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Abstract

The recent availability of digital traces generated by phone calls and online logins has signifi-

cantly increased the scientific understanding of human mobility. Until now, however, limited

data resolution and coverage have hindered a coherent description of human displacements

across different spatial and temporal scales. Here, we characterise mobility behaviour

across several orders of magnitude by analysing *850 individuals’ digital traces sampled

every *16 seconds for 25 months with *10 meters spatial resolution. We show that the dis-

tributions of distances and waiting times between consecutive locations are best described

by log-normal and gamma distributions, respectively, and that natural time-scales emerge

from the regularity of human mobility. We point out that log-normal distributions also charac-

terise the patterns of discovery of new places, implying that they are not a simple conse-

quence of the routine of modern life.

Introduction

Characterising the statistical properties of individual trajectories is necessary to understand

the underlying dynamics of human mobility and design reliable predictive models. A trajec-

tory consists of displacements between locations and pauses at locations, where the individual

stops and spends time (Fig 1). Thus, the distribution of waiting times (or pause durations), Δt,
between movements and the distribution of distances, Δr, travelled between pauses are often

used to quantitatively assess the dynamics of human mobility. For example, specific probability

distributions of distances and waiting times characterise different types of diffusion processes.

Thanks to the recent availability of data used as proxy for human trajectories including mobile

phone call records (CDR), location based social networks (LBSN) data, and GPS trajectories of

vehicles, the characteristic distributions of distances and waiting times between consecutive

locations have been widely investigated. There is no agreement, however, on which distribu-

tion best describes these empirical datasets.

Pioneer studies, based on CDR [1, 2] and banknote records [3], found that the distribution

of displacement Δr is well approximated by a power-law, P(Δr) * Δr−β, (or ‘Lévy distribution’

[4], as typically 1< β< 3), and that an exponential cut-off in the distribution may control

boundary effects [2]. These findings were confirmed by studies based on GPS trajectories of
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individuals [5–7] and vehicles [8, 9], as well as online social networks data [10–12]. It has been

noted, however, that power-law behaviour may fail to describe intra-urban displacements [13].

Other analyses, based on online social network data [14–16] and GPS trajectories [17–20]

showed that the distribution of displacements is well fitted by an exponential curve,

P(Δr) * e−λΔr, in particular at short distances. Finally, analyses based on GPS on

Taxis [21, 22] suggested that displacements may also obey log-normal distributions,

P(Δr) * (1/Δr) � e−(log Δr − μ)2/2σ2. In Ref. [6], the authors found that this is the case also for sin-

gle-transportation trips.

Fewer studies have explored the distribution of waiting times between displacements, Δt, as

trajectory sampling is often uneven (e.g., in CDR data location is recorded only when the

phone user makes a call or texts, and LBSN data include the positions of individuals who

actively “check-in” at specific places). Analyses based on evenly sampled trajectories from

mobile phone call records [1, 23], and individuals GPS trajectories [5, 7] found that the distri-

bution of waiting times can be also approximated by a power-law. A recent study based on

GPS trajectories of vehicles, however, suggests that for waiting times larger than 4 hours, this

distribution is best approximated by a log-normal function [24]. Several studies have

highlighted the presence of natural temporal scales in individual routines: distributions of

waiting times display peaks in that corresponds to the typical times spent home on a typical

day (*14 hours) and at work (*3 − 4 hours for a part-time job and *8 − 9 hours for a full-

time job) [23, 25, 26].

Fig 2 and Table 1 compare distributions obtained using different data sources. The spec-

trum of results reflects the heterogeneity of the considered datasets (see Fig 2). It is known in

fact that data spatio-temporal resolution and coverage has an important influence on the

results of the analyses performed [27–29].

