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Abstract

As climate change is expected to have a significant impact on species distributions, there is

an urgent challenge to provide reliable information to guide conservation biodiversity poli-

cies. In addressing this challenge, we propose a remote sensing-based approach to fore-

cast the future habitat quality for European badger, a species not abundant and at risk of

local extinction in the arid environments of southeastern Spain, by incorporating environ-

mental variables related with the ecosystem functioning and correlated with climate and

land use. Using ensemble prediction methods, we designed global spatial distribution mod-

els for the distribution range of badger using presence-only data and climate variables.

Then, we constructed regional models for an arid region in the southeast Spain using EVI

(Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with

the global model projections applied to this region. Finally, we forecast the badger potential

spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating

the uncertainty derived from the predicted values of EVI-derived variables. By including

remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem

functioning into spatial distribution models, results suggest that future forecast is less favor-

able for European badgers than not including them. In addition, change in spatial pattern of

habitat suitability may become higher than when forecasts are based just on climate vari-

ables. Since the validity of future forecast only based on climate variables is currently ques-

tioned, conservation policies supported by such information could have a biased vision and

overestimate or underestimate the potential changes in species distribution derived from cli-

mate change. The incorporation of ecosystem functional attributes derived from remote

sensing in the modeling of future forecast may contribute to the improvement of the detec-

tion of ecological responses under climate change scenarios.
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Introduction

As climate change is expected to have a significant impact on species distributions, there is an

urgent challenge to provide policy-makers with valuable information to guide conservation

biodiversity policies. To address this challenge, modeling approaches should be enhanced with

the aim of increasing the confidence of the future forecasting [1]. In particular, mammalian

species richness will be dramatically reduced throughout the Mediterranean basin; however,

the trend will not be uniform for all taxa. For instance, Mustelidae (e.g., badger, weasel) will

decrease while Canidae (e.g., wolf), Hyaenidae (e.g., hyena) and some families of Chiroptera

(bats) will increase [2]. These findings highlight the complexity of species response to climate

change and the necessity of focusing modeling efforts to enhance the reliability of the predicted

information.

Species distribution models (SDMs) are used to guide conservation programs in anticipa-

tion of future climate change effects on species [3]. SDMs capture relationships between a spe-

cies (occurrence) and its environment. However, some authors recognize that the incomplete

coverage of the environmental niche of species is one of the important sources of error when

forecasting distributions under climate change, because it does not cover completely the spatial

distribution range of species [4], and/or only consider climatic variables as predictors [5]. In

addition, forecasts of species distribution under climate change entail an inherent uncertainty

such as residual error of models, modeling algorithm and climate scenarios selected [6]. Differ-

ent solutions have been proposed for solving these issues. For example, Gallien et al. [7] pro-

vide a methodological framework where the use of predictions based on a global model to

weight pseudo-absences in a regional model significantly improved the predictive perfor-

mance of regional SDMs. Wenger et al. [6] suggested a Monte Carlo approach that accounts

for uncertainty within generalized linear regression models. Finally, the incorporation of other

environmental variables (different than climate ones), e.g., land use or ecosystem functioning

descriptors such as ecosystem production and seasonality, would improve the reliability of the

predictions [5,8]. However, we suggest that it is also necessary to incorporate the uncertainty

derived of the future values of projected environmental variables. With this aim, we have

developed a remote-sensing based approach.

Remotely sensed indicators of ecosystem functioning are increasingly being used in animal

research. In particular, spectral Vegetation Indices (VIs) have been used to great success in

mammal ecology [9]. VIs are conceptually and empirically linked with primary production

[10], which determines the amount of green biomass available for herbivores and is referred as

the main descriptor of ecosystem functioning [11].

