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Abstract

On polar coasts, seasonal sea-ice duration strongly influences shallow marine environ-

ments by affecting environmental conditions, such as light, sedimentation, and physical dis-

turbance. Sea-ice dynamics are changing in response to climate, but there is limited

understanding of how this might affect shallow marine environments and benthos. Here we

present a unique set of physical and biological data from a single region of Antarctic coast,

and use it to gain insights into factors shaping polar benthic communities. At sites encom-

passing a gradient of sea-ice duration, we measured temporal and spatial variation in light

and sedimentation and hard-substrate communities at different depths and substrate orien-

tations. Biological trends were highly correlated with sea-ice duration, and appear to be

driven by opposing gradients in light and sedimentation. As sea-ice duration decreased,

there was increased light and reduced sedimentation, and concurrent shifts in community

structure from invertebrate to algal dominance. Trends were strongest on shallower, hori-

zontal surfaces, which are most exposed to light and sedimentation. Depth and substrate

orientation appear to mediate exposure of benthos to these factors, thereby tempering

effects of sea-ice and increasing biological heterogeneity. However, while light and sedi-

mentation both varied spatially with sea-ice, their dynamics differed temporally. Light was

sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a

regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly

the overarching force structuring these shallow Antarctic benthic communities, but direct

effects are imposed via light and sedimentation, and mediated by habitat characteristics.

Introduction

The annual timing of sea-ice formation and departure is critical to the functioning of polar

ecosystems, but in recent decades sea-ice dynamics have been changing. Higher temperatures

and stronger winds have reduced the annual duration of Arctic sea-ice [1, 2], and within the
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next 30 years the Arctic Ocean is predicted to experience its first ice-free summer in recorded

history [3]. Sea-ice in the West Antarctic Peninsula has been departing earlier and forming

later each year for the past few decades [4–6], while temporal trends in continental Antarctica

are spatially variable [7]. To predict consequences of changing sea-ice on polar biodiversity

and ecosystem function we must establish relationships between sea-ice dynamics and biota,

and recent studies have made progress to this end [8–10]. However, we now need to fine-tune

the mechanistic basis of these relationships, and to identify which factors mediate their

strength.

Sea-ice dynamics directly impact biota living on or in the ice, such as mammals [11] and

microorganisms [12], but also affect subtidal ecosystems. Environmental conditions in benthic

and pelagic marine ecosystems are highly dependent on sea-ice dynamics, since the annual

period of sea-ice cover determines average subtidal conditions. Recent studies report strong

response of benthic communities to change in sea-ice cover [10, 13, 14], although surveys are

generally at a coarse taxonomic scale and there is little information on benthos/sea-ice associa-

tions for small or cryptic taxa. Given the high diversity and productivity of polar benthic com-

munities [5], better understanding of their relationship to sea-ice is critical for predicting

future polar biodiversity.

Of the ways in which sea-ice affects benthic communities, the most obvious is reduced solar

irradiance [8, 15]. Decreased photosynthetically active radiation (PAR) inhibits photosynthesis

in algae [16] and diatoms [17], and protects organisms from potentially harmful ultraviolet

wavelengths [18, 19]. Light is pivotal in mediating competitive interactions between algae and

invertebrates, and in shallow waters can dictate overall community structure [20]. The amount

of light an area of seabed receives annually depends on the timing of sea-ice breakout relative

to the annual solar cycle, since sunlight is strongly seasonal at high latitudes [8]. Sea-ice deter-

mines both the type and quantity of primary productivity fuelling shallow benthic ecosystems.

Algae growing on the underside of sea-ice provide the benthos with small amounts of food

[21], supplemented by particles advected from ice-free areas [22]. When sea-ice breaks out,

however, pelagic phytoplankton bloom and dramatically increase total primary production

[23, 24].

Sea-ice also mediates physical disturbance to the benthos by influencing both sedimenta-

tion and ice-scour. Sea-ice forms a barrier between the water column and the atmosphere,

preventing wind-induced turbulence and water-column turnover to create relatively still,

depositional environments, where flow is generally limited to tidal currents [25, 26]. In such

conditions, particulate matter settles out of the water column and sediments accumulate on

the seafloor, potentially imposing sedimentation stress on benthic taxa. Sediment may be from

glacial or terrestrial sources, resuspended marine sediments, or organic matter produced in

the water column. A major source of organic matter is the summer phytoplankton bloom,

which typically occurs immediately after sea-ice breakout in response to the sudden increase

in light [23]. The role of sea-ice in phytoplankton deposition is two-fold: the timing of sea-ice

breakout determines when the phytoplankton bloom happens, and sea-ice cover then affects

the rate of deposition.