Fig 1. Example of an individual trajectory. An individual trajectory is composed of pauses (red dots) and

displacements (dashed black line). The trajectory shows the positions of one individual across 26 hours. Location is

estimated from individual’s WiFi scans as detailed in the text and the data is sampled in 1 min bins. Red dots

correspond to locations where the individual spent more than 10 consecutive minutes. The coordinates of these

locations have been slightly altered to protect the subject privacy. The map was generated with the Matplotlib

Basemap toolkit for Python (https://pypi.python.org/pypi/basemap). Map data©OpenStreetMap contributors

(License: http://www.openstreetmap.org/copyright). Map tiles by Stamen Design, under CC BY 3.0.

doi:10.1371/journal.pone.0171686.g001

Multi-scale spatio-temporal analysis of human mobility

PLOS ONE | DOI:10.1371/journal.pone.0171686 February 15, 2017 2 / 17

confidentiality agreement, and agree to work under

our supervision in Copenhagen. Please direct your

queries to Sune Lehmann, the Principal

Investigator of the Copenhagen Network Study, at

sljo@dtu.dk.

Funding: This work was supported by Villum

Foundation, http://villumfoundation.dk/

C12576AB0041F11B/0/

4F7615B6F43A8EA5C1257AEF003D9930?

OpenDocument, Young Investigator programme

2012, High Resolution Networks (SL) and

University of Copenhagen, http://dsin.ku.dk/news/

ucph_funds/, through the UCPH2016 Social Fabric

grant (SL). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://pypi.python.org/pypi/basemap
http://www.openstreetmap.org/copyright
mailto:sljo@dtu.dk
http://villumfoundation.dk/C12576AB0041F11B/0/4F7615B6F43A8EA5C1257AEF003D9930?OpenDocument
http://villumfoundation.dk/C12576AB0041F11B/0/4F7615B6F43A8EA5C1257AEF003D9930?OpenDocument
http://villumfoundation.dk/C12576AB0041F11B/0/4F7615B6F43A8EA5C1257AEF003D9930?OpenDocument
http://villumfoundation.dk/C12576AB0041F11B/0/4F7615B6F43A8EA5C1257AEF003D9930?OpenDocument
http://dsin.ku.dk/news/ucph_funds/
http://dsin.ku.dk/news/ucph_funds/


Multi-scale spatio-temporal analysis of human mobility

PLOS ONE | DOI:10.1371/journal.pone.0171686 February 15, 2017 3 / 17



First, the datasets considered have different spatial resolution and coverage, and few studies

have so far considered the whole range of displacements occurring between *10 and 107 m

(10000 km) (Fig 2). Our analysis suggests that constraining the analysis to a specific distance

range may result in different interpretations of the distributions. Another difference concerns

the temporal sampling in the datasets analysed so far. Uneven sampling typical of CDR and

LBSN data (i) does not allow to distinguish phases of displacement and pause, since individuals

could be active also while transiting between locations, and (ii) may fail to capture patterns

other than regular ones [31, 32], because individuals’ voice-call/SMS/data activity may be

higher in certain preferred locations. Finally, studies focusing on displacements effectuated

using one or several specific transportation modality (private car [24, 33], taxi [20], public trans-

portation [34], or walk [7]) capture only a specific aspect of human mobility behaviour.

In this paper, we analyse mobility patterns of *850 individuals involved in the Copenhagen

Network Study experiment for over 2 years [35]. Individual trajectories are determined com-

bining GPS and Wi-Fi scans data resulting in a spatial resolution of *10 m, and even sam-

pling every *16 s. Trajectories span more than *107 m. Previous studies with comparable

spatial coverage (Fig 2) relied on single-transportation modality data [8], unevenly sampled

data [16], or small samples (32 individuals in Ref. [5]). To our knowledge, the Copenhagen

Network Study data has the best combination of spatio-temporal resolution and sample size

among the datasets analysed in the literature to date (see Methods).

Results

We consider an individual to be pausing when he/she spends at least 10 consecutive minutes

in the same location, and moving in the complementary case. In the following, we refer to loca-
tions as places where individuals pause. The distribution of displacements is robust with

respect to variations of the pausing parameter (see S1 File for the results obtained with 15 and

20 minutes pausing).

We start by considering the three distributions most frequently reported in the literature

(Table 1), namely

• The log-normal distribution of a random variable x, with parameters σ and μ, defined for σ>
0 and x> 0, with probability density function:

PðxÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p

x
e�

1
2

ðlogx� mÞ2

s2 ð1Þ

• The Pareto distribution (i.e. power-law) of a random variable x, with parameter β, defined for

x� 1, and β> 1, with probability density function:

PðxÞ ¼ ðb � 1ÞðxÞ� b ð2Þ

Fig 2. The distribution of displacements P(Δr): heterogeneity of results found in the literature. Each horizontal line corresponds to a different dataset.

Lines extend from the minimum Δr (i.e. the spatial resolution of the data or the minimum value considered for the fit of the distribution), to the maximal length

of displacement considered (both in meters). Colours correspond to the model fitting P(Δr) according to the study reported at the end of each line. If the

distribution is not unique, but varies for different ranges of Δr, the line is divided in segments. Lines are marked with ‘�’ if the corresponding data is modelled as

a sequence of two distributions of the same type with different parameters, for different ranges Δr. Refs [2, 6, 18, 30] analyse more than one dataset. In [13]

the authors analyse the same dataset for different ranges Δr. A more detailed table is presented in section “Related Work”.

doi:10.1371/journal.pone.0171686.g002
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Table 1. Distribution of waiting times and displacements: A comparison of over 30 datasets on human mobility. The table reports for each dataset:

the reference to the journal article/book where the study was published, the type of data (LBSN stands for Location Based Social Networks, CDR for Call Detail

Record), the number of individuals (or vehicles in the case of car/taxi data) involved in the data collection, the duration of the data collection (M!months, Y

! years, D! days, W! weeks), the minimum and maximum length of spatial displacements, the shape of the probability distribution of displacements with

the corresponding parameters, the temporal sampling, the shape of the distribution of waiting times with the corresponding parameters. Power-law (T), indi-

cates a truncated power-law. The table can also be found at http://lauraalessandretti.weebly.com/plosmobilityreview.html.

Data type N Dur. Range

Δx

P(Δx) Sampling δt P(Δt)

[1] (D1) CDR 3.0 � 106 1 Y 1 km

100 km

power-law (T)

β = 1.55

uneven

[1] (D2) CDR 103 2 W 1 km

100 km

1 h power-law (T)

β = 1.80

[2] (D1) CDR 105 6 M 1 km

1000 km

power-law (T)

β = 1.75

uneven

[2] (D2) CDR 206 1 W 1 km

500 km

power-law (T)

β = 1.75

2 h

[3] Bills records 4.6 � 105

bills

1.39 Y 100 m

3200 km

10� Δx� 3200 km

power-law

β = 1.59

uneven

[5] (Geolife) GPS 32 3.42 Y 10 m

10000 km

0.01� Δx� 10 km

power-law

β0 = 1.25

10 < Δx� 10000 km

power-law

β1 = 1.90

2 min power-law β = 1.98

[6]

(Nokia)

GPS 200 1.50 Y 100 m

10 km

power-law (T)

β = 1.39

10 sec

[6] (Geolife) GPS 182 5.00 Y 100 m

10 km

power-law (T)

β = 1.57

1 − 5 sec

[7] (5 datasets) GPS 101 5 M 10 m

10 km

power-law (T)

β = [1.35-1.82]

10 sec power-law (T)

β = [1.45-2.68]

[8] Taxi (GPS) 50 6 M 1 km

100 km

3� Δx� 23 km

power-law

β0 = 2.50

23 < Δx� 100 km

power-law

β1 = 4.60

10 sec

[9] Taxi (GPS) 6.6 � 103 1 W 1 km

100 km

power-law (T)

β = 1.20

10 sec

[10] Flickr 4.0 � 104 1 km

10000 km

power-law (T) uneven

[11] LBSN 2.2 � 105 4 M 1 km

500 km

power-law

β = 1.88

uneven

[12] Twitter 1.3 � 107 1 Y 1 km

100 km

power-law

β = 1.62

uneven

[13] LBSN 9.2 � 105 6 M 1 km

20000 km

power-law

β = 1.50

uneven

[13] (intracity) LBSN 9.2 � 105 6 M 10 m

100 km

power-law

(“poor”) [13]

β = 4.67

uneven

[14] LBSN 2.6 � 105 1 Y 10 m

50 km

exponential

λ = 0.179

uneven

[15] LBSN 5.2 � 105 1 Y 1 km

4000 km

exponential

λ = 0.003

uneven

(Continued )
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Table 1. (Continued)

Data type N Dur. Range

Δx

P(Δx) Sampling δt P(Δt)

[16] Twitter 1.6 � 105 8 M 10 m

4000 km

0.01� Δx� 0.1 km

exponential

λ = 0.073

0.1 < Δx� 100 km

Stretched

power-law

β1 = 0.45

100 < Δx� 4000 km

power-law

β2 = 1.32

uneven

[17] Taxi (GPS) 803 1.25 Y 1 km

100 km

Δx� 15 km

exponential

λ = 0.36

15 < Δx� 100 km

power-law

β = 3.66

30 sec

[18] (D1) Taxi (GPS) 104 3 M 1 km

100 km

1� Δx� 20 km

exponential

λ0 = 0.23

20 < Δx� 100 km

exponential

λ1 = 0.17

1 min

[18] (D2) Taxi (GPS) 104 2 M 1 km

100 km

1� Δx� 20 km

exponential

λ0 = 0.24

20 < Δx� 100 km

exponential

λ1 = 0.18

1 min

[19] Taxi (GPS) 6.6 � 103 1 W 2 km

20 km

exponential

λ = [0.072-0.252]

10 sec

[20]

(3 datasets)

Taxi (GPS) 104 1 M 600 m

10 km

exponential [9 − 177] s power-law

[21]

(6 datasets)

Taxi (GPS) 3.0 � 104 [1 M-2 Y] 1 km

100 km

log-normal

μ = [0.77-1.32],

σ = [0.67-0.87]

[24 − 116] s

[22] Taxi (GPS) 1.1 � 103 6 M 100 m

30 km

log-normal

μ = 0.38,

σ = 0.48

30 sec

[23] Surveys 104 1 Y self-reported power-law (T)

β = 0.49

[24] Private Cars (GPS) 7.8 � 105 1 M 1 km

500 km

superimposition Poisson 10 sec Δt� 4h

power-law

β = 1.03

1� Δt� 200h

log-normal

μ = 1.60,

σ = 1.60

[26] Private Cars (GPS) 3.5 � 104 1 M 300 m

100 km

polynomial 10 sec power-law

β = 0.97

(Continued )
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• The exponential distribution of a random variable x, with parameter λ, where x� 0, and λ>
0, with probability density function:

PðxÞ ¼ le� lx ð3Þ

In Eq (2) the probability density can be shifted by x0 and/or scaled by s, as P(x) is identically

equivalent to P(y)/s, with y ¼ ðx� x0Þ

s . In Eqs (1) and (3), P(x) is identically equivalent to P(y),

with y = (x − x0). In this work, the shift (x0) and scale (s) parameters are considered as addi-

tional parameters to take into account the data resolution. With few exceptions, the results pre-

sented below hold also imposing no shift, x0 = 0 (see S1 File). Note also that Pareto

distributions with exponential cut-off (or truncated Pareto) are considered below (see also

Table 1).

Distribution of displacements

We start our analysis by investigating the distribution of displacements between consecutive

stop-locations P(Δr). First, we consider the overall distribution of the displacements Δr using

all available data (851 individuals over 25 months). We find that P(Δr) is best described by a

log-normal distribution (Eq (1)) with parameters μ = 6.78 ± 0.07 and σ = 2.45 ± 0.04, which

maximises Akaike Information Criterion (see Methods)—among the three models considered

—with Akaike weight *1 (Fig 3, see also S1 File).

Second, we investigate if this results holds also for sub-samples of the entire dataset. We

bootstrap data 1000 times for samples of 200 and 100 individuals, and we verify that the best

distribution is log-normal for all samples, and the average parameters inferred through the

bootstrapping procedure are consistent with the parameters found for the entire dataset (see

S1 File). In fact, the errors on the value of the parameters reported above are computed by

Table 1. (Continued)

Data type N Dur. Range

Δx

P(Δx) Sampling δt P(Δt)

[30] (D1) CDR 1.3 � 106 1 M 1 km

200 km

power-law

β = 2.02

uneven

[30] (D2) CDR 6 � 106 1 Y 1 km

500 km

power-law

β = 1.75

uneven

[30] (D3) CDR 4 Y 1 km

100 km

power-law

β = 1.80

uneven

[34] Travel cards 2.0 � 106 1 W 100 m

50 km

negative binomial

μ = 9.28,

σ = 5.83

uneven

[42] Travel

Diaries

230 1.5 M 1 km

400 km

power-law (T)

β = 1.05

self-reported

[56] Private Cars (GPS) 7.5 � 104 1 M 10 m

500 km

0.01� Δx� 20 km

exponential

20 < Δx� 150 km

power-law

β1 = 3.30

30 sec Δt� 3h

exponential

λ = 1.02

[57] Taxi (GPS) 1 D 200 m

1000 km

power-law

β = 2.70

doi:10.1371/journal.pone.0171686.t001
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bootstrapping data for samples of 100 randomly selected individuals. This analysis ensures

homogeneity within the population considered, and takes into account also that often smaller

sample sizes were analysed in previous literature.

Third, we zoom in to the individual level. We find that the individual distribution of dis-

placements is best described by a log-normal function for 96.2% of individuals. The best distri-

bution is the Pareto distribution for 1.4%, and exponential for the remaining 2.4%. However,

the number of data points per individual tend to be significantly lower in group of individuals

exhibiting Pareto or exponential distributions, so that one should be cautious in interpreting

the observed deviations from a log-normal distribution. Fig 4 reports the histogram of the

individual μ parameters for the 96.2% of the population that is best described by a log-normal

distribution, along with three examples of individual distributions.

Finally, we look at large Δr in order to compare our results with precedent studies relying

on data with larger spatial resolution. We find that limiting the analysis to large values of

Δr results in the selection of a Pareto distribution (Eq (2)). We identify the threshold

Δr� = 7420 m as the minimal resolution for which the best fit in Δr�< Δr< 107 m is Pareto

with coefficient β = 1.81 ± 0.03 and not log-normal. By bootstrapping 1000 times over samples

of 100 individuals we find that D̂r� ¼ 7488:3� 328:2 m. Thus, power-law distributions

describe mobility behaviour only for large enough distances, while mobility patterns including

distances smaller than 7420 m are better described by log-normal distributions.

Fig 3. Distribution of displacements. Blue dotted line: data. Black dashed line: log-normal fit with characteristic parameter μ and σ. Red dashed line: Pareto

fit with characteristic parameter β for Δr > 7420 m.

doi:10.1371/journal.pone.0171686.g003
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Distribution of waiting times

We now analyse the distribution of waiting times between displacements. The best model

describing the distribution of waiting times over all individuals is the log-normal distribution

(Eq (1), Fig 5, see also S1 File), with parameters μ = −0.42 ± 0.04, σ = 2.14 ± 0.02. As above,

errors are found by bootstrapping over samples of 100 individuals. Also, by bootstrapping we

find that the log-normal distribution is the best descriptor for samples of 200 and 100

randomly selected individuals (see S1 File). As in the case of displacements, we find that

restricting the analysis to large values of our observable Δt, and specifically considering only

Δt> Δt� = 13 h, results in the selection of the Pareto distribution (Eq (2), see Fig 5), with coef-

ficient β = 1.44 ± 0.01. We find by averaging over 100 samples of 200 individuals that

D̂t� ¼ 13:01� 0:12. Note that the log-normal distribution is selected as the best model also

when the analysis is restricted to Δt< Δt�.

Fig 4. Distribution of individual displacements. A) Frequency histogram of 96.2% of individuals for which the individual distribution of displacement is log-

normal, according to the value of the log-normal fit coefficient μ. B-C-D) Examples of the distribution of displacements P(Δr) of three individuals i1 (B), i2 (C), i3
(D) (dotted line), with the corresponding log-normal fit (dashed line). The value of the fit coefficients μ and σ are reported in each subfigure.

doi:10.1371/journal.pone.0171686.g004
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The distribution of waiting times shows also the existence of “natural time-scales” of

human mobility. We detect local maxima of the distribution at 14.0, 39.3, 64.8, and 89.9 hours.

Hence, 14 hours is the typical amount of time that students in the experiment spent home

every day, in agreement with previous analyses on human mobility [23, 25, 26]. Other peaks

appear for intervals Δt� 14 + n � 24, with n = {2, 3. . .}, suggesting individuals spend several

days at home. Notice also that the distribution we consider is limited to Δt< 5 days, an interval

much shorter than the observation time-window (about 2 years), a fact that guarantees the

absence of possible spurious effects [29]. This limit is imposed to control the cases in which

students leave their phones home. The upper bound is arbitrarily set to 5 days; however, we

have verified that results are consistent with respect to variations of this choice.

Distribution of displacements between discoveries

Log-normal features also characterise patterns of exploration. We consider the temporal

sequence of stop-locations that individuals visit for the first time—in our observational win-

dow—and characterise the distributions of displacements between these ‘discoveries’. We find

that the distribution of distances between consecutive discoveries P(Δr) is best described as a

log-normal distribution with parameters μ = 6.59 ± 0.02, σ = 1.99 ± 0.01, (Fig 6, see also S1

File). For Δr> 2800 m, the best model fitting the distribution of displacements is the Pareto

distribution with coefficient β = 2.07 ± 0.02. This results are verified by bootstrapping (see S1

File).

Fig 5. Distribution of waiting times between displacements. Yellow dotted line: data. Black dashed line: Log-normal fit with characteristic parameter μ
and σ. Red dashed line: Pareto fit with characteristic parameter β for Δt > 13 h.

doi:10.1371/journal.pone.0171686.g005
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Correlations between pauses and displacements

We further investigate the properties of individual trajectories by analysing the correlations

between the distance Δr and the duration Δtdisp characterising a displacement and the time Δt
spent at destination. Fig 7A shows a positive correlation between Δr and Δtdisp for Δr≳ 300 m

(p< 0.01). As Δr is the distance between the displacement origin and destination, the absence

of correlation at short distances could be due to individuals not taking the fastest route. A posi-

tive correlation characterises also the distance Δr covered between origin and destination and

the waiting time at destination for distances 30 m ≲ Δr≲ 104 m (p< 0.01). Instead, the corre-

lation is negative for distances larger than 5 × 104 m (Fig 7B). This could suggest that individu-

als break long trips with short pauses. We have verified that these results hold also when

individuals’ most important locations (typically including university and home) are removed

from the trajectory, implying that these correlations are not dominated by daily commuting.

Further analysis: Selection of the best model among 68 distributions

In the previous sections we have restricted the analysis of the distributions of displacements

and waiting times to the three functional forms that are most frequently found in the literature.

We now repeat the selection procedure considering a list of 68 models (see S1 File for the list

of distributions) in order to confirm the results described above.

The distributions of displacements and displacements between discoveries are best

described by log-normal distributions also when the choice is extended to 68 models, and tails

Fig 6. Distribution of displacements between discoveries. Green dotted line: data. Black dashed line: Log-normal fit with characteristic parameter μ and

σ. Red dashed line: Pareto fit with characteristic parameter β for Δr > 2800 m.

doi:10.1371/journal.pone.0171686.g006
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(respectively for Δr> Δr� = 7420 m and Δr> Δr� = 2800 m) are better modelled as generalised

Pareto distribution, with form:

PðxÞ ¼ ð1þ xxÞ�
xþ1

x ð4Þ

where ξ is the parameters of the model, such that x� 0 if ξ� 0, and 0 � x � � 1

x
if ξ< 0.

The best model selected for the whole distribution of waiting time among the 68 models

considered is a gamma distribution, defined for x 2 (0,1), k> 0 and θ> 0 as:

PðxÞ ¼
1

GðkÞyk xk� 1e� x
y

where GðzÞ ¼
R1

0
xz� 1e� xdx. Although the gamma distribution is the best model for the distri-

bution of waiting times (see S1 File for the result of the fit), the presence of natural scales could

indicate that the whole distribution may be better described as the composition of several

models.

Fig 7. Correlations between displacements and pauses. A) The duration Δtdisp of a displacement vs the distance Δr between origin and destination. The

blue line is the median value of Δr and Δtdisp computed within log-spaced 2-dimensional bins. The filled blue area corresponds to the 25-75 percentile range.

The value of the Pearson correlation coefficient within the shaded grey area indicates a positive correlation, with p − value < 0.01. The dashed line is a power-

law function with coefficient β, as a guide for the eye. B) The waiting time Δt at destination vs the distance Δr between origin and destination. The blue line is

the median value of Δr and Δt computed within log-spaced 2-dimensional bins. The filled blue area corresponds to the 25-75 percentile range. The value of

the Pearson correlation coefficient within the shaded grey area indicates a positive correlation, with p − value < 0.01. The dashed line is a power-law function

with coefficient β, as a guide for the eye.

doi:10.1371/journal.pone.0171686.g007
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Discussion

Using high resolution data we have characterised human mobility patterns across a wide range

of scales. We have shown that both the distribution of displacements and waiting times between

displacements are best described by a log-normal distribution. We found, however, that power-

law distributions are selected as the best model when only large spatial or temporal scales are

considered, thus explaining (at least partially) the disagreement between previous studies. We

also showed that log-normal distributions characterise the distribution of displacements

between discoveries, implying that this property is not a simple consequence of the stability of

human mobility but a characteristic feature of human behaviour. Finally, we have shown that

there exist correlations between displacements’ length and the waiting time at destination.

The heavy tailed nature of human mobility has been attributed to various factors, including

differences between individual trajectories [36], search optimisation [37–40], the hierarchical

organisation of the streets network [41] and of the transportation system [6, 24, 42]. On the

other hand log-normal distributions can result from multiplicative [43] and additive [44] pro-

cesses and describe the inter-event time of different human activities such as writing emails,

commenting/voting on online content [45] and creating friendship relations on online social

networks [46]. Instead, the distribution of inter-event time in mobile-phone call communica-

tion activity can be described as the composition of power-laws [47–49], a feature attributed to

the existence of characteristic scales in communication activity such as the time needed to

answer a call, as well as the existence of circadian, weakly and monthly patterns. We also find

clear signatures of circadian patterns, which could indicate that the whole distribution may be

better described as the composition of several models. However, in our case the best descrip-

tion for times including Δt< Δt� is the gamma distribution, which thus is selected both when

the whole range of scales is considered and when the analysis is restricted to short times.

Our results come from the analysis of a sample of *850 University students, which of course

represent a very specific sample of the whole population. Nevertheless, it is worth noting that

many statistical properties of CNS students mobility patterns are consistent with previous

results, such as the distribution of the radius of gyration, the Zipf-like behaviour of individual

locations frequency-rank plot, and the power-law tail of the distribution of displacements (β =

1.81 ± 0.03 vs. β = 1.75 ± 0.15 of [2]). Details are reported in Supplementary Information of [50].

While identifying the mechanism responsible for the observed mobility patterns is beyond

the scope of the present article, we anticipate that a more complete spatio-temporal description

of human mobility will help us develop better models of human mobility behaviour [24, 51].

Our findings can also help the understanding of phenomena such as the spreading of epidem-

ics at different spatial resolutions, since the nature of heterogeneous waiting times between dis-

placements have a major impact on the spreading of diseases [52].

Methods

Data description and pre-processing

The Copenhagen Network Study data collection took place between September 2013 and Feb-

ruary 2016 and involved 851 students of Technical University of Denmark (DTU) in Copenha-

gen. Data collection was approved by the Danish Data Protection Agency. All participants

provided informed consent by filling an on-line consent form and all methods were performed

in accordance with the relevant guidelines and regulations. Individual trajectories were inferred

combining WiFi scans data and GPS scans data recorded on smartphones handed out to all par-

ticipants. An anthropological field study included in the 2013 deployment of the experiment

reported that participants did not alter their habits due to participation in the CNS experiment.

Multi-scale spatio-temporal analysis of human mobility
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The WiFi scans data provides a time-series of wireless network scans performed by partici-

pants’ mobile devices. Each record (i, t, SSID, BSSID, RSSI) indicates:

• the participant identifier, i

• the timestamp in seconds, t

• the name of the wireless network scanned, SSID

• the unique identifier of the access point (AP) providing access to the wireless network, BSSID

• the signal strength in dBm, RSSI.

APs do not have geographical coordinates attached, but their position tend to be fixed. The

geographical position of APs is estimated the procedure described in S1 File, which used par-

ticipants’ sequences of GPS scans to obtain APs locations and remove mobile APs. Then, we

clustered geo-localised APs to “locations” using a graph-based approach. With our definition,

a “location” is a connected component in the graph Gd, where a link exists between two APs if

their distance is smaller than a threshold d (see [50], SI for more details). Here, we present

results obtained for d = 2 m. However, results are robust with respect to the choice of the

threshold (see also [50]).

Throughout the experiment, participants’ devices scanned for WiFi every Δt seconds. The

median time between scans is between ΔtM = 16 s and ΔtM< 60 s for 90% of the population

(see also [50], SI). Data was temporally aggregated in bins of length Δt = 60 s, since we focus

here on the pauses between moves. If a participant visits more than one location within a time-

bin, we assign the location in which they spent the most time to that bin. Given our definition

of location and the given time-binning, the median daily time coverage (the fraction of min-

utes/day that an individual’s position is known, where the median is taken across all days) is

included between 0.6 and 0.98 for 90% of the population.

Model selection

The best model is selected using Akaike weights [53]. First, we determine the best fit parame-

ters for each of the models via Nelder-Mead numerical Likelihood maximisation [54] (maxi-

misation is considered to fail if convergence with tolerance t = 0.0001 is not reached after

200 � N iterations, where N is the length of the data). For each model m, we compute the

Akaike Information Criterion:

AICm ¼ � 2 logLm þ 2Vm þ
2VmðVm þ 1Þ

n � Vm � 1
ð5Þ

where Lm is the maximum likelihood for the candidate model m, Vm is the number of free

parameters in the model, and n is the sample size. The AIC reaches its minimum value AICmin

for the model that minimises the expected information loss. Thus, AIC rewards descriptive

accuracy via the maximum likelihood and penalises models with large number of parameters.

The Akaike wm(AIC) weight of a model m corresponds to its relative likelihood with respect

to a set of possible models. Measuring the Akaike weights allows us to compare the descriptive

power of several models.

wmðAICÞ ¼
e� 1

2
ðAICm� AICminÞ

XK

k¼1

e� 1
2
ðAICk � AICminÞ

ð6Þ

Multi-scale spatio-temporal analysis of human mobility

PLOS ONE | DOI:10.1371/journal.pone.0171686 February 15, 2017 14 / 17



For all distributions considered in this paper, we found one model m� such that wm�* 1

(which implies all the other models have Akaike weight very close to 0).

Figures

All figures were generated using Matplotlib [55] package (version 1.5.3) for Python.

Related work

We present here more detailed analysis of the literature discussed in the paper.

Supporting information

S1 File. Supporting figures and tables.

(PDF)
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