Functional attributes derived from VIs are usually expressed as average temporal summa-

ries, such as the annual mean (i.e., surrogate of mean annual primary production) or the sea-

sonal coefficient of variation (i.e., indicator of seasonality or temporal variation within the

year) [12]. Of particular note are spectral Vegetation Indices (VIs), such as the Normalized

Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). Both of these

VIs are directly related with the fraction of photosynthetically active radiation (fAPAR) inter-

cepted by green vegetation [13]. This relationship allows the derivation of regional maps of pri-

mary production from radiation use efficiency values [14]. Landscape functional heterogeneity

has also been suggested as a significant driver of species [15] and ecosystem diversity [12], par-

ticularly in the Mediterranean Region. Many animal species have proved to be especially sensi-

tive to spatial heterogeneity [16]. Recent findings suggest that this sensitivity is related more to

functional heterogeneity than to structural heterogeneity [17]. For instance, Requena-Mullor

et al. [8] found modeled spatial distribution of the European badger (Meles meles L.) in SE

Spain was significantly improved when augmenting climate variables with EVI-derived
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functional attributes, (esp. the spatial variability of EVI) rather than land cover and land use

variables.

The purpose of this study is to explore the benefits of including remotely sensed descriptors

of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribu-

tion models in order to enhance the reliability of future forecasts of terrestrial mammal habitat

quality. We compared the future forecasts obtained by using models with and without incor-

porating remotely sensed descriptors. We used the European badger in an arid region of

southeastern Spain as a case study. In this region the species is not abundant and at risk of

local extinction due to climate change [18]. We built generalized linear models (using climate,

and land use variables as predictors) to project the EVI-derived variables under the Inter-gov-

ernmental Panel of Climate Change (IPCC) and land cover and land use change scenarios.

Then, we incorporated the uncertainty derived from these models into future forecast by using

the distribution of residuals. Finally, we discuss how the forecasted distribution based on our

approach can guide policy-makers to review current policies and biodiversity conservation

programs.

Materials and methods

Species model

The European badger is a medium-sized carnivore widely distributed across Europe. In the

arid southeastern limits of its range (i.e., the Mediterranean drylands of Iberian Peninsula) the

European badger prefers mosaic landscapes consisting of fruit orchards and natural vegeta-

tion, which provide shelter and food resources [19]. The potential effects of climate change on

life-history traits such as population density, social organization or population growth have

been highlighted for badger [20]. Although the species is currently considered of least concern

(LC) in Spain [21], in the arid southeastern of Spain, badgers are not abundant and densities

are usually below one badger/km2 [22]. Since the food resources exploited by the species

directly or indirectly depend on the climate and human land use [23], it would be reasonable

expect, under future change scenarios, that some territories currently occupied might be aban-

doned with the goal of finding areas with better conditions. Therefore, European badger is at

potential risk of local extinction due to climate change [18], becoming an ideal study organism

for the purpose of this study.

Modeling approach

We first designed a set of SDMs at global scale (i.e., including the distribution range of the bad-

ger) using presence-only data and climate variables. We assembled them by a committee aver-

aging method (see below a detailed description). Then, using the global model output to

weight the pseudo-absences (PAs), we built four sets of SDMs at regional scale (i.e., in an arid

region of southeastern Spain). Two of these sets included EVI-derived, climate and topo-

graphic variables (hereafter EVI-models). The other two sets included only climate and topo-

graphic variables (hereafter Climate-models). The pseudo-absences were just weighted in one

set of EVI- and Climate-models, respectively [7]. Finally, we forecasted the potential spatial

distribution of badger for the 2071–2099 period under IPCC scenarios [24] using the regional

models with the best performance. Best performance was based on the area under the receiver

operating characteristic curve (AUC). We note that to predict the future EVI-variables used in

forecasting the potential spatial distribution, we built generalized linear models (GLMs) (using

climate, and land cover and land use variables as predictors) and projected them under IPCC

and land cover and land use change scenarios. We incorporated the uncertainty derived from

GLMs into future forecast by using the distribution of residuals.
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The global model. The spatial distribution range of badger was obtained from the Digital

Distribution Maps of the IUCN Red List of Threatened Species (http://www.iucnredlist.org/)

in vector format (Fig 1A). We extracted species occurrence from the Global Biodiversity Infor-

mation Facility (http://data.gbif.org) at a minimum resolution of 2.5´ x 2.5´. We used 16279

records of occurrence after post-processing the data to remove those presences with unrealistic

coordinates (e. g., sea, incomplete coordinates). From the 19 available bioclimatic variables at a

2.5´ spatial resolution of the WorldClim database (http://www.worldclim.org/), we selected

seven with a Spearman rank-correlation lower than 0.6, i.e., annual mean temperature, mean

diurnal range, temperature seasonality, temperature annual range, mean temperature of wet-

test quarter, annual precipitation and precipitation seasonality. Following to Gallien et al. [7],

we modeled species distribution using six algorithms available in the “biomod2” package ver-

sion 3.1–64 [25] in R (http://www.R-project.org/): a generalized additive model (GAM), a clas-

sification tree analysis (CTA), a multivariate adaptive regression splines (MARS), a boosted

regression trees (BRT), an artificial neural networks (ANN) and a random forest (RF). We

kept the default models options. For each algorithm, two PAs datasets (20000 each time) were

randomly selected and four-fold cross-validations performed (48 models in total) by randomly

selecting 70% of the presence locations to train the models, and the remainder 30% to evaluate

them using the AUC [26]. Then, only those models obtaining an AUC score above 0.8 were

Fig 1. Spatial distribution of European badger. (a) Spatial distribution range of the European badger obtained from the IUCN map, (b) Regional

administrative boundaries of Andalusia, (c) Case study in arid environments of southeastern Spain (7051 km2) defined using the Martonne aridity index and

administrative boundaries of Andalusia; location of the 73 badger presence records used for the regional model. The digital elevation model showed was

downloaded from a public database available in http://www.juntadeandalucia.es/institutodeestadisticaycartografia/prodCartografia/bc/mdt.htm

doi:10.1371/journal.pone.0172107.g001
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used to build the committee averaging map. The committee averaging method is an ensemble

forecasting method [27] by which the predicted probability maps of species habitat suitability

are not averaged, but instead are transformed into binary maps (using for each model the

threshold that maximizes both sensitivity and specificity). Thus, this method gives both a pre-

diction and a measure of uncertainty. When the prediction is close to 0 or 1, it means that all

models agree to predict 0 and 1 respectively (see [25] for details).

The regional model. For the regional model we selected an arid case study in the south-

eastern Iberian Peninsula (36˚58’N, 2˚29’W) (Fig 1C). This region is the most arid in all of

Europe and presents the most extreme arid conditions in the specie range. We defined this

area based on two criteria: (1) the Martonne aridity index (Ia), only including values between

5 and 15 [28], (2) the administrative boundaries of the Andalusia (Fig 1B), because the meth-

odologies employed to obtain environmental GIS cartography (used later to estimate envi-

ronmental variables for the modeling process) are different across regional administrative

boundaries (Spanish Autonomous communities).

The presence records for the badgers were obtained from published data [8] and personal

databases from the authors (i. e., 184 occurrence registers). We reduced locally dense sampling

by thinning the records to one per 5 x 5 km grid cell to avoid spatial autocorrelation problems.

A total of 73 presence records were used in the modeling (Fig 1C). Presence samples were dis-

tributed across a wide gradient of altitude (0–1500 meters), temperature (annual minimum

mean temperatures range: -1.6–15˚C, annual maximum mean temperatures range 17–24.5˚C),

annual precipitation range (165–419 mm/year), and annual evapotranspiration range (343–

1038 mm/year). Vegetation is mainly constituted by Mediterranean shrubland (e.g., Pistacia
lentiscus, Macrochola tenacissima, Anthyllis spp.) with more xerophytic species in lower zones

near to the coast (e.g., Thymus spp., Salsola spp.). Woodland is very scarce and is present inland

and at higher altitude (e.g., Pinus halepensis). Extensive crops (e.g., fruit orchards) are associ-

ated with the main river courses where together with natural vegetation constitute the pre-

ferred habitats of the badger [8,19]. Intensive irrigated crops are dominant in areas further

north (e.g., almond and arable crops).

We selected six variables associated to ecological requirements of the European badger and

which have high predictive power in terms of habitat suitability [29,8]. Variables were related

to climate (mean annual precipitation (PREC) and mean value of monthly maximum tempera-

tures (TMEDMAX)), relief (mean slope (SLOPE)), and spatio-temporal patterns of primary

production (EVI annual mean (EVIMEAN), intra-annual coefficient of variation of EVI

(EVIC), and spatial standard deviation of EVI annual mean (EVISTD)). To avoid collinearity

between predictors, we checked that Spearman rank-correlations were less than 0.85 [30]. The

maximum Spearman correlation value obtained was -0.37, corresponding to PREC and

TMEDMAX.

PREC, TMEDMAX (for the 1971 to 2000 period) and SLOPE were derived from spatial data

layers of the Environmental Information Network of Andalusia (http://www.juntadeandalucia.

es/medioambiente/site/web/rediam). PREC and TMEDMAX had a cell size (100 x 100 m), and

SLOPE was calculated from a 20x20 m pixel digital elevation model of Andalusia. We resampled

to the 231 x 231 m grid (pixel size of the MOD13Q1 EVI products, see below) using bilinear

resampling, in Quantum GIS (QGIS; http://www.qgis.org) which is more realistic than nearest-

neighbor interpolation [26]. This pixel resolution is suitable to capture the habitat preferences

of the European badger at a local scale [8].

Our three functional descriptors of the spatiotemporal patterns of primary production were

derived from satellite images captured by the MODIS sensor onboard the NASA TERRA satel-

lite (http://www.modis.gsfc.nasa.gov/). We used the MOD13Q1 EVI product, which consists

of 16-day maximum value composite images (23 per year) of the EVI at a 231 x 231 m pixel
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size. This product has atmospheric, radiometric and geometric corrections. We used EVI

instead of NDVI because it is less influenced by soil background and saturation problems at

high biomass levels [31]. We first used the Quality Assessment (QA band) information of this

product to filter out those values affected by high content of aerosols, clouds, shadows, snow

or water. Next, we calculated the mean seasonal EVI profile (average year) for the 2001–2013

period and derived the EVI annual mean (EVIMEAN) as the mean of the 23 images of the

average year and the intra-annual coefficient of variation of EVI (EVICV) as the intra-annual

standard deviation divided by EVIMEAN. The spatial standard deviation of EVIMEAN
(EVISTD) was calculated in windows of 3 x 3 km (13x13 MOD13Q1 pixels) throughout the

study area. The size of this window was determined based on the suggested 9 km2 home range

of the European badger for low suitability habitats [19]. Horticultural greenhouses are inten-

sively used in this area [32], and because the EVI values of greenhouses cannot be interpreted

as vegetation greenness [31], we removed all grid cells containing greenhouses (5% of the

study area) to avoid their influence of species distribution modeling.

To test the utility of functional descriptors variables in forecasting future spatial distribution

of badger, we combined the six selected variables into two groups, with and without including

EVI-derived variables. Then, we built four sets of regional SMDs, two of these sets included

EVI-derived, climate and topographic variables and the other two only included climate and

topographic variables. Using the global model output, the PAs were weighted only in one set

of EVI- and Climate-models, respectively [7]. We followed the Gallien et al. approach [7]

based on six statistical algorithms, i.e. GAM, CTA, GBM, RF, ANN and GLM. A PA datasets

of 10000 points were randomly selected, followed by four cross-validation repetitions (70–30%

on the presence locations for running and testing models respectively). To deal with the poten-

tial sample bias in the presence records (i.e., some sites are more likely to be surveyed than

others), we followed the same sampling design for selecting PAs as for selecting presences