Sea-ice attached to coast (‘fast-ice’) also prevents drifting ice-bergs from scouring the sea-

bed and inflicting catastrophic physical disturbance [27]. Studies in West Antarctica have

found that the frequency of ice-scour to be directly related to seasonal sea-ice duration [9], and

that this process strongly influences the composition and structure of benthic communities

[28]. Frequently scoured seabeds are in perpetual states of early colonisation [5], and late suc-

cessional communities only occur at depth or in areas protected by continuous ice cover.

Depth of seabed can affect the rate of ice-scour, since the draught of an iceberg may be too

shallow to reach the seabed at a particular location, or too deep to avoid being grounded before
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it reaches that location. For seabed of a given depth, susceptibility to ice-scour is therefore

related to the size distribution of ice-bergs in the local area.

Evidence of links between sea-ice duration and shallow benthic community structure is grow-

ing, although patterns vary between study regions. A long-term study from the Arctic showed

that macroalgae increased in abundance as sea-ice duration shortened [10, 29]–a process also

described in Clark et al. (2013). Two study areas in the West Antarctic Peninsula have experi-

enced reduced sea-ice duration over the past decades, but different processes of ecological change

have been identified at each location. At Potter Cove (King George Island, 62˚ S) retraction of

sea-ice over 25-years led to macroalgal colonization [13], while at Rothera Station (Adelaide

Island, 68˚ S) reduced sea-ice increased the frequency of iceberg-scour and resulted in more dis-

turbed communities [5, 9]. In addition to variation in effects of sea-ice between locations, there

is also likely to be within-site variation that is not yet understood. Small-scale local factors, such

as habitat orientation and depth, might ameliorate or augment the effects of sea-ice on benthic

communities, and there is a need to understand how habitat features mediate sea-ice effects.

Light, sedimentation, and disturbance to the benthos are likely to be mediated by habitat ori-

entation and depth. Both light and sedimentation are vertically oriented processes, so their

effects on benthic organisms should depend on the orientation of habitat relative to overhead

inputs [30, 31]. Effects of sea-ice might also change with depth due to light attenuation [32].

PAR decreases at an exponential rate through the water column [33], so effects of sea-ice on pri-

mary production and UV exposure should also decrease with depth. The frequency of ice-scour

is highest in the shallows and decreases with depth, since fewer icebergs are large enough to

reach deeper seabed [9, 28]. Knowledge of the interactions between sea-ice and habitat charac-

teristics in affecting benthos is important to improve predictions about how benthos may be

affected by changing climate. In this paper we present a rare multidisciplinary dataset, combin-

ing environmental and biological data collected from a seasonally ice-covered region of Antarc-

tic coast. We report a detailed survey of biota on subtidal boulders at 11 sites across a gradient of

sea-ice duration, and consider biological trends in the context of local light and sedimentation.

Materials and Methods

Study area

This study was conducted around Casey Station (66˚ 17’ S, 110˚ 32’ E), on the coast of Wilkes

Land, East Antarctica (Fig 1). The subtidal landscape consists of a mosaic of granitic gneiss

bedrock, boulder fields, and sediments [34]. Ambient sea temperature is approximately -1.8˚C

throughout the year. Access to these sites was permitted by the Australian Antarctic Division,

and the work did not involve endangered or protected species.

Light meters

Light meters were deployed on the seabed at eight sites around Casey Station (Fig 1, Table 1)

between 1998 and 2004. These were Dataflow™ cosine corrected photosynthetic irradiance sen-

sors (400–700 nm) [35], with data logged to Dataflow™ 292 data loggers or Odyssey™ integrated

data loggers. Light meters were mounted upright on stainless-steel tripods or star pickets, and

were positioned and secured on the seabed by divers at depths of 7 to 10 m. They were cali-

brated against three Li-Cor LI-190SA sensors (Lincoln, Nebraska, USA) for 1 w prior to

deployment, and set to record ambient light levels every 20 min. Due to the deterioration in

performance of light meters through time as a result of physical disturbance, shading or foul-

ing, only the first 12 months of light data are presented. Raw data from light meters was con-

verted into mol photons PAR m-2 yr-1.
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Sedimentation

Sediment flux was quantified by deploying sediment traps at six sites (Fig 1, Table 1 and S1

Table) for a range of intervals between December 2002 and December 2006. A total of 211

traps were deployed: 187 for periods of 9–89 days, 20 for periods of 260–375 days, and 4 for

periods of 640–724 days. At each site, traps were deployed in inner and outer zones, where

Fig 1. Map of study region in the Windmill Islands, located on the coast of Wilkes Land, East Antarctica. Casey Station is marked with a star.

Abbreviated site names correspond to those in Table 1.

doi:10.1371/journal.pone.0168391.g001
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inner zones where closer to the shore and generally experienced later annual sea-ice breakout.

Prior to deployment, traps were scrubbed with water and detergent, rinsed with Milli-Q water

and placed in a 10% nitric acid bath for 24 hours, rinsed again with Milli-Q and sealed ready

for deployment. Traps had an internal diameter of 5.4 cm and an internal height of 13.7 cm.

No preservatives were used to keep the settling particles. Collected sediment material was

transported to the laboratory at Casey Station and stored at 4˚C until processed (within 24

hours of collection). Sediment material was twice filtered through pre-weighed 0.8 micron

glass fiber filters and 0.45 micron cellulose acetate filters. Filters were then placed on individual

petri dishes, oven dried at 60˚C, cooled in a desiccator and their dry weights recorded.

Biological survey

Divers collected boulders from 11 sites across a gradient of seasonal sea-ice cover (Fig 1, S2

Table). At each site divers collected eight boulders (mean surface area per boulder ± SE =

344 ± 19 cm2) from two depths, 6 and 12 m, 100–200 m apart. There was no significant

difference in the size of boulders collected from different sites or depths (2-factor ANOVA,

P> 0.05). Surveys were conducted across two austral summers (January–February 2006 and

October–December 2006; Table 1) but given the large temporal scales over which these com-

munities develop [36] we did not expect strong differences between summers. To test this we

sampled one site (O’Brien Bay 1) twice, once in each summer, and did not detect significant

differences in community structure (ANOSIM, R = 0.029, P = 0.32).

Boulders were kept in aerated local seawater at -2˚C, and communities were censused live

under a dissecting microscope. Quadrats (2 x 2 cm) were randomly placed on a boulder, and

all taxa occurring within a quadrat were recorded. On each boulder we sampled six quadrats

on horizontal (up-facing) surfaces and six on vertical (side-facing) surfaces, giving a total of 48

cm2. Down-facing surfaces were not included because this surface was bare on boulders at silty

sites. The placement of quadrats was constrained to be> 1 cm from any edge and at least 2 cm

from another quadrat. Counts were made of serpulid and spirorbid polychaetes, and percent

cover was estimated for all other taxa. All cheilostomate bryozoans were identified to species.

Other taxa were categorised into morphospecies. Voucher specimens were collected and

Table 1. Summary of sea-ice conditions and types of data collected at each site (denoted by x). Site codes are used in Fig 1. Ice-rank is an ordinal

number given to sites where biota were sampled, based on light measurements and long-term visual observations (NA refers sites where biota were not sam-

pled). Lower numbers indicate later sea-ice breakout. Ice-zone is a classification is given to all sites, for categorical analyses and to describe unranked sites.

Site Code Ice-rank Ice-zone Biota Light Sedimentation

Brown Bay BB NA Closed x

Sparkes Bay 1 SP1 NA Closed x

Sparkes Bay 2 SP2 NA Closed x

O’Brien Bay 1 OB1 1 Closed x x x

O’Brien Bay 5 OB5 2 Closed x x x

McGrady Cove MC 3 Closed x x x

O’Brien Bay 2 OB2 4 Intermediate x x

Newcomb Corner NC 5 Intermediate x x

Shannon Bay SB 6 Intermediate x x

O’Brien Bay 3 OB3 7 Intermediate x x

Honkala Island HI 8 Intermediate x

Beall Island BI 9 Open x

Powell Cove PC 10 Open x

Shirley Island SI 11 Open x x

doi:10.1371/journal.pone.0168391.t001
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preserved. Sponges and calcified bryozoans were preserved in 80% ethanol with Milli-Q water,

and other taxa were preserved in 7% formalin in seawater.

