hepatotoxins and mineralize organic phosphorous com-

pounds [90]. However, the abundance of P. toxinivorans was higher in July (with toxin level

below detection threshold) than in August (high toxin concentration detected), suggesting that

the toxin presence is not critical for the growth of this species. Limnohabitans, one the betapro-

teobacterial genus identified in July (V1-V3 library), are opportunistic freshwater bacteria that

prefer non-acidic environments [91–93]. Their ability to use low molecular weight algal exu-

dates as sole organic carbon source (DOC) and rapid growth rate gives them a competitive

advantage during phytoplankton bloom [76, 91, 94].

Alphaproteobacteria were the dominant proteobacterial group in this study. In contrast to

Betaproteobacteria, Alpha and Gammaproteobacteria rarely dominate freshwater bacterial

communities, except under conditions of elevated organic and inorganic inputs during phyto-

plankton blooms [13, 66, 76].

One of the Gammaproteobacteria OTU’s found in this study was a Rheinheimera species.

Rheinheimera are abundant in marine, freshwater and estuarine environments and are able to

grow on and degrade organic matter [95–97]. Other Gammaproteobacteria were Pseudomonas
and Xanthomonadaceae. These groups include opportunistic pathogens of humans, fish and

plants [98, 99]. Pseudomonas and Rheinheimera are thought to enhance the growth of Micro-
cystis by modulating phosphate exchange in the cyanobacterial mucilage capsule [13, 100].

Sphingorhabdus and Novosphingobium (Alphaproteobacteria) are physiologically diverse

generalists capable of aerobic anoxygenic photosynthesis and degrading polycyclic aromatic

compounds [75, 101–105]. Candidatus Pelagibacter, one of the dominant genera in the V1-V3

library, belongs to the SAR11 lineage which is known to play important role in phosphate

metabolism in aquatic ecosystems [106]. Roseomonas, a member of family Acetobacteraceae,

has been previously been associated with cyanobacterial blooms and attaches to the cell surface

of M. aeruginosa [14, 18]. Another Alphaproteobacteria species was Caulobacter profundus
[107]. Caulobacter are known to be associated with cyanobacterial blooms and enhance the

growth of Microcystis [13, 108]. The highest cyanotoxin concentration, in August, coincided

with the greatest diversity of potentially cyanotoxin-degrading species like Caulobacter, Novo-
sphingobium, Sphingorhabdus (Alphaproteobacteria), Paucibacter, Flavobacterium (Betaproteo-
bacteria) and Pseudomonas (Gammaproteobacteria). It has been suggested that cyanotoxins

provide a competitive advantage to cyanotoxin-degraders by serving as nutritional supplement

[109–111].

Comparison of microscopic and sequence based results

The microscopic findings and 16S rRNA sequence analysis were in agreement in regard to the

major species present. The quantitative results however were not in concordance. Similar find-

ings have been reported previously [112, 113]. This discrepancy needs to be addressed, as it is

commonly assumed that read counts are semi-quantitative and will provide meaningful rela-

tive abundance estimates [114]. A recent study has shown that Cyanobacteria were
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overrepresented in HTS data as compared to microscopic biovolume data. Thus, for the

moment both methods are needed to obtain a picture of the cyanobacterial community struc-

ture [115].

The discrepancies observed indicate that there is significant bias in one or both of the meth-

ods used. Microscopy is a subjective method, dependent on the skill and experience of the

microscopist and overestimation or underestimation of phytoplankton diversity may occur

[112, 116, 117]. In addition, differential losses of cells may occur during fixation, depending

on the species and cell size [113, 118, 119]. Smaller cells that do not sink fast enough within the

counting chamber can be underrepresented or missed completely [115]. 16S amplicon read

counts are subject to biases caused by cell lysis efficiency, DNA extraction efficiency, PCR

amplification efficiency, varying 16S rRNA gene copy number, quality filtering criteria and the

sequencing method used [14, 113, 114, 120–123]. Our results illustrate the importance of using

multiple methods while characterizing freshwater microbiota. Additional experimentation is

required to resolve the observed discrepancies.

Conclusion

To our knowledge, this study is the first use of 16S rRNA targeted amplicon sequencing to

characterize the bacterial communities associated with phytoplankton blooms in a eutrophic

lake in Norway. Our study revealed that choice of 16S rRNA region can affect the apparent

community structure and this needs to be taken into account in the planning and interpreta-

tion of such studies. Our results showed a highly complex and fluctuating microbial flora,

mostly comprised of taxa previously found in association with phytoplankton blooms. A sig-

nificant proportion of the community was represented by low abundance bacterial groups and

unclassified taxa that might be performing hitherto unidentified ecological functions. Our

study also showed that the resolving power and the quantitative results of microscopic and 16S

rRNA targeted sequence analysis may differ, which needs further investigation.

The 16S rRNA results, provided a snapshot of the phytoplankton-associated bacterial com-

munity, at three individual time points. As phytoplankton communities are known to be

highly dynamic, more frequent sampling will be needed to identify trends.
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