[33]. In this manner, we restricted the choice of PAs inside the buffers of 5 km (size of plots

used in the grid sampling by [8]) around any of the presence records. Ninety-six different

models were finally run, and grouped into four sets: EVI-models with and without weighted

PAs (24 models, respectively) and Climate-models with and without weighted PAs (24 models,

respectively). Currently, an incompletely coverage of the environmental niche of species is

recognized that reduces confidence of the forecasting distributions under climate change sce-

narios [4]. By focusing on a reduced area of the distribution range of badger (e.g., and arid

southeast in the Iberian Peninsula), we are ignoring that the species may resist a broader range

of environmental conditions, and thereby failing to take into account its ecological flexibility

in responding to future climate conditions. To solve this point, we employed the approach

supported by [7]. According to these authors, weighting the PAs in the regional model using

the predictions from the global model enable: decrease the influence of (regional) false ab-

sences, validate the true (regional) presences, and let the regional climate, soil and land use

refine the regional niche estimation. Thus, we used the global model projections applied to our

case study to weight each PA. Where the global model showed a high level of agreement with

the PA we attributed a high weight to the PA, and vice versa. The weights were given by the Eq

(1):

WeightðxÞ ¼
1

1þ
projGðxÞ

projGðxÞ� 1

� �2
ð1Þ

where Weight(x) is the weight attributed to the PA x, and projG is the global model prediction

at the location of x.
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Regional model evaluation and future forecasting

We evaluated the performance of regional models by AUC using the remainder of the pres-

ence records (i.e., 111) after selecting the samples used to build the models (see above). With

the aim to obtain as reliable as possible future forecasting, we forecasted the badger spatial dis-

tribution for future climate scenarios in each set of models by using the best models based on

AUC developed under current environmental conditions. A one-tailed Wilcoxon signed rank

test was used to assess whether increases in overall AUC in the EVI-models relative to those in

the Climate-models were statistically significant [34].

Two scenarios proposed by the IPCC were considered: A2 and B1. The A2 scenario

assumes a continuously increasing global population, economic development that is primarily

regionally oriented and focused on economic growth and technological changes that are more

fragmented and slower than in other storylines. The B1 scenario assumes that economic struc-

tures rapidly change towards a service and information economy, and that resource-efficient

technologies are introduced. The projected PREC and TMEDMAX (100 x 100 m cell size)

variables for the 2071–2099 period were obtained from statistical downscaling methods (i.e.,

multiple linear regression) [35] of these IPCC scenarios available at the Environmental Infor-

mation Network of Andalusia (see above). The simulated daily temporal series for the pro-

jected period were summarized by the annual mean with the aim of creating a representative

year (see [36] for details). Then, we resampled to the 231 x 231 m grid using bilinear resam-

pling. Although slope has been described as a relevant factor for sett digging, in low density

areas of Mediterranean landscapes, setts were located almost everywhere [22]. Since slope

seems not to be so limiting and was not available for future scenarios due to the complex driv-

ers and predictors behind this process, we considered it static through time. The three pro-

jected functional descriptors derived from EVI (i.e., EVIMEAN, EVICV and EVISTD) were

predicted by GLMs. Although precipitation and temperature are the main two climate factors

that drive primary production of the biosphere, at the regional scale, the response of primary

production to these climate drivers can vary both spatially and temporality, modulated by dif-

ferent vegetation types [37]. Therefore, EVIMEAN and EVICV were predicted by a GLM that

used as explanatory variables the current PREC and TMEDMAX variables, land cover and land

use and slope. Then, future EVIMEAN and EVICV were projected using the fitted models with

future climate variables of each A2 and B1 scenario. In addition, we simulated three future sce-

narios of land cover-land use change: (1) irrigated crop scenario: the 5% and 10% of the natu-

ral vegetation and rainfed crop patches, respectively, converted into irrigated crop patches; (2)

crop abandonment scenario: the 7.5% and 7.5% of rainfed and irrigated crop patches, respec-

tively, converted into natural vegetation parches; (3) no land change scenario (see S1 Fig).

These scenarios were based on the future projections obtained by Piquer-Rodrı́guez et al. [38]

for the southeastern Iberian Peninsula and were simulated using the MOLUSCE plugin in

QGIS (http://hub.qgis.org/projects/molusce). Finally, the future EVISTD variable was obtained

by using a 3 x 3 km moving window on the projected EVIMEAN variable (as explained above).

In the linear regression, the predicted values of the response variable are estimated by the

following Eq (2):

yi ¼ b0 þ b1 � xi1 þ b2 � xi2 þ ::::þ bj � xij þ εi ð2Þ

where yi is the predicted value of variable response for the ith observation when the explana-

tory variable X1 equals xi1, X2 equals xi2, Xj equals xij; β0 is the intercept; β1, β2 and βj are the

partial regression coefficients for the explanatory variables 1, 2 and j; εi is unexplained error

associated with the ith observation.
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Errors are assumed to be normally distributed with expectation 0 and variance σ2. We

exploited this assumption to incorporate the uncertainty derived from the projected EVI-

derived variables into future forecasts. To do this, we generated 1000 projections of these vari-

ables by adding in each iteration the errors estimated from the GLMs. We obtained these

errors using the distribution of residuals provided by the GLMs output (see S1 Table for details

of GLMs).

Then, we assembled the future forecasts obtained using the projected climate and EVI-

derived variables by the median value. All calculations were made using R software.

Comparing current and future spatial distributions

We used a distance-based method [39] to compare the current and future spatial distributions

yielded by the different regional models and scenarios. This method combines aspects of

image analysis with distance-based statistical test to extract two types of information from an

ensemble of SDM output maps: intensity and spatial difference.

Intensity index (Eq 3) measures the overall level of habitat suitability (based on the environ-

mental variables used in the SDMs) for a species within an area extent but with the spatial

information removed.

Si ¼
PR

r¼1

PC
c¼1

Mi½r; c� ð3Þ

where Si is the intensity; Mi is the ith map in a set of SDM outputs; R is the number of rows

indexing northing values in the map; C is the number of columns indexing easting values in

the map.

Spatial differences between current and future distribution maps was tested by using the

Hellinger distance (Eq 4) [40]. Wilson [39] found that this distance obtained the best results

when SDMs output maps were spatially compared. Hellinger distance measures the dissimilar-

ity between two probability density functions for continuous variables. Before to be used for

comparing maps, it requires normalization by intensity, so that, the map has the properties of

a bivariate probability distribution. Both measures (i.e., Hellinger distance and the corre-

sponding difference in intensity) are largely independent and can be used in a scatterplot to

show patterns of change in the distribution of habitat suitability [39,40].

Hij ¼ 0:5 �
PR

r¼1

Pc
c¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi½r; c�

Si

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj½r; c�

Sj

s" #2
2

4

3

5

1=2

ð4Þ

where Hij is the Hellinger distance between the Mi and Mj maps.

To check if both measures (i.e., intensity and Hellinger distance) yielded by Climate-model

and EVI-models, respectively, were significantly different, we explored the probability distri-

butions of the normalized pairwise differences for each measure by a bootstrap method

(10.000 replicates) and then, we calculated which of these differences fell above the 95th per-

centile and below the 5th percentile.

Results and discussion

Model evaluations

All global models showed a good performance (AUC > 0.8) and therefore the 48 models were

used in the ensemble modeling. However, when we selected the models at regional scale, we

used different AUC values as thresholds with the aim to maximize the performances obtained.

For the Climate-models, the AUC values were 0.55 and 0.6 for with and without weighted PAs
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models, respectively; in this form, 3 and 6 models were selected to forecast the badger spatial

distribution into future scenarios. For the EVI-models, the AUC values used were 0.55 and 0.7

(with and without weighted PAs) and the number of models selected was 9 and 5, respectively.

EVI-models performed better than Climate-models (both without weighted PAs)

(W = 453.5, p<0.0001) for the current conditions, although the AUC values accomplished

were moderated (the maximum value reached was 0.74 into the EVI-models set) (Fig 2A).

When we compared between models with weighted PAs, EVI-models were also better than

Climate-models (W = 439, p<0.001), but the AUCs were still lower (Fig 2B). The comparison

of the performance between models with and without weighted PAs but using the same type of

variables, revealed that weighting the PAs did not significantly improved discrimination

between areas where badger was present and where it was not recorded (PAs) (W = 473,

p<0.0001; W = 506, p<0.00001).

Comparing forecasted future distributions

Because of the performance of models (i. e., Climate-models and EVI-models) with weighted

PAs was lower than the models without weighted PAs, we only used the former to forecast

future distribution. Badger was predicted to experience an increase in habitat suitability (posi-

tive change in intensity) and considerable spatial change when we just considered climate vari-

ables (Fig 3). A2 scenario forecasted the most favourable conditions for badger with these

variables. However, when EVI-derived variables were incorporated into the distribution mod-

els, habitat suitability was predicted to decrease (negative change in intensity), and spatial pat-

tern change was greater than without EVI-derived variables. The increase of spatial changes

Fig 2. Comparison of model performance using the area under the threshold-independent receiver operating characteristic curve (AUC). (a)

Regional EVI-model performance versus regional Climate-model, both without weighted PAs. (b) Regional EVI-model performance (AUC) versus regional

Climate-model, both with weighted PAs. Values below the diagonal line mean a better performance for EVI-model, values above mean a better performance

for Climate-model and values on the diagonal line mean an identical performance between the models compared.

doi:10.1371/journal.pone.0172107.g002
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could be driven by LCLC change scenarios used to predict EVI variables. LCLU changes are

considered to be a major driver of global environmental change and biodiversity loss [41]. For

this reason, future forecasts that not include them, e.g. based only on climate variables, could

harbour an important bias, particularly, at a regional scale where the landscape features, such

as vegetation and land use, are key for the species [19,23]. Although the forecasts obtained

from the different IPCC scenarios and land cover and land uses change were similar for EVI-

models, the decrease of habitat suitability was more moderate with the increase of irrigated

Fig 3. Changes in intensity (Y axis) and Hellinger distance (X axis) forecasted for the European badger in southeastern Iberian Peninsula under

IPCC scenarios. Change in intensity (overall measure of habitat suitability) between the current and IPCC A2 (circles) and B1 (squares) for 2071–2099 maps

is plotted against the corresponding Hellinger distance (representing spatial changes). Filled symbols represent EVI-models and open symbols Climate-

models, both without weighted PAs. I: irrigated crop scenario; A: crop abandonment scenario; N: no change scenario.

doi:10.1371/journal.pone.0172107.g003
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crop than crop abandonment. Finally, the forecasts predicted by Climate-models and EVI-

models were significantly different at a 0.5 level of confidence (see Table A, Figs A and B in

S1 File).

EVI descriptors of ecosystem functioning to forecast species

distributions

Our results suggest that future forecasts based only on climate variables should be interpreted

with caution because the temporal dynamics and spatial patterns of ecosystem functioning

may play an important role in determining the species distribution and the dynamics of its

change. At a global scale, the bioclimate envelope approach (i.e., modeling the association

between climate variables and species distribution) can provide a first approximation as to the

potentially dramatic impact of climate change [5]. However, at a regional scale, factors that

determine species distributions may vary [42] and therefore, the ecological limits predicted by

climate may be misleading and the future forecasts obtained could underestimate or overesti-

mate the potential changes in species distribution derived from climate change. In fact, we

show how Climate- models and EVI-models forecasted opposed futures for the badger under

both A2 and B1 scenarios in Mediterranean arid environments. Supporting this finding,

Requena-Mullor et al. [8] showed that EVI descriptors of ecosystem functioning are useful to

describe drivers of the spatial distribution of badger in these environments, in consequence,

the future forecast derived from EVI-models may suggest more reliability.

At this point, a key question arises: how much more reliable are these future distribution

forecasts?. Addressing this question goes beyond the goal of this study, however, our results

show that EVI-derived variables could help to decrease the underlying ecological bias of the

future forecasts based just on climate variables. In this regard, EVI-models forecasted a

decreased of the habitat suitability for badger. Macdonald et al. [20] found that badger life his-

tory parameters (such as survival, fecundity or body-weight) are correlated with annual vari-

ability of both temperature and rainfall mediated by food supply. Therefore, climate trends

might influence badgers population growth directly and through correlations with food

availability [43]. Primary production is at the base of food webs, and therefore a decrease

would translate into lower food availability for higher trophic levels. Supported by findings of

Alcaraz-Segura et al. [12], we consider that EVI-derived variables could represent the interac-

tions between climate and food availability for badger as descriptors of the temporal dynamics

and spatial patterns of primary production. On a local scale, the composition of the badger

diet is influenced primarily by human land use and management [23]. More specifically, in the

southeastern Iberian Peninsula, badger diet depends on fruit orchards and other derived food

resources (e.g., insects) [44]. EVI-derived variables have been suggested as proxies of the spa-

tial and temporal variability of food resources for badgers in these environments [8]. There-

fore, future forecasts based on both EVI-derived and climate variables would capture not only

climate change but also correlations between climate and ecosystem functioning through the

dynamic of primary production and land use change. According with this, our results showed

that the decrease of habitat suitability with an increase of irrigated crops was less than with the

abandonment crops.

The regional model performances were worse with weighted PAs. This result partially dis-

agrees with findings by [7]. As we described above, at a regional scale, other factors than cli-

mate can play an important role in determining species distribution [42]. Although climate

was not predicted as a limiting factor for the occurrence of badger in the arid southeastern of

Iberian Peninsula by the global model (based only on climate variables, see S2 File), some

authors have suggested that the species in these environments select rural landscapes
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consisting in a mosaic of fruit crops and orchards mixed with patches of semi-natural vegeta-

tion as a response to food shortage [19,8], which are not considered by the prediction of the

global model. In consequence, the badger occurrence predicted by the global model in south-

eastern Iberian Peninsula was overestimated (see S2 File).

Implications for biodiversity conservation policies

Since the validity of future forecast based only on climate variables is currently questioned

[45], policies and biodiversity conservation programs supported by such information could

have a biased vision and overestimate or underestimate the potential changes in the species

distribution derived from climate change. The incorporation of ecosystem functional attri-

butes derived from remote sensing in the modeling of future forecast may contribute to the

improvement of detection of ecological responses under climate change scenarios. In addition,

our approach would allow incorporating the uncertainty derived of these attributes when they

are projected to future under both climate, and land use change scenarios. In consequence, the

future forecast obtained would be more reliable and help policy-makers to review the existing

policies and biodiversity conservation programs.

Regarding global biodiversity conservation efforts, we highlight that the use of variables

related to ecosystem functional attributes derived from remote sensing data, has been shown

to conduct cost-efficient monitoring schemes for biodiversity conservation and across a vari-

ety of ecosystems worldwide [46]. Our approach can be aligned with goals of the Group on

Earth Observations Biodiversity Observation Network (GEO BON), which is seeking consen-

sus for the key variables to improve the ever-increasing need for monitoring of biodiversity

across space and time in a rapidly changing planet.
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