Statistical analyses

Sites were ranked according to their sea-ice duration (‘Ice-rank’, Table 1), as determined by

annual light budgets (Fig 2) and visual observations by Riddle and Stark since 1997. For uni-

variate analysis, ice-rank was used as a continuous variable to represent the gradient in sea-ice

cover, because light measurements (and therefore date of sea-ice breakout) were not available

for three of the eleven sites. For multivariate analysis (PERMANOVA), sites were classified

into one of three ice-cover zones (‘Ice-zone’, Table 1), since this analysis requires categorical

predictors. Categories were open, intermediate, and closed, where closed sites are generally

ice-covered >11 mo yr-1, intermediate sites 7–11 mo yr-1, and open sites <7 mo yr-1.

For boulder communities, multivariate community-level effects of sea-ice cover (open,

intermediate and closed), depth (6 and 12 m) and substrate orientation (horizontal and verti-

cal) were analysed with PERMANOVA [37] using PRIMER v.6 [38]. The design included the

above fixed factors, and two nested random effects of site (nested within sea-ice cover) and

boulder (nested within site). Data were fourth-root transformed to reduce the influence of

abundant taxa, and a resemblance matrix constructed using Bray-Curtis similarity. P-values

were obtained with 999 permutations.

Effects of sea-ice cover (ice-rank), depth and substrate orientation on the abundance and

diversity of individual taxa on boulders were analysed with generalized linear mixed models

(GLMM) [39]. Spatial autocorrelation between surfaces within boulders, and boulders within

Fig 2. Annual light budgets (ALB) at the seabed. Points represent ALB recorded by light meters during the

first year of deployment, and dashed lines are estimated minimum annual light requirements of four species of

local algae (from Clark et al. 2013). Algae species are expected to be viable at sites where the ALB is above

their minimum requirement. Light measurements are not available for three sites marked with *, but from long-

term visual observation we know their annual timing of sea-ice departure and therefore approximate light

budgets.

doi:10.1371/journal.pone.0168391.g002
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sites, was modelled with random intercepts [40]. Percentage cover was modelled as a binomial

response, and species richness and density were modelled as Poisson responses.

Sediment trap data collected in summer were analysed with a GLMM, testing the relation-

ship between deployment duration (number of days), position in a bay (inner or outer), and

sediment flux (g m-2 d-1). The response was modeled with a Gaussian distribution with log

link function, and Site (bay) was modeled as a random intercept to account for autocorrelation

within sites. Only data from traps deployed during summer were statistically analysed.

All GLMMs were conducted using the ‘lme4’ package v.1.1–7 [41] in R v.3.1.1 (R Develop-

ment Team 2014). Parameters were estimated with Laplace approximations [42], and P-values

obtained with Z-tests. Plots of residuals were inspected for homoscedasticity.

Results

Light at the seabed

Annual light budgets on the seabed ranged from 54 to 1248 mol photons m-2 yr-1 (Fig 2), and

were positively related to the duration of the annual ice-free period. Based on published mini-

mum annual light budgets for four species of local algae (Clark et al. 2013), algae should be

capable of surviving at eight of the eleven sites where we sampled biota (Fig 2). Light measure-

ments are not available for three sites, but from visual observations since 1997 we know their

annual timing of sea-ice departure, and therefore we assume that their light budgets were simi-

lar to those from Shirley Island.

Sedimentation

Sediment trap data show peaks in deposition around mid-summer (Fig 3A), which did not

appear to be related to site-specific sea-ice dynamics (Fig 3B). Sites where sediment flux was

measured are typically ice-covered until late summer, 1–2 months after peak sediment deposi-

tion was observed. However, sedimentation rates were higher in the inner area of bays, relative

to outer area (Table 2, Fig 3C), suggesting a spatial relationship between sediment flux and

sea-ice cover. For summer deployments, there was a positive relationship between the length

of trap deployment duration and average daily sediment flux (Table 2, Fig 3C). Supplementary

Table 1 shows minimum, mean, and maximum, sediment fluxes for each site and position in

bay.

Boulder communities

In total we recorded 42 taxa, including algae, polychaetes, bryozoans (mostly cheilostomate),

hydroids, sponges and ascidians (S3 Table). Multivariate analyses found that communities dif-

fered between ice-cover zones, but differences depended on substrate orientation (Table 3, Fig

4). Vertical substrates (lower-left quadrat of nMDS, Fig 4A) were characterized by a diversity

of bryozoa and sponges, while horizontal substrates (upper-right quadrat of nMDS, Fig 4A)

contained algae, sand tubes, and a different suite of bryozoa (Fig 4B). There was a strong gradi-

ent in community structure correlated with sea-ice duration (Fig 4C), but a surface plot shows

that change with sea-ice is not linear in relation to nMDS axes (Fig 4D). Change is relatively

linear in the lower-left quadrat of the nMDS, the region correlated with vertical substrates, but

diverges in the upper-right quadrat, the region correlated with horizontal substrates (Fig 4D).

This represents a strong gradient in community structure relative to sea-ice on horizontal sur-

faces, compared to comparatively steady change with sea-ice on vertical surfaces. Horizontal

surfaces are correlated with sand tubes in areas of greater sea-ice duration, but brown

The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities
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Fig 3. Sedimentation flux through time. (A) Polygons are individual sediment traps, with height showing

average daily sediment flux and width showing deployment duration. Colour represents position in bay:

red = inner, green = outer. (B) As above, but data are partitioned into sites and position within bay. (C) Plots of

average daily sediment flux vs. deployment duration. Left-hand plot shows all traps, and right-hand plot shows

traps deployed during summer only. In right-hand plot, fitted lines are predicted values of GLMM for each

position in bay.

doi:10.1371/journal.pone.0168391.g003
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encrusting algae in areas of shorter sea-ice duration. Community structure also varied with

depth (Table 3), but in the same direction as sea-ice relative to nMDS axes (Fig 4C).

There were very strong trends in the total cover of algae and invertebrates relative to sea-ice

duration, with the exception of two highly abundant invertebrates–Inversiula nutrix and spir-

orbid polychaetes. Algal cover was higher on horizontal surfaces within sites classified as hav-

ing shorter sea-ice duration (Table 4, Fig 5), where the incidence of light is greatest.

Invertebrate cover (excluding I. nutrix and spirorbids) showed the opposite pattern, particu-

larly on vertical surfaces at 12 m depth (Table 4, Fig 5). There was less bare space in areas of

shorter sea-ice duration, with an apparent step-change to low bare space at sites in the open

zone (Table 4, Fig 5). Species richness was higher on vertical than horizontal substrates,

although there were no significant trends in relation to sea-ice duration (Table 4, Fig 5). Inver-

tebrate and algal richness did, however, increase and decrease with sea-ice duration, respec-

tively (Table 4, Fig 5).

The bryozoan Inversiula nutrix was by far the most abundant taxon, and together with spir-

orbid polychaetes showed different trends than most other invertebrates. I. nutrix was abun-

dant at almost all sites (Fig 6), although the type of habitat it dominated varied with sea-ice

duration. In areas of extended sea-ice duration it dominated horizontal surfaces, but domi-

nance shifted to vertical surfaces in areas with shorter sea-ice duration (Table 4, Fig 6).

Table 2. Estimates, standard errors (SE), t-values and P-values for fixed effects in GLMM testing the effects of deployment duration (number of

days) and position (inner or outer area of a bay) on daily sediment flux (g m-2 d-2). Random intercepts were allowed per site (bay). Estimates are in log

units. Significant differences (P < 0.05) are denoted in bold.

Estimate SE t P

(Intercept) -0.460 0.009 -52.560 <0.001

Duration 0.031 0.003 11.380 <0.001

Position -0.411 0.009 -47.680 <0.001

Duration: Position -0.003 0.002 -1.400 0.163

doi:10.1371/journal.pone.0168391.t002

Table 3. Permutational multivariate analysis of variance (PERMANOVA) testing for differences in community structure with respect to ice cover,

depth and orientation. Significant differences (P < 0.05) are denoted in bold. Data are fourth-root transformed, and distances were based on the Bray-Curtis

similarity index.

Source df MS Pseudo-F P

Between Sites(Ice)

Ice 2 53630 5.8866 0.001

Depth 1 10699 3.4144 0.009

Orientation 1 25307 12.795 0.001

Depth x Orientation 1 679.18 0.58571 0.762

Ice x Depth 2 4410.6 1.4075 0.197

Ice x Orientation 2 5159.3 2.6085 0.015

Ice x Depth x Orientation 2 888.7 0.7664 0.673

Within Sites(Ice)

Site(Ice) 6 9110.5 10.71 0.001

Site(Ice) x Depth 6 3133.6 3.6838 0.001

Site(Ice) x Orientation 6 1977.8 3.4492 0.001

Site(Ice) x Depth x Orientation 6 1159.6 2.0222 0.003

Boulder (blocking)

Boulder(Site(Ice) x Depth) 126 850.65 1.4835 0.001

Error 126 573.42

doi:10.1371/journal.pone.0168391.t003
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Spirorbid polychaetes (mostly Spirorbis nordenskjoldi) were the second most abundant inverte-

brate taxa, and were considerably more abundant at open sites than sites with more sea-ice

cover. Most sand tubes were usually inhabited by tanaids of the genus Nototanais, but some

housed other mobile invertebrates and terrebellid polychaetes. Sponge cover was highly vari-

able between sites, but showed an overall trend of greater cover with longer sea-ice duration.

Encrusting algae were most abundant in the open zone, whereas arborescent algae peaked in

cover at sites with intermediate sea-ice duration (Table 4, Fig 6).

Fig 4. Multivariate patterns in boulder communities. (A) Multidimensional scaling plot (nMDS) based on Bray-Curtis similarity, showing boulder

communities as points. Shapes represent depths (circles = 6 m, triangles = 12 m), colours represent orientations (red = Vertical, green = Horizontal).

Axes are scaled such that 1 unit equates to a doubling in dissimilarity between samples. (B) Correlations between species and nMDS axes. Where

species positions overlap, the more abundant species is displayed by name and other species appear as grey crosses. (C) Vector correlation between

continuous environmental covariate (sea-ice rank) and nMDS axes, and position of centroids of factor levels. (D) Contour plot of sea-ice rank, fitted by

GAM to nMDS axes.

doi:10.1371/journal.pone.0168391.g004
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Fig 5. Percentage cover of algal, invertebrates, and bare space, and measures of diversity. Left-hand

plots show data from all sites, depths and orientations. Bars show the mean value, and error bars show

standard error. Right-hand plots show predicted values of significant effects detected by GLMM.

doi:10.1371/journal.pone.0168391.g005
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Fig 6. Percentage cover or density of dominant taxa and groups. Left-hand plots show data from all sites,

depths and orientations. Bars show the mean value, and error bars show standard error. Right-hand plots

show predicted values of significant effects detected by GLMM.

doi:10.1371/journal.pone.0168391.g006
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Discussion

This unique synthesis of light, sedimentation, and biological data provides new insight into

processes shaping nearshore Antarctic benthos. Data demonstrate that spatial variation in sea-

ice duration creates opposing gradients of light and sedimentation, which in turn shape the

structure and composition of shallow Antarctic benthic communities. Dominance shifted

from algae at sites with shorter sea-ice duration, more light and less sedimentation, to sessile

invertebrates at sites with longer sea-ice duration, less light and higher sedimentation. Impor-

tantly, however, these effects of sea-ice were mediated by habitat characteristics, such as sub-

strate orientation and depth. The relationship between sea-ice duration and benthos was

stronger on horizontal than vertical surfaces, which is explicable in that light and sedimenta-

tion are vertically oriented and affect horizontal more than vertical surfaces. The dependency

of sea-ice effects on substrate orientation supports the model that light and sedimentation are

two major pathways by which sea-ice duration shapes shallow coastal benthic communities.

Shallow, horizontal habitats are most tightly linked with sea-ice dynamics, and their biota may

be useful sentinels of climate change in nearshore polar ecosystems.

Environmental gradients with sea-ice

Sites that are ice-free for ~ 10% of the year have annual light budgets more than 20 times lower

than sites ice-free for ~ 50% of the year; a nonlinearity caused by the marked seasonality in

solar irradiance at high latitudes [8]. Ice-free days receive far more light in summer than in

winter, so the annual light budget is highly sensitive to the number of ice-free days around

midsummer, and relatively insensitive to the number of ice-free days closer to winter [8]. Most

variation in the timing of sea-ice breakout in the Windmill Islands occurs during summer

months, so sites represent a pronounced gradient in annual light despite only differing in their

date of sea-ice breakout by several weeks or months. Other factors that mediate effects of sea-

ice on subtidal light are ice thickness [43], snow cover, dust, and coastal topography, though

these are usually minor in comparison to sea-ice breakout.

Sedimentation was also related to sea-ice cover, but in a different way to light. Sediment

flux was higher in the inner than outer areas of sites, and therefore spatially covaries with the

duration of sea-ice cover. However, the timing of peak deposition was decoupled from the tim-

ing of sea-ice breakout. Most deposition occurred in late December, around midsummer, yet

sites where sedimentation was measured typically retain their sea-ice until late January or Feb-

ruary. This implies that most sedimentation originates from the summer phytoplankton

bloom—an annual event in which suspended microalgae rapidly proliferate [44] then settle to

the seabed. The advection of phytoplankton to under-ice areas [22] then creates a region-wide

deposition event, whose timing is independent of site-specific sea-ice breakout. However, the

rate of phytoplankton settling from the water column is likely related to sea-ice breakout, since

turbulence and flow are much reduced under sea-ice [45]. Therefore, we suggest that sus-

pended sediment load in the water column does not vary with sea-ice duration, but that depo-

sition and retention do, and are positively related to sea-ice duration. The positive correlation

between the sediment trap deployment period and average daily flux also implies that deposi-

tion occurs in pulse events not captured by some of the shorter deployments, which is consis-

tent with a bloom event. Some sediment may also arrive via terrestrial runoff during the

summer melt, although this is less likely when sites are covered by sea-ice, as they were when

deposition peaked in our sampling.

Comparison of Windmill Island sediment fluxes with other published Antarctic near-

coastal studies reveal that sediment fluxes in the region are very low. The mean summer flux

for the Windmill Islands varies between 0.55 and 7.61 g m-2 day-1 in comparison with 43, 23.6
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and 10 g m-2 day-1 at Johnson’s Dock, Livingston Island [46]; Marian Cove [47], King George

Island and Potter Cove, King George Island [48], respectively with higher sediment fluxes

reported at Potter Cove after 1992. One explanation is that these published studies are located

on islands and in the region of the South Shetlands near the Antarctic Peninsula. The Antarctic

Peninsula has a much milder and more maritime climate than continental Antarctica, whereas

our study locations were adjacent to continental Antarctica and may therefore be influenced

by different processes.

Research programs established in different regions of Antarctica have focused on different

processes by which sea-ice affects benthos. Studies in Potter Cove (West Antarctic Peninsula)

found that glacial melting allowed macroalgae to colonize newly ice-free areas, but also report

reduced light penetration due to increased terrigenous sediment input from land and more

frequent ice scour [13]. Other research programs on the West Antarctic Peninsula focus on

the change in the frequency of iceberg scour with sea-ice cover, and consider this the driving

force affecting benthic communities [5, 9, 49–51]. The structure of benthos in our study area

suggests that ice-scour in the Windmill Islands is not as frequent as at Antarctic Peninsula

study locations, possibly due to more glaciation and icebergs and a more maritime climate on

the Peninsula (more exposure to waves, currents, turbulence) against an environment which

has more stable ice, with cooler temperatures and the prevalence of offshore winds as in many

areas of continental Antarctica. Given the slow recruitment and growth of Antarctic benthic

fauna [36] our study sites did not appear to have been recently disturbed, and bare space (an

indicator of disturbance history) was lowest at sites in the open zone, where exposure to ice-

scour should be greatest. It appears that light and sedimentation are the dominant physical

processes by which sea-ice affects benthos in the Windmill islands, but in the region of the

Antarctic Peninsula these may be secondary to iceberg disturbance.

Biological gradients with sea-ice

There was a strong biological gradient transitioning from invertebrate to algal dominance in

the direction of decreasing sea-ice duration, but the nature of change depended on substrate

orientation and depth. Horizontal surfaces were dominated by algae in areas of shorter sea-ice

duration, and sand tubes and the bryozoan Inversiula nutrix in areas of longer sea-ice duration.

Vertical surfaces were dominated by invertebrates regardless of sea-ice, but the identity of

invertebrates changed along the sea-ice gradient. Communities on horizontal substrate

showed stronger correlations to sea-ice duration than those on vertical substrate, consistent

with expected response to greater exposure to light and sedimentation. In temperate and tropi-

cal systems, non-coral invertebrates tend to occupy shaded, vertical, or down-facing habitats

[20, 31, 52], since they can be negatively affected by ultraviolet light [18] or outcompeted by

algae in well-lit areas [53, 54]. Effects of sedimentation also vary with orientation [55], as sedi-

ment is more likely to settle and accumulate on horizontal than vertical substrates.

The relative effects of light and sedimentation can be inferred from changes in biota in rela-

tion to orientation, in areas of longer vs. shorter sea-ice duration. Assuming these physical fac-

tors affect horizontal more than vertical substrates, differences in biota between orientations at

open sites (high light, low sedimentation) most likely reflect changes in light, while differences

at closed sites (low light, high sedimentation) are more likely related to sedimentation. With

this rationale, light in our study area drives a gradient between algae and invertebrates,

whereas sedimentation facilitates fauna with sand tubes, and differentiates taxa based on mor-

phology or other mechanisms of sediment tolerance. Light and sedimentation may also have

interactive effects since negative consequences of reduced light on algae can be exacerbated
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under heavy sedimentation [56], and such an interaction may have contributed towards the

sharp decline in algae with increased sea-ice duration.

Habitat use by the most abundant species, Inversiula nutrix, appears related to both light

and sedimentation. It is the only sessile invertebrate taxa able to reach substantial cover on

horizontal substrate at closed sites, implying a degree of tolerance to sedimentation. In con-

trast, at open sites it dominates vertical substrate, and is rare on horizontal substrate. This

switch in habitat use from horizontal to vertical substrate as sea-ice duration shortens is

likely driven by tolerance to sedimentation giving way to out-competition by algae. It

may also be more tolerant of UV light than other invertebrates, since few of the invertebrate

taxa found in the closed ice-cover zone were present in the open ice-cover zone. Spirorbid

polychaetes (mostly Spirorbis nordenskjoldi) were the other invertebrate taxa to show con-

trasting distributions to the majority of other invertebrates, being most abundant in the

open zone. Interestingly, both of these taxa were by far the most abundant in the study

region, and their ecological success may be related to an ability to exploit niches unavailable

to other invertebrates.

Overall trends in algal cover are clearly driven by light, but sedimentation may contribute

to more subtle differences in the distribution of algal functional groups. Both encrusting and

arborescent algae were negatively correlated with sea-ice duration, though cover of arborescent

algae peaked in areas with some sea-ice cover. This could reflect greater tolerance to sedimen-

tation in arborescent vs. encrusting morphologies, since arborescent foliage are raised off the

substratum and remain clear of sediment accumulation [56]. Arborescent algae might experi-

ence reduced competition with encrusting algae by occupying areas of higher sedimentation.

Similar patterns have been found in temperate systems, where articulated coralline algae are

advantaged relative to encrusting coralline under higher rates of sedimentation [57]. Alterna-

tively, encrusting algae may be more tolerant of the canopy-forming macroalgae that occur in

areas of shorter sea-ice duration. Macroalgae impose a range of effects on the understorey

environment, including changes in light [57], flow [58], sedimentation [56], and physical abra-

sion by canopy foliage [59]. Physical abrasion favours encrusting over arborescent forms in

understorey communities in temperate Australia [59], and similar processes may be happen-

ing in Antarctica.

There was an intriguing peak in bare space in the intermediate ice-cover zone, which may

reflect disturbance conditions or poor habitat quality. One hypothesis to explain the pattern is

that iceberg scour in the intermediate ice-cover zone causes regular invertebrates mortality,

but in contrast the open ice-cover zone, light is insufficient to support algal growth. Such con-

ditions would create habitat unfavourable to both invertebrates and algae. The spatial mosaic

of algae in the open zone suggests that iceberg scour is occurring and has ecological conse-

quences [60], but rates of ice-scour have not been quantified in this region like has been done

in other parts of Antarctica [29]. Quantifying ice-sour, or conducting a reciprocal transplants

of boulder communities between sea-ice cover zones, would aid in understanding the mecha-

nism driving this pattern.

In summary, we found strong links between sea-ice duration and benthic community struc-

ture, and the nature of change was consistent with variation in light and sedimentation. Both

light and sedimentation vary with sea-ice duration, and their effects on biota are mediated by

the depth and orientation of habitat. Interactions between overhead sea-ice dynamics and ben-

thic habitats undoubtedly contribute to the diversity of shallow Antarctic benthic communi-

ties, and understanding these interactions is critical to forecasting climate-related change. If

climate change lengthens the period for which some areas are ice-free per year, species distri-

butions are likely to shift accordingly. Taxa currently restricted to areas of prolonged ice cover

are at risk of local extinction, which is ecologically significant because these areas contained a
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suite of invertebrates not found in areas of shorter sea-ice duration. Such change in benthic

communities in response to sea-ice duration has recently been observed in both the Arctic

[10] and Antarctic [13, 61], and are predicted to become more frequent with continuing

change in sea-ice dynamics [8]. Moreover, since much of the Antarctic coast lies in a relatively

narrow latitudinal band, large areas of shallow habitat may be vulnerable within an ecolog-

ically-brief period of time [62]. Communities on horizontal habitats are likely to be useful indi-

cators of climate change in shallow polar habitats, since these bear the strongest correlations

with sea-ice duration.
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