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Abstract

Nowadays, several dispersion models are available to simulate the transport processes of

air pollutants and toxic substances including radionuclides in the atmosphere. Reliability of

atmospheric transport models has been demonstrated in several recent cases from local to

global scale; however, very few actual emission data are available to evaluate model results

in real-life cases. In this study, the atmospheric dispersion of 131I emitted to the atmosphere

during an industrial process was simulated with different models, namely the WRF-Chem

Eulerian online coupled model and the HYSPLIT and the RAPTOR Lagrangian models.

Although only limited data of 131I detections has been available, the accuracy of modeled

plume direction could be evaluated in complex late autumn weather situations. For the stud-

ied cases, the general reliability of models has been demonstrated. However, serious uncer-

tainties arise related to low level inversions, above all in case of an emission event on 4

November 2011, when an important wind shear caused a significant difference between

simulated and real transport directions. Results underline the importance of prudent inter-

pretation of dispersion model results and the identification of weather conditions with a

potential to cause large model errors.

Introduction

In October and November 2011, increased 131I concentrations were observed at several Euro-

pean stations, mainly in Central Europe. Stations located in the Czech Republic, Austria, Ger-

many, Poland, Slovakia, Sweden, France, Hungary, Ukraine and Russia have measured and

informed the Incident and Emergency Centre (IEC) on the detection of 131I in air samples col-

lected over intervals of several days [1–3]. Measured concentration values in some European

countries just reached the limit of detection and were not any health concern to the popula-

tion. However, only a few months after the accident in Fukushima Dai-ichi Nuclear Power

Plant in March 2011, these detections received more attention both from the public and the

scientific communities [4]. Although the measured concentrations were below the exposure

limit, the International Atomic Energy Agency (IAEA) has initiated an investigation in order

to find out the source of the increased iodine concentrations. Backward trajectory simulations
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narrowed the possible locations of the source to Central Europe, however, they could not per-

form more accurate localization because of the long sampling period of measurement sites [3].

The investigation led to result on 17 November 2011, when the Hungarian Atomic Energy

Authority reported that during the period between January and May, and also between Sep-

tember and November, 2011, probably due to the improper operation of the filtration system,

some 131I, slightly higher than usual, had been released into the atmosphere from the labora-

tory of the Institute of Isotopes Ltd., Budapest [5]. The Institute of Isotopes is dealing with the

research, development and production of a wide variety of radioactive isotopes and other

products for a broad range of application areas, especially healthcare, research and industry.

In this study, the dispersion of the radioactive plume and the spatial distribution of 131I

were simulated by different dispersion models over Central Europe. The applied models were

the following:

• the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model of the

National Oceanic and Atmospheric Administration (NOAA),

• the RAPTOR Lagrangian dispersion model, developed by the authors at Eötvös Loránd Uni-

versity (ELU),

• and the WRF-Chem Eulerian integrated atmospheric chemistry transport model

(WRF-ARW modell—The Weather Research & Forecasting Model—Advanced Research
WRF, v3.6, 2014 coupled with WRF-Chemistry, v3.6, 2014).

The intercomparison of the results of different dispersion models were used to evaluate

model performance and point out uncertainties in a complex weather situation in Central

Europe on 4 November 2011.

The 131I emission timeline has been reconstructed by the Institute of Isotopes. On the other

hand, unfortunately, only very few measurement data have become publicly available after the

incident. By the intercomparison of emission events and reported detections [2,3,5], supported

by atmospheric trajectories, four source-receptor connections could be identified:

• an emission event on 17 October 2011 caused the increase of atmospheric aerosol 131I con-

centration to 19.2 μBq/m3 in Dubna, Russia on 20–21 October;

• plume from a release on 24 October 2011 was detected in Prague, Czech Republic with con-

centrations in the magnitude of 1 μBq/m3;

• emission on 31 October 2011 caused elevated concentrations in Stockholm, Sweden on 3–5

November, reaching 5.6 μBq/m3;

• emission on 4 November 2011 was detected in Prague with concentrations in the magnitude

of 10 μBq/m3.

Emission rate was assumed to be uniform between 9–15 UTC on each release day according

to operational processes of the factory. Daily total emitted 131I activity on the four investigated

days was 25.0, 9.2, 16.3 and 14.8 GBq, respectively.

The evaluation of dispersion models investigates two important aspects: whether and when

the predicted plume reached the detection site (arrival time), and what maximum concentra-

tion it reached [6–8]. Arrival times and affected areas are usually well predictable with disper-

sion models, while peak values of concentrations show larger uncertainty. The accuracy of the

model largely depends on the complexity of the weather situation and the chemical interac-

tions of the pollutants. In archive dispersion studies, analysis and short-range forecast meteo-

rological data is used as the input of the dispersion simulation. These datasets usually have
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small forecast error, therefore, weather-related uncertainty is mostly due to unrepresented sub-

grid scale phenomena of convection, low-level inversion, orographic effects and local winds.

From the four investigated releases, the one on 4 November 2011 occurred in a complex

weather situation where orography and a low-level inversion with wind shear played a signifi-

cant role in the atmospheric transport of the emitted radioiodine. The investigation of model

performance in this hardly predictable situation is the main subject of this study.

Model description

The study uses two Lagrangian dispersion models, the HYSPLIT model, one of the most

widely used software for atmospheric dispersion simulations [9,10]; and RAPTOR, a

Lagrangian model developed at Eötvös Loránd University [6,11]. Lagrangian models calcu-

late atmospheric trajectories of particles originating from the source. The particle motion is

defined as the superposition of a deterministic downwind term (advection) and a stochastic

turbulent motion [9,12]. The deterministic term is interpolated to each particle position

from the wind field provided by an input numerical weather prognostic (NWP) model.

Input meteorological data is obtained from analysis or forecast fields of the GDAS/GFS

model (Global Data Assimilation System, Global Forecast System). While the deterministic

downwind motion largely defines the direction of the transport of the plume, turbulent dif-

fusion is responsible for horizontal and vertical mixing. Turbulence efficiency is calculated

from planetary boundary layer (PBL) parameterizations based on the Monin—Obukhov

length as a stability parameter. In HYSPLIT, a vertical eddy diffusivity (Kz) based approach

is applied [9], while RAPTOR uses Hanna’s method to calculate turbulent velocity fluctua-

tions in three directions [13,14]. The common principle of both approaches is that they use a

pre-calculated PBL height, and turbulence intensity is given as a universal vertical profile

function between the surface and the top of the PBL [13]. Therefore, PBL height is a key

parameter of the dispersion model that largely influences the results. It is especially true if

there is a significant wind shear, either horizontal or vertical, thus relatively small errors in

the location of the plume can result in significantly different downwind transport directions.

PBL height is either calculated from potential temperature stratification [9] or obtained as

input data from the NWP model.

In our study, HYSPLIT has been treated as a reference model, being one of the most widely

applied and evaluated dispersion models. It was extensively applied for research and decision

support in case of the Fukushima accident and the Eyjafjallajökull volcano eruption, as well as

several worldwide investigations of regional to local scale dust and air pollution transport

[10,15–17]. The models were used with GDAS/GFS (Global Data Assimilation System/Global

Forecast System) meteorological data with 0.5 degree resolution. GFS data was obtained from

the NOMADS (National Operational Model Archive and Distribution System) data center

[18].

Transport of particles towards Stockholm and Dubna was modeled with 84-hour simula-

tion time, while the two cases in Prague were simulated with 24-hour long simulation runs.

The number of released particles was set to 1,000,000 for the short-range and 2,000,000 for the

long-range simulations in both models. Concentration was calculated on a rectangular grid

with 0.1-degree resolution. The vertical depth of the averaged layer on the surface was chosen

to be 100 m and the dry deposition velocity was set to 0.4 cm/s, this value was used in HYS-

PLIT simulations of radioiodine aerosol originating from Fukushima [15]. Radioactive decay

was also taken into account in the models. Measurements detected only the aerosol fraction of

iodine. Unfortunately, there is no information on the initial ratio of gaseous to aerosol 131I in

the emission, therefore all the emitted amount was considered to be in aerosol form.

Atmospheric dispersion of iodine-131
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For the short-range simulations, the online integrated atmospheric chemistry transport

model WRF-Chem was also used to compare the results obtained from two different types

(Lagrangian and Eulerian) of models. WRF-Chem is an open-source model developed at

NOAA [19,20]. It performs the simulation of weather and dispersion in an online coupled

way with fine spatial and temporal resolution. The WRF-Chem model has been widely applied

in the simulation of air quality as well as the dispersion of radioactive pollutants [21–25].

Although the finer resolution and the coupling of meteorological and chemical processes pro-

vide an increased accuracy, WRF-Chem requires significantly larger computational capacities

than Lagrangian models that limits its application in fast-response decision support models.

Due to the large computational cost, WRF-Chem was only applied in the short-range simula-

tions of the detections in Prague.

In this study, the WRF-Chem model domain consisted of 16,000 grid points and 39 vertical

levels covering Central Europe between the 9–29˚E longitudes and the 43–52˚N latitudes. The

horizontal resolution was set to 10 km. Boundary conditions were provided by the GFS model

with 0.5-degree resolution. Radioiodine was simulated as a passive tracer taking into account

dry deposition and radioactive decay. Planetary boundary layer turbulence was calculated with

the Mellor—Yamada—Janjic parameterization [26]. Some experiments have been also made

with different PBL schemes (namely ACM2 and YSU) without significant impact on model

results.

Results

Long-range simulations were performed with HYSPLIT and RAPTOR Lagrangian models to

investigate the prediction of detections in Dubna (Russia) and Stockholm (Sweden), located in

a distance of 1600 and 1300 km from the emission source. The release days were 17 and 31

October, respectively. The transport direction was correctly predicted in both models, how-

ever, the altitude of particles and therefore the surface concentrations showed large uncertainty

(Fig 1). RAPTOR predicted peak concentrations of 0.1 μBq/m3 in Dubna and 0.3 μBq/m3 in

Fig 1. Modeled surface concentration of 131I 84 hours after the beginning of emission. Top: 21 UTC, 20

October 2011; bottom: 21 UTC, 3 November 2011; left: RAPTOR model results; right: HYSPLIT model

results. Blue dot: source location (Budapest). Red dots: detection sites (Dubna and Stockholm).

doi:10.1371/journal.pone.0172312.g001
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Stockholm, which were significantly lower than measured values (19.2 and 5.6 μBq/m3 in

Dubna and Stockholm, respectively). At the same time, the arrival times were correctly pre-

dicted by RAPTOR as 9 UTC, 20 October and 19 UTC, 3 November, respectively, both times

being within the sampling period of the reported detections.

The surface concentration values predicted by HYSPLIT were generally larger and reached

1.6 and 51 μBq/m3 on the surface in Dubna and Stockholm, respectively (Fig 1). The plume of

HYSPLIT was more concentrated in both cases, affecting a smaller area with larger concentra-

tions than in case of the RAPTOR simulation.

The weather in Dubna was characterized by weak rain and fog during the sampling period.

Precipitation was also present to the south of Stockholm during the sampling period, and fog

was reported from the city, indicating a similar weather condition where low-level temperature

inversion capped the near-surface pollutants. Although the complex weather situation caused

large uncertainties in surface concentration values, both models correctly predicted the pres-

ence of the plume at the two detection sites. It can be concluded that continental scale disper-

sion is largely dominated by the more certain large-scale wind characteristics and uncertainty

mainly lies in the vertical mixing above a specific receptor point [27].

Atmospheric 131I aerosol in the activity magnitude of 1 μBq/m3 was detected between 24

and 26 October 2011 in Prague, Czech Republic, in a distance of 450 km to the north-western

direction from the source location [2]. RAPTOR model simulation based on GFS (Global

Forecast System, [18]) meteorological data was carried out evaluating 1,000,000 single particle

trajectories. The results were compared to the results from WRF-Chem Eulerian and HYS-

PLIT Lagrangian models. All simulation results correctly predicted the presence of the plume

in Prague (Figs 2 and 3). Predicted arrival times were similar in all three models, ranging

between 16–20 UTC, 24 October 2011. Peak concentration estimates, however, showed a large

uncertainty with values ranging several magnitudes from 0.6 μBq/m3 (RAPTOR) through

65 μBq/m3 (WRF-Chem) to 267 μBq/m3 (HYSPLIT).

Reports from Prague indicate clearly that the plume released on 4 November 2011 was also

detected in the city in a concentration magnitude of 10 μBq/m3 [2]. However, preliminary dis-

persion simulations did not produce this result. In Lagrangian model simulations, the plume

was predicted to move towards Eastern Czech Republic and Western Poland (Fig 4). In case of

a larger release, it would have been extremely important to correctly predict whether or not

the city of Prague could be reached by the plume, therefore this issue was investigated in

details. Besides the trajectory models, the WRF-Chem atmospheric chemistry transport model

was also used in this case to obtain a finer resolution and a more detailed weather and disper-

sion simulation to reveal the source of error. As it can be seen in Fig 4, WRF-Chem showed

the northward and also a more north-westward motion of the plume, and correctly predicted

its presence in Prague with a relatively high maximum one-hour mean concentration of

20 μBq/m3. Arrival time in Prague was 17 UTC, 4 November based on the WRF-Chem model

result. The plume of HYSPLIT later marginally affected Prague between 0–6 UTC, 5 Novem-

ber on the very edge of the northward moving plume with peak concentration of 1.8 μBq/m3, a

small value compared to the generally larger concentrations predicted by HYSPLIT (Fig 5). It

is also remarkable that HYSPLIT dispersion and trajectory results were significantly different,

warning of high uncertainties in transport directions (Fig 5).

The difference between model results can be understood by investigating the wind field on

different levels. During the period of the release, a high pressure system caused cloudless

weather in Eastern Europe, forcