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Abstract

The processes leading to genetic isolation influence a population’s local extinction risk, and

should thus be identified before conservation actions are implemented. Natural or human-

induced circumstances can result in historical or contemporary barriers to gene flow and/or

demographic bottlenecks. Distinguishing between these hypotheses can be achieved by

comparing genetic diversity and differentiation in isolated vs. continuous neighboring popu-

lations. In Ontario, American black bears (Ursus americanus) are continuously distributed,

genetically diverse, and exhibit an isolation-by-distance structuring pattern, except on the

Bruce Peninsula (BP). To identify the processes that led to the genetic isolation of BP black

bears, we modelled various levels of historical and contemporary migration and population

size reductions using forward simulations. We compared simulation results with empirical

genetic indices from Ontario black bear populations under different levels of geographic

isolation, and conducted additional simulations to determine if translocations could help

achieve genetic restoration. From a genetic standpoint, conservation concerns for BP black

bears are warranted because our results show that: i) a recent demographic bottleneck

associated with recently reduced migration best explains the low genetic diversity on the

BP; and ii) under sustained isolation, BP black bears could lose between 70% and 80% of

their rare alleles within 100 years. Although restoring migration corridors would be the most

effective method to enhance long-term genetic diversity and prevent inbreeding, it is unreal-

istic to expect connectivity to be re-established. Current levels of genetic diversity could be

maintained by successfully translocating 10 bears onto the peninsula every 5 years. Such

regular translocations may be more practical than landscape restoration, because areas

connecting the peninsula to nearby mainland black bear populations have been irreversibly

modified by humans, and form strong barriers to movement.
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Introduction

Geographically isolated populations have higher extirpation risks than their contiguous coun-

terparts because they are more likely to experience population size reduction and genetic drift

[1–4]. Genetic signatures of population fragmentation and demographic bottlenecks are easily

identifiable in the southernmost distribution of many North American carnivores [5–9],

because they experienced extreme range contractions [10, 11]. In the northern portion of their

range, these carnivores are still continuously distributed, although some populations display

reduced genetic variation due to peripherality [12], restriction of movement within preferred

habitat [13], or landscape features limiting dispersal [14, 15]. For some of the larger species,

preventative management and conservation action may be justified, as they could experience

future habitat loss, population size reductions, and genetic isolation in regions of North Amer-

ica that are currently undisturbed [16, 17].

Two elements are needed when establishing whether genetic isolation actually warrants

conservation concerns. The first is to estimate baseline genetic diversity and differentiation

indices from contiguous populations. The second is to identify drivers of genetic isolation, as

some species can survive at extremely low levels of genetic diversity if reduced variability pre-

dates demographic bottlenecks [18–21].

Population genetic simulations are powerful tools to identify the processes that lead to

genetic isolation and decreased diversity [22–26]. Although many studies now use Bayesian

approaches to trace the historical processes that could explain contemporary genetic variation,

traditional forward simulations are still useful for understanding the consequences of different

environmental and genetic scenarios. Forward simulations can incorporate many variables

such as population size, mating system, migration rate, and mutation process [27, 28]. This is

particularly important in conservation, as, when ecological and life history traits of species are

known, forward simulations can help predict changes in population structure, and assess per-

sistence potential under various biologically realistic scenarios.

Demographic bottlenecks, which may lead to higher local extirpation risks, can be detected

via genetic signals such as a heterozygosity excess at polymorphic loci [29, 30], or a decrease in

the total number of alleles relative to the range in allele size [31]. In conjunction with forward

simulations, the information obtained from these signals helps differentiate between genetic

isolation resulting from historical colonization events, which would not hinder persistence on

a contemporary timescale [18, 32], and genetic isolation resulting from recent anthropogenic

disturbances, which could induce a threat [33].

Among large carnivores, American black bears provide a good model to identify particular

situations of genetic isolation that may or may not warrant conservation concerns. First, the

species is widely distributed across North America [34–36]. Second, many populations are

fragmented and display low levels of genetic diversity that have been attributed to bottlenecks

and/or geographic isolation due to habitat loss, fragmentation, and insularity (0.27< HE <

0.56 [8, 37–40]). Third, the majority of northern populations are highly connected and geneti-

cally diverse (0.70< HE < 0.94 [14, 37, 41, 42]), except for a few genetically distinct popula-

tions found in the vicinity of the continuous core [14, 42].

In Ontario (Canada), the distribution of black bears reflects at a smaller scale what is

observed across the continent: the species covers a largely intact landscape, except at the south-

ern periphery, where fragmentation resulting from urbanization and associated infrastructures

is evident (see major roads network on Fig 1). In this area, the long-term persistence of the

Bruce Peninsula (BP) black bear population is uncertain. The population is indeed small (225–

408 individuals [43]), and major human development and habitat fragmentation likely prevent

movement to and from the larger population located in the rest of southeastern Ontario [44,

Genetic isolation and conservation of American black bears
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45]. From the nearest possible source areas east of Georgian Bay (Fig 1), bears would have to

move 100–150 km through heavily developed areas of farmland, orchards, tourist areas (ski

hills), and urban centers where there is little remaining forest cover. Analyses using both

mtDNA and microsatellite loci have also shown that BP black bears are genetically differenti-

ated from the core Ontario population, despite their close geographic proximity [14, 46].

Finally, BP black bears display reduced genetic diversity: only 2 of the 36 mitochondrial DNA

haplotypes found in Ontario were identified on the BP [46], and contemporary genetic diver-

sity is comparable to that of threatened southern populations [14].

There are several plausible reasons that could explain why BP black bears are genetically

distinct. First, their low diversity could be due to a historical, postglacial colonization event

(founder effect), followed by genetic drift. If this is the case, it could suggest that the population

purged itself of deleterious alleles and could survive in the future with low levels of genetic

diversity. Second, BP black bears could have experienced a recent demographic bottleneck

because of increased mortality from large fires linked to logging and agricultural activities in

the early 1900s [47]. Third, the reduced genetic diversity could have occurred when BP black

bears became separated from the broader Ontario population as a result of human-induced

landscape fragmentation following European settlement [14]. Finally, a combination of the

aforementioned bottleneck and a sustained lack of migration due to human influences could

explain the genetic differentiation of the BP population from those in the rest of the province.

Fig 1. Map of southeastern Ontario sites at which American black bears (Ursus americanus) hair samples were collected. Bruce Peninsula sites

include Bruce Peninsula National Park (light blue) and Owen Sound (light pink). Cockburn Island is indicated in yellow, and all other sites belong to the

southeastern population continuum (SE-ON). Inset: North America and Ontario, with study area in grey.

doi:10.1371/journal.pone.0172319.g001
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We tested these alternative scenarios by comparing genetic structure and diversity measures

resulting from forward simulations to those calculated from our empirical dataset. We used

estimates of genetic variation from the large panmictic black bear population of southeastern

Ontario to seed our model, as it was assumed to represent the undisturbed, initial genetic state

of BP black bears following the Last Glacial Maximum (LGM; see [14]). We also tested the

demographic bottleneck hypothesis on the BP by determining the presence of a genetic signal

indicative of a recent reduction in population size [30, 31]. Finally, we used black bear mtDNA

and microsatellite data from a small central Ontario island (Cockburn Island) to serve as a

control representing a situation of geographic isolation with no recent bottleneck, as no sud-

den decrease in population size has been suspected on this island [48].

After identifying the causes of genetic isolation of BP black bears, we conducted further

simulations to assess the future genetic viability of this population. Our goals were to deter-

mine if: 1) the BP population could maintain its current level of diversity under sustained iso-

lation over the next 100 years; and 2) translocations of individuals from southeastern Ontario

into the BP could help maintain or increase genetic diversity.

Materials and methods

Study area

The Bruce Peninsula (1,100 km2; 44˚N 81˚W) is part of the Niagara escarpment in southwest-

ern Ontario, and separates Lake Huron from Georgian Bay (Fig 1). Although much land has

been converted to agricultural, recreational, or urban use, extensive forested areas still exist.

Habitat is mainly undisturbed in the north [49], especially within Bruce Peninsula National

Park (BPNP– 154 km2 [50]). In contrast, in the southern portion of the peninsula and along

the southern shores of Georgian Bay, high levels of urban development likely prevent move-

ment of black bears between the mainland to the east and the BP [44].

Sampling

Between 1997 and 2012, we collected black bear hair samples from live-trapped bears or from

baited barbed wire hair traps [51]. In this study, we focused on sampling sites located on the

BP, 9 adjacent southeastern sites (SE-ON, a subset of southeastern Ontario sampling sites),

and one site located on Cockburn Island (Fig 1). All hair samples were stored dry in paper

envelopes at room temperature until DNA analyses. MtDNA sequencing, individual microsat-

ellite genotyping at 14 loci, gender determination, and estimation of genotyping error (2.18%)

were performed following the conditions described in Pelletier et al. [14, 46]. Our dataset

included 139 individuals from the BP and 647 individuals from SE-ON that were previously

genotyped in Pelletier et al. [14], as well as 56 new individuals from Cockburn Island (the

genotypes of all the individuals used in this study are provided in S1 Table). All of the Cock-

burn Island samples were profiled using the exact methods and quality controls as indicated in

Pelletier et al. [14]. Sample collection in Bruce Peninsula National Park was approved by Parks

Canada Agency. Handling procedures and sample collection on Crown land were approved

annually by the Animal Care Committee of the Ontario Ministry of Natural Resources (Per-

mits 021–97 to 021–12).

Empirical genetic diversity and genetic structure

Of the individuals genotyped on Cockburn Island and on the BP, 51 and 81 clean mtDNA

sequences were obtained, respectively. Following Pelletier et al. [46], we first performed

haplotype assignment on all of these sequences, and calculated observed and standardized

Genetic isolation and conservation of American black bears
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haplotypic diversity (hs). We also conducted a genetic structure analysis similar to the one

described in Pelletier et al. [14] to determine to which Ontario genetic cluster the Cockburn

Island genotypes belonged.

We calculated genetic diversity indices (allelic richness (Na); observed heterozygosity (HO);

expected heterozygosity (HE)) for BP, SE-ON, and Cockburn Island samples (Fig 1), using the fas-

tDivPart function from the R package diveRsity [52]. We assessed genetic differentiation among

populations by using the same function (using 1,000 bootstrap replications) to calculate bias cor-

rected pairwise FST [53] and Jost D [54], along with their 95% confidence intervals. Finally, we

calculated inbreeding (FIS [53, 55]) and average pairwise relatedness between individuals within

populations [56] using 1,000 bootstrap replications, using the R package Demerelate [57].

Forward-time simulations

We implemented 5 scenarios to model 2 populations of different sizes (NBP and NSE-ON represent-

ing BP and SE-ON, respectively) to identify the conditions that led to the low genetic diversity in

the BP population. We extrapolated two alternative values for the initial BP population size (NBP =

220 and 440) from density estimates from southern and central Ontario [44]. These extrapolated

values were realistic, as they encompassed the latest population size estimates of BP black bears

(N = 225–408 individuals [43]). We conducted a similar extrapolation to obtain NSE-ON.

List of scenarios (details on specific parameters and procedures used are indicated in the

supplementary information in S1 File):

Scenario 1 –historical/high migration. Here, we modeled a scenario of high gene flow to

predict what levels of genetic diversity would be expected on the BP if there had been ongoing

migration between SE-ON and BP since the colonization of black bears following the LGM.

Scenario 2 –historical/low migration. Here, we modeled genetic variation on the BP

based on little (Scenario 2a—historical/reduced migration) and highly reduced (Scenario 2b

—historical/one-migrant rule) migration between SE-ON and BP following the LGM (Fig 2).

For Scenarios 1 and 2, 52 situations were modeled based on alternative migration rates,

population densities, and number of generations (S1 File)

Scenario 3—recent bottleneck. Here, we simulated a bottleneck caused by two popula-

tion crashes that were assumed to have occurred in 1903 and 1908 (S1 File), followed by popu-

lation recovery. For Scenario 3, 13 situations were modeled based on alternative mortality and
growth rates (see Table A in S1 File).

Scenario 4—recently reduced migration. Here, we modeled a steady decline in migration

between SE-ON and BP as a consequence of anthropogenic pressures over the last 400 years,

but primarily in the past 125 years following settlement and land clearing on the peninsula.

For Scenario 4, 16 situations were modeled based on alternative migration rates and population
densities (S1 File).

Scenario 5 –recent bottleneck and recently reduced migration. Here, we modeled the

reduced migration induced by human activities (Scenario 4), combined with the recent popu-

lation crash (Scenario 3; Fig 2). For Scenario 5, 208 situations were modeled (13 situations of Sce-
nario 3 combined to each of the 16 situations of Scenario 4 –S1 File).

Simulations were performed via the high-performance computer clusters offered on

SHARCNET (www.sharcnet.ca). We used the program EASYPOP [22] to create the simulated

populations for scenarios 1, 2 and 4 (Fig 3). We used BottleSim [23] to create the simulated

populations for Scenario 3 (Fig 3). For all of our simulations (n = 289), we used 100 replicates

for each parameter set (S1 File).

For each simulation output, we calculated genetic diversity and differentiation as done for

the empirical data, along with the 95% confidence intervals obtained from the 100 replicates.

Genetic isolation and conservation of American black bears
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We assessed similarity between the simulated and empirical BP populations via the overlap of

the 95% confidence intervals. Scenarios were considered to explain the low genetic diversity

on the BP when 2 or more simulated values from at least 2 different categories among diver-

sity, differentiation, inbreeding, and relatedness overlapped with our empirical data.

Effective population size

We estimated long-term effective population size (NeL) for our BP samples (n = 139) via the

heterozygosity-based method. As this method is highly sensitive to the mutation process, we

calculated NeL under both the Infinite Allele Model (IAM, where each new mutation creates a

new allele), and the Stepwise Mutation Model (SMM, where the number of alleles can stay

constant, increase, or decrease at each new mutation). Under the IAM, NeL = HE/4μ(1—HE),

where μ represents the mutation rate [58]. Under the SMM, NeL = [1/(1 -HE)2–1]/8μ [59].

We also estimated contemporary effective population size (NeC) with a single temporal

sample through: i) the linkage disequilibrium method with jacknifing implemented in LDNe

Fig 2. Alternative scenarios tested to understand the reasons for the genetic differentiation and reduced genetic diversity of black bears located

on the Bruce Peninsula (BP). Arrow width represents various levels of migration between sites from southeastern Ontario and the BP. Two time scales

are shown for scenarios 1, 2a, and 2b, as dual simulations were conducted for 1,200 and 400 generations for these scenarios.

doi:10.1371/journal.pone.0172319.g002
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1.31 for a minimum allele frequency of 0.05 [60], and ii) the approximate Bayesian framework

implemented in ONeSAMP 1.2 [61]. The estimated NeC obtained with the first method is

based on the expectation that small populations accumulate more disequilibrium over time

[62–64]. Under our set of circumstances (n = 139; 220< population size < 440; number of

loci = 14) the assessment of NeC is precise [65], and, as opposed to temporal methods, its value

is not underestimated when samples are separated by only one generation [66, 67]. The linkage

disequilibrium method is also robust to population size reductions [68], and the correction

factor implemented in LDNe eliminates the bias that arises when sample size is lower than the

true NeC [69, 70]. The NeC obtained with the second method relies on the estimation of the

size of a Wright-Fisher population with no migration or selection based on summary statistics

calculated from the empirical genotypic data. The program simulated 50,000 populations with

the lower and upper limits of NeC set at 2 and 150, respectively. Priors of 10–150, 2–100, and

10–100 were also tested to assess the robustness of the results.

For comparison purposes, we calculated NeC over one black bear generation (assumed to

be 10 years) through 2 temporal methods implemented in NeEstimator [71]. Individuals geno-

typed before 1999 were assigned to generation zero, whereas individuals identified since 2009

were assigned to generation 1. The first method, a moment based approach, estimates NeC

based on changes in allele frequencies across generations [66]. The second method is a Bayes-

ian approach based on coalescence, implemented in TM3 [72].

Bottleneck analysis based on allelic data

We used the heterozygosity excess and the M-ratio tests to assess the presence of a bottleneck

in BP black bears [29, 31]. We used the program Bottleneck [30] to compare levels of observed

heterozygosity of our BP samples (HO) with the expected heterozygosity at mutation-drift

equilibrium (HEQ). If there was a recent reduction in effective population size, HO should be

significantly larger than HEQ, because bottlenecks induce a faster reduction in allelic diversity

than heterozygosity. To incorporate uncertainties in the mutation process [73], we used both a

stepwise mutation model (SMM), and a two-phase model (TPM [74]) that involved 10% and

30% of multi-step mutations (pg) (see [30, 73]). We used both 3.1 and 3.5 as the mean size of

multi-step mutations (δg). We ran the analysis for 10,000 replications, and assessed bottleneck

significance via the Wilcoxon signed rank test [30].

The M-ratio test supposes that bottlenecked populations experience a faster reduction in

the number of alleles (k) than in the range of allele size (r; measured in repeat units) due to a

loss of rare alleles from genetic drift. The M-ratio is then calculated as M = k/r. For a bottle-

neck to be identified, M should fall under a critical value, Mc (calculated via Critical_M), in

95% of the cases or above. The M-ratio is generally expected to be lower than 0.7 for bottle-

necked populations, and higher than 0.8 for the others [31]. To obtain Mc, we calculated the

pre-bottleneck θ parameter (θ = 4Neμ), with a mutation rate of μ = 2�10−4. We used the NBP

and NeC values from the linkage disequilibrium and temporal methods to seed our M-ratio

test. NBP represented a realistic upper bound of the effective population size (Ne), as it incor-

porates individuals of any age and sex category, whereas the Ne statistics only includes repro-

ductive individuals. We used 10,000 replications, with δg = 3.1 and 3.5 and pg = 0.1 and 0.2, as

suggested in Piry et al. [30] and Peery et al. [73].

Fig 3. Table including all simulation parameters used for this study, and a summary of results. The following abbreviations were

used: M (male migration), F (female migration), Ma (proportion of population lost due to first fire), Mb (proportion of population lost due to

second fire); BPSIM (simulated BP population); SE-ONSIM (simulated SE-ON population).

doi:10.1371/journal.pone.0172319.g003
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Future of the BP population–effect of translocations

We used the R package AlleleRetain [75] to determine if regular translocations of SE-ON indi-

viduals into the BP could increase allele retention and prevent inbreeding over the next 10 gen-

erations. Based on our EASYPOP parameters, we ran simulations with population sizes set at

n = 2,200 and 220, or n = 4,400 and 440 individuals for the source (NSE-ON) and start (NBP)

populations, respectively. The goal was to determine if the current BP population could main-

tain its genetic diversity over time under sustained isolation from SE-ON.

For all simulations, we considered rare alleles to be those present in 5% or less of the source

population. Other simulation parameters were based on information on the demography of

Ontario black bears [76, 77], and included: polygynous/seasonal mating system; 0.5 sex ratio;

reproductive age from 4 to 20 years old (with senescence at 16 years old); reproductive output

influenced by age; annual adult survival rate of 0.9. We ran these simulations over 100 years by

including translocations of 0, 5 or 10 bears from the source population every 5 or 10 years, and

used 1,000 replications for each parameter set. To fully assess the effects of translocations on

allele retention and inbreeding, all translocated individuals were given breeding opportunities.

Results

Empirical genetic diversity and genetic structure

The genetic differentiation levels observed between BP and SE-ON and between Cockburn

Island and SE-ON were equivalent (see overlap of 95% CIs of Jost D and FST in Table 1). How-

ever, unlike BP black bears, Cockburn Island individuals did not represent a single genetic

cluster of their own; rather, they were part of the southeastern Ontario cluster identified in Pel-

letier et al. [14], and displayed a high cluster membership value (q = 0.9).

BP black bears had a lower allelic richness and a lower observed and expected heterozygos-

ity than Cockburn Island individuals (Table 2). Two mtDNA haplotypes were identified on

the BP (n = 81; HAP2 and 5; GenBank accession numbers GU724159 and GU724161) against

4 on Cockburn Island (n = 51; HAP1, HAP5, HAP24, and HAP25; GenBank accession num-

bers GU724158, GU724161, GU724179, and GU724180 [46]). Standardized haplotypic diver-

sity (hs) was also higher on Cockburn Island than on the BP (hs = 3.8 and 2, respectively).

Forward-time simulations

For Scenarios 1 (historical—high migration) and 2a (historical—reduced migration), all simu-

lated situations showed higher levels of diversity and lower differentiation than our empirical

data, except in the absence of migration, for which lower levels of diversity and higher differen-

tiation were detected compared to what was observed on the BP (Fig 3).

Under Scenario 2b (historical—one-migrant rule), simulations that included 0.1 to 0.2

migrants per generation provided lower levels of diversity than on the BP (Fig 3). Simulations

with 2 or more migrants per generation always showed higher levels of diversity and lower

Table 1. Genetic differentiation measures obtained from empirical data.

SE-ON Cockburn Island BP

SE-ON - 0.102 [0.090–0.114] 0.122 [0.114–0.129]

Cockburn Island 0.265 [0.242–0.289] - 0.191 [0.175–0.209]

BP 0.282 [0.266–0.297] 0.208 [0.181–0.237] -

Bold: Jost-D [95% CI]; italics: FST [95% CI].

doi:10.1371/journal.pone.0172319.t001
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differentiation than on the BP (Fig 3). At 0.5 and 1 migrants per generation, results varied

depending on population size and number of generations. Only one of these simulations led to

results corresponding to the BP situation (1 migrant per generation; NBP = 220; NSE-ON =

2,200; number of generations = 1,200 –Table 2 and Fig 3).

Results from Scenarios 3 (recent bottleneck) and 4 (recently reduced migration) showed

higher levels of diversity than our empirical BP data in all situations, rejecting these hypotheses

as the sole factor causing low diversity in BP black bears (Fig 3).

The supported scenario 5 simulations (combination of Scenarios 3 and 4) corresponded to

a range of 0 to 0.5 migrants per generation over 40 generations, NBP = 220, and NSE-ON =

2,200. The associated bottleneck included a 40% initial mortality drop, followed by 90% mor-

tality, and a 5% growth rate (BottleSim hypothesis 3a –Table 2 and Fig 3). For this scenario,

other simulations approached BP’s empirical results based on allelic richness and genetic dif-

ferentiation, however, the observed and expected heterozygosity were always higher than the

empirical data (Table 2 and Fig 3).

Results for all simulations (supported and unsupported) are provided in S2 Table.

Table 2. Diversity and differentiation statistics of empirical data and supported simulations.

EASYPOP parameters BottleSim

parameters

Results: diversity

statistics

Results:

differentiation

statistics

Results:

inbreeding

statistics

Results:

relatedness

Data n #

generations

Proportion

of

migration

M/F

Ma Mb Growth

rate

Allelic

richness

Ho HE FST Jost D FIS- Nei FIS-

Weir

r

Empirical

SE-ON 647 / / / / / 10.53 0.77 0.81 0.05 0.05 -0.005

Cockburn

Island

56 / / / / / 5.23 0.65 0.7 0.102 0.265 -0.036 -0.036 0.267

BP 139 / / / / / 4.28 0.55 0.55 0.122 0.282 0.022 0.017 0.44

Simulations

Scenario

2b

220–

2200

1200 1 mig/gen M

—0% F

/ / / 4.65

[4.59–

4.71]

0.55

[0.54–

0.57]

0.56

[0.54–

0.57]

0.156

[0.152–

0.160]

0.222

[0.216–

0.227]

0.006

[0.000–

0.012]

0.006

[0.000–

0.012]

0.444

[0.433–

0.455]

Scenario 5 220–

2200

40 0% M—0%

F

40% 90% 5% 4.22

[4.15–

4.28]

0.60

[0.60–

0.61]

0.60

[0.59–

0.61]

0.123

[0.118–

0.127]

0.248

[0.237–

0.258]

0.001

[-0.006–

0.008]

0.001

[-0.006–

0.008]

0.400

[0.392–

0.408]

Scenario 5 220–

2200

40 0.1 mig/gen

M—0% F

40% 90% 5% 4.28

[4.21–

4.35]

0.61

[0.60–

0.62]

0.60

[0.60–

0.61]

0.120

[0.116–

0.124]

0.246

[0.237–

0.255]

0.000

[-0.008–

0.007]

-0.001

[-0.008–

0.007]

0.394

[0.386–

0.402]

Scenario 5 220–

2200

40 0.2 mig/gen

M—0% F

40% 90% 5% 4.31

[4.24–

4.37]

0.61

[0.60–

0.62]

0.60

[0.60–

0.61]

0.120

[0.116–

0.125]

0.245

[0.235–

0.255]

-0.004

[-0.010–

0.002]

-0.004

[-0.010–

0.002]

0.396

[0.387–

0.404]

Scenario 5 220–

2200

40 0.5 mig/gen

M—0% F

40% 90% 5% 4.34

[4.27–

4.40]

0.62

[0.61–

0.62]

0.61

[0.60–

0.62]

0.119

[0.114–

0.124]

0.242

[0.232–

0.252]

-0.002

[-0.007–

0.003]

-0.002

[-0.007–

0.003]

0.388

[0.380–

0.396]

Statistics shown: allelic richness; observed heterozygosity (HO); expected heterozygosity (HE); FST; Jost D; FIS-Nei; FIS-Weir; r (relatedness). 95% CIs

(over 100 replicates) are included for all statistics calculated from the simulated data. Overlapping values with the empirical data are indicated in bold. Two

or more values from at least 2 different categories among diversity, differentiation, inbreeding and relatedness had to overlap for a simulation to be

considered as supported. The following abbreviations were used: n (number of individuals), M (male migration), F (female migration), Ma (proportion of

population lost due to first fire), Mb (proportion of population lost due to second fire).

doi:10.1371/journal.pone.0172319.t002
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Effective population size

Based on a mutation rate of 2�10−4, NeL for the BP population ranged from 1,527 under the

IAM, to 2,461 under the SMM. NeC-LD was estimated at 15.4 (95% CI = [12.6–18.5]—Table 3),

which was lower than all of the estimates from the Bayesian method implemented in ONe-

SAMP. Generally, ONeSAMP estimations were not sensitive to the choice of priors, as the

only results that did not overlap were for priors 2–150 (NeC-2-150 = 25.6, 95% CI = [21.4–35.2])

and 10–150 (NeC-10-150 = 42.6, 95% CI = [36.8–56.4]).

The moment based approach based on 2 temporal samples resulted in a NeC similar to

NeC-10-150 (NeC-Moment = 56.2; 95% CI = [44.6–69.3]), whereas the estimates from the Bayesian

coalescence approach (NeC-Coal = 22.8; 95% CI = [22.5–23.0]), were similar to NeC-2-150

(Table 3).

Recent bottleneck (allelic data)

Bottleneck analyses for BP black bears did not detect the presence of a heterozygosity excess

under the SMM nor the TPM (Table 4). Allele frequency distributions did not illustrate the

presence of a mode shift, which can illustrate a bottleneck. In contrast, our M-ratio test

detected a bottleneck in BP black bears. The observed M (0.699) was always lower than Mc

(Table 5), which is indicative of a recently reduced population size.

Future of the BP population–effect of translocations

Depending on starting population size (NBP = 440 or 220), BP black bears could lose 70 to 80%

of their rare alleles over the next 100 years under sustained isolation (Fig 4). Successfully trans-

locating 5 to 10 bears from SE-ON into the BP every 10 years would slow down the loss of alle-

lic diversity, but the population could still lose 30 to 50% of these alleles during that period

Table 3. Estimation of contemporary effective population size (Ne) of BP and the associated 95% CIs.

Mean Ne 95% CI

Single sample

Bayesian—ONeSAMP

Priors 2–150 –NeC-2-150 25.6 [21.4–35.2]

Priors 2–100 –NeC-2-100 33.8 [28.1–46.6]

Priors 10–150 –NeC-10-150 42.6 [36.8–58.4]

Priors 10–100 –NeC-10-100 37.9 [33.2–47.9]

Linkage disequilibrium—LDNe- NeC-LD

BP—n = 139 15.4 [12.6–18.5]

n = 20 21.1 [11.4–54.6]

n = 50 16.8 [12.5–22.6]

n = 100 18 [14.5–22.3]

SE-ON—n = 647 560.8 [461.9–698.1]

Temporal—NeEstimator

Moment based temporal–NeC-Moment 56.2 [44.6–69.3]

Bayesian–coalescence TM3 –NeC-Coal 22.8 [22.5–23]

Analyses were conducted with both single sample (LDNe, ONeSAMP), and temporal methods

(NeEstimator). Analyses based on the linkage disequilibrium method with jacknifing include various sample

sizes (n) for BP, and empirical SE-ON data. ONeSAMP analyses included various priors for upper and lower

Ne.

doi:10.1371/journal.pone.0172319.t003
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Table 4. Results of bottleneck heterozygosity excess tests based on allelic data for our BP samples.

Expected number of loci with

heterozygosity excess

# loci with heterozygosity deficiency vs.

excess

Probability excess (Wilcoxon

test)

Mode

shift

δg = 3.1–σ2
g =

12

TPM-70% 8.22 5:9 0.097 no

TPM-90% 8.25 6:8 0.548 no

SMM 8.28 6:8 0.821 no

δg = 3.5–σ2
g =

16

no

TPM-70% 8.2 5:9 0.086 no

TPM-90% 8.24 6:8 0.524 no

SMM 8.28 6:8 0.821 no

Three mutation models were used (the TPM two-phase model from 70% to 90% of single step mutations, and the SMM stepwise mutation model). The

probability to detect a bottleneck was assessed with the Wilcoxon one-tailed test. P-values less than 0.05 are indicated in bold. The presence or absence of

a mode-shift is also indicated. For comparison purposes, 2 sets of parameters were used for δg (the mean size of multi-step mutations) and σ2
g (the

variance among multi-step mutations) following the recommendation of Piry et al. [30] and Peery et al. [73].

doi:10.1371/journal.pone.0172319.t004

Table 5. Results of M-ratio tests.

Ne # loci θ δg pg Mc P

Estimations based on bear densities (Ne = NBP)

220 14 0.176 3.1 0.1 0.866 0.0000

220 14 0.176 3.1 0.2 0.798 0.0012

220 14 0.176 3.5 0.1 0.855 0.0000

220 14 0.176 3.5 0.2 0.777 0.0024

440 14 0.352 3.1 0.1 0.855 0.0000

440 14 0.352 3.1 0.2 0.783 0.0026

440 14 0.352 3.5 0.1 0.839 0.0001

440 14 0.352 3.5 0.2 0.755 0.0058

Estimations based on genetic estimates (Ne = NeC)

15.4 14 0.012 3.1 0.1 0.881 0.0000

15.4 14 0.012 3.1 0.2 0.814 0.0005

15.4 14 0.012 3.5 0.1 0.869 0.0000

15.4 14 0.012 3.5 0.2 0.799 0.0006

22.8 14 0.018 3.1 0.1 0.879 0.0000

22.8 14 0.018 3.1 0.2 0.814 0.0002

22.8 14 0.018 3.5 0.1 0.869 0.0000

22.8 14 0.018 3.5 0.2 0.799 0.0016

56.2 14 0.045 3.1 0.1 0.878 0.0000

56.2 14 0.045 3.1 0.2 0.807 0.0002

56.2 14 0.045 3.5 0.1 0.865 0.0000

56.2 14 0.045 3.5 0.2 0.795 0.0010

Tests based on effective population sizes calculated from: i) demographic data (NBP = 220, 440), and ii) genetic data based on single and multiple temporal

samples (NeC = 15.4, 22.8, and 56.2), with a mutation rate of μ = 2x10-4. Mc represents the value above which 95% of the M-ratio values (M) should be

found. M is calculated as the number of alleles divided by the range in allele size. P represents the proportion of replicates found below the observed M-

ratio. The M-ratio for our BP dataset (averaged over 14 loci) was M = 0.699.

doi:10.1371/journal.pone.0172319.t005
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(Fig 4). Allele retention would be more efficient with translocations of 5 to 10 bears every 5

years, as the reduction in allelic diversity would reach maximum 30% (Fig 4).

Discussion

In Ontario, American black bears are continuously distributed and show a clinal genetic struc-

ture due to isolation-by-distance, except for the BP population, which is genetically differenti-

ated from the core and displays reduced diversity [14]. Our simulations support the hypothesis

that this pattern is the consequence of a recent demographic bottleneck combined with

reduced gene flow, rather than of reduced gene flow following the LGM. These results illus-

trate that local populations of large carnivores can differentiate themselves quickly from the

core when under pressure from landscape fragmentation and demographic conditions induc-

ing small population size. This is important to note, as human development in areas that are

currently free of ecological disturbances may lead to rapid habitat loss and fragmentation in

those very species [16, 17].

Conservation concerns regarding the BP population have already been raised by previous

demographic and ecological analyses, which suggest that if this population was further

restricted geographically, removing sources of non-natural mortality would not be enough to

ensure its persistence [44, 45]. Though these are the most urgent matters regarding BP black

bears viability, our analyses also show that without intervention, this population would lose

further genetic diversity.

American black bears are considered an ecological indicator on the Bruce Peninsula, [78],

and as such, it is important to preserve the BP population despite its absence of unique alleles.

Here, we tested for alternative translocation scenarios to find ones that would enhance reten-

tion of alleles brought in by immigrants. These translocation scenarios could be combined

with previous management recommendations so that this population can persist without los-

ing further genetic variation.

Reasons for the low diversity on the BP

As shown by our rejection of Scenarios 1 and 2a, the BP population could not have reached its

current level of diversity through genetic drift if historical migration was high. One situation

of highly reduced historical gene flow was supported by our simulations (Scenario 2b; 1

migrant per generation over 1,200 generations); however, considering the dispersal abilities of

black bears (young males can travel distances up to 200 km or more [79, 80]), it is unlikely that

their migration rate was this low for this long, especially following the return of forests in the

Great Lakes region 4,000 years ago [81].

In addition to reduced gene flow, rapid declines in population size decrease genetic diver-

sity, which may hinder population viability (e.g., greater prairie chickens [82]; Florida panthers

[9]). The reduced diversity of BP black bears [14, 46] is unlikely to have been solely caused by a

recent bottleneck, as none of the simulations from Scenario 3 were supported. However, a

range of simulated data from Scenario 5 (combination of recently reduced migration and bot-

tleneck) overlapped with BP diversity measures, suggesting that recently reduced migration

associated with 2 sudden drops in population size 5 years apart could explain the observed

pattern.

Fig 4. Population growth and allele retention of the BP population over a 100-year period, under

varying translocation scenarios (0, 5 or 10 bears successfully translocated; translocations every 5 or

10 years). Simulations were conducted in AlleleRetain [75].

doi:10.1371/journal.pone.0172319.g004
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The presence of a bottleneck in BP black bears was also supported by the M-ratio test,

although this signal was not detected by heterozygosity excess tests. Thus, among the alterna-

tive scenarios that were supported by our simulations, a combination of a demographic bottle-

neck and recently reduced migration (Scenario 5) seems the most plausible to explain the

reduced diversity of the BP population.

There are several explanations as to why we obtained contrasting results from the M-ratio

and heterozygosity excess tests. First, the heterozygosity excess test could have suffered from a

lack of statistical power [83]. Second, a false positive may have occurred in the M-ratio test if

our original assumption that BP and SE-ON initially formed a panmictic unit was wrong [84],

although this is unlikely considering the isolation-by-distance structuring pattern of black

bears across Ontario [14]. Third, the M-ratio test has been shown to perform better than the

heterozygosity excess test in particular situations [85, 86]. As an example, the M-ratio test is

able to detect severe bottlenecks that are followed by demographic recovery, whereas the het-

erozygosity excess test does better on recent and less severe bottlenecks [29, 73, 87]. Finally, it

is plausible that these contrasting results illustrate a higher sensitivity of allelic richness than of

heterozygosity to bottlenecks. In this situation, recently bottlenecked populations can show

high heterozygosity while displaying low allelic richness [88]. We found this pattern in our

supported Scenario 5 simulations, for which observed and expected heterozygosity were

always higher than our empirical data, whereas allelic richness and FST overlapped. These

inherent differences in how each statistic responds to specific demographic processes likely

explain why our supported scenarios only matched with two or three of the eight indices used

to assess fit to the empirical data (see S2 Table).

Despite the possible limitations of bottleneck tests and simulations, which can only ap-

proach natural situations, two elements support the hypothesis that low migration alone did

not lead to the reduced genetic variability observed on the BP. First, BP black bears had a

lower genetic diversity than individuals located on Cockburn Island. Second, Cockburn Island

individuals grouped with the SE-ON cluster and displayed a high cluster membership value

combined with a low level of admixture. Both of these factors suggest that a low level of migra-

tion exists from the mainland and neighboring islands onto Cockburn Island. On this island

however, reduced migration was not enough to result in a genetic diversity level as low as that

observed for BP black bears. This indicates that additional factors that induce low genetic vari-

ation are at play on the BP. Examples of these include population size reduction on the BP, as

well as a smaller gene pool in individuals migrating to BP compared to ones migrating to

Cockburn Island.

Additional genetic data such as allelic richness, heterozygosity, and haplotypic diversity

obtained from black bears inhabiting islands located in the vicinity of the BP, combined

with powerful models simulating the colonization and demographic history of the species in

Ontario, could help confirm the impact of recent bottlenecks on current genetic diversity. Fur-

ther, landscape genetic simulations could be conducted to identify areas where spatial bottle-

necks that may be detrimental to genetic diversity could occur [89].

Future of the BP population–effect of translocations

All our estimates of effective population size (mean NeC = 15.4 to 56.2) were lower than ex-

pected considering the estimated black bear abundance on the BP (NBP = 225–408 [43]). The

variation in NeC could be due to a violation of one or more of the assumptions of constant

population size, closed population, and overlapping generations, or to differences in the

underlying models used by each software. Relatedness among BP individuals is also high [14],

and even at carrying capacity, the size of the population will remain small due to the reduced

Genetic isolation and conservation of American black bears
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area of bear habitat in the region [44, 45]. These elements are important to note, as detrimental

phenotypic and physiologic consequences of small population size and reduced genetic varia-

tion may already be underway but going unnoticed on the BP.

Based on the relationship between inbreeding coefficient and effective population size, we

calculated that inbreeding could increase from 1 to 3% per generation in BP black bears. The

deleterious effects of inbreeding on population persistence [1] have led to the implementation

of genetic rescue efforts in several species [90, 91]. For Florida black bears [8], negative mani-

festations of inbreeding such as cryptorchidism have been reported [92], and genetic variation

is the lowest observed in any black bear population (HE = 0.27 [8]). In Florida panthers, phe-

notypic indications of inbreeding were detected when observed heterozygosity was at 0.101

[9]. Although heterozygosity levels of BP black bears are not as low as described above, our

simulations show that sustained immigration or regular translocations of individuals from

SE-ON onto the BP are necessary to prevent further loss of allelic diversity. Indeed, 10 genera-

tions with no gene flow between SE-ON and BP would be sufficient for the population to lose

70 to 80% of its rare alleles.

When only taking distance into account, the SE-ON and BP populations could be consid-

ered as having the ability to reconnect. Indeed, several records of black bears travelling over

much longer distances than 100–150 km exist [80, 93, 94]. The main barrier to this process is

the highly developed and fragmented landscape south of Georgian Bay (Fig 1). Translocations

of black bears have been successful over longer distances than 150 km, but homing behavior

becomes an issue when distances between the capture and release site are short [95]. In a study

conducted in Arkansas, over 10% of translocated bears attempted to return to their capture

site, which was only 160 km away from the release site [96]. The immediate concern with hom-

ing behavior is road mortality, which can account for over 50% of mortality the year following

release [97].

Our results show that successfully translocating 5 to 10 bears every 5 years would help to

retain allelic diversity. However, survival of translocated bears can range from 0.2 to 0.624 the

year post-release [96–98]. Based on this information, the number of SE-ON individuals need-

ing to be translocated on the BP every 5 years could range from 9 to17 if survival was as high

as 0.624, and from 25 to 50 if survival was as low as 0.2. In our simulations, we also assumed

that all translocated bears had breeding opportunities. In reality, migrants may not always be

able to breed [99]. Practically, this represents a limitation for translocation programs that aim

to enhance genetic diversity. In black bears however, even a small founder group can form a

genetically diverse reintroduced population, and stay genetically sustainable for at least a

decade [100]. This suggests that reintroduced individuals do find enough breeding opportuni-

ties for a translocation program to be successful.

Our genetic results further suggest that allowing for the possibility of a continuous intake of

migrants spread over several years would enable the population to better retain diversity than

if the population was to remain isolated and received translocated individuals. Indeed, under

isolation, the diversity brought in by the new migrants could be lost after a short period of

time (Fig 4). Considering that it is unlikely that connectivity between BP and SE-ON will be

reestablished, an initial large translocation effort of sexually mature individuals from SE-ON

could be used to boost genetic diversity. Subsequent smaller translocations would then help to

retain new alleles and maintain or increase genetic diversity.

To carry out a successful translocation program, it will be critical to select conditions that

will maximize the survival probability and breeding opportunities of translocated bears. These

conditions integrate choice of habitat, individuals to translocate, capture and release tech-

nique, public acceptance of a translocation program, and follow-up monitoring. As such, we

recommend:

Genetic isolation and conservation of American black bears
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i. For translocation logistics:

a. Because causes of human–bear conflict are controversial [101], consulting extensively

with local stakeholders to secure acceptance of a translocation program prior to initiat-

ing any translocations.

b. Favoring soft winter release over summer release, as survival of translocated individuals

is significantly higher for soft winter releases (0.88 vs. 0.2 [98]).

c. Conducting a larger translocation event followed by subsequent smaller translocations

to boost and subsequently retain genetic diversity.

d. Favoring the frequency of translocations over the number of individuals translocated.

e. Avoiding selecting the lowest possible number of individuals to translocate in the event

that these individuals would have difficulty surviving and reproducing.

ii. For habitat and landscape management:

a. Ensuring that bears are released in good quality habitat, as food shortages have been sug-

gested to be associated with long distance movements [94].

b. Protecting bear habitat on the BP, particularly outside of the National Park [44].

iii. For the choice of individuals:

a. Choosing individuals that are less likely to travel back to their capture site, such as sub-

adults and encumbered females [95].

b. Avoiding the release of food conditioned individuals [102, 103].

iv. For follow-up management:

a. Lowering harvest rates the first year post-release to allow enough time for individuals to

establish themselves and reach a high survival rate, which can be as high as 0.9 the 2nd

year post-release [96].

b. Conducting other programs aiming at reducing sources of non-natural mortality.

Conclusion

Our results provide additional information to the demographic data that suggested that BP

black bears were of conservation concern [44]. Here, we show that a risk of inbreeding exists

based on relatedness and population size estimates, and that genetic diversity is unlikely to be

maintained under sustained isolation (Fig 4).

In North America, anthropogenic activities inducing habitat loss and fragmentation are

increasing, and moving northward [16, 17, 104]. This, with the addition of climate change

influencing future resource availability, suggests that caution should be taken when imple-

menting land use plans, as black bears located in portions of the range such as central Ontario

could become more geographically isolated. Such isolation could increase the probability of

demographic bottlenecks, and, in the event of landscape fragmentation, these isolated popula-

tions may experience higher mortality rates as a result of human–bear conflict and vehicular

traffic. As such, we suggest that the future of BP black bears, based on both the genetic and eco-

logical context, is fully linked with landscape management.

Translocation efforts to boost genetic diversity have been successful in Greater prairie

chickens [105] and Florida panthers [90]. For BP black bears, the efficiency of translocations
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would be increased if they were coupled with landscape management aimed to conserve or

create natural corridors between BP and SE-ON. This method would allow sustained black

bear migration into the BP, hereby enhancing genetic diversity and retaining evolutionary

potential in the long-term. However, the economic and ecological contexts in areas south and

east of Georgian Bay are unlikely to allow for landscape management actions that re-create

migration corridors. Thus, regularly supplementing the BP population with SE-ON individu-

als following a large translocation effort could be a viable alternative to boost genetic diversity.

These translocations would have a dual effect, as they would also be helpful to keep the popula-

tion size at a level that would ensure long-term persistence.

If public acceptance is obtained, the proposed translocation program will require a well

thought-out choice of capture technique, individuals to translocate, and release site, as well as

a close monitoring of the translocated bears to evaluate success and avoid potential human-

bear conflicts stemming from future translocations [101, 106].

Overall, our study enabled us to estimate the migration rates and timeframes necessary for

populations to go from high to intermediate levels of diversity. Our results also enabled us to

make recommendations to enhance the genetic diversity of BP black bears. Our approach can

be applied to other vagile species to determine at which point concerns regarding the persis-

tence of isolated populations should be raised, and thus inform long-term and large-scale man-

agement plans for populations that are becoming increasingly small and fragmented.

Supporting information

S1 File. Justifications of parameters and procedures used in forward-time simulations.

Simulations were performed in EASYPOP (Balloux 2001) and in BottleSim (Kuo and Janzen

2003), via the high-performance computer clusters offered on SHARCNET (www.sharcnet.

ca). Results for all simulations are provided in S2 Table.

(DOCX)

S1 Table. Genotypes of black bears used in this study. This file contains the multilocus geno-

types for the 842 American black bears used in this study. The data are formatted with two col-

umns per locus.

(XLSX)

S2 Table. Simulation results. This file contains the results of all of the simulations conducted

in this study, and provides the parameters used in EASYPOP (Balloux 2001). Results include

genetic diversity, differentiation and inbreeding statistics, as well as a relatedness statistic. Sup-

ported simulations are indicated in bold, and alternative scenarios are color coded.

(XLSX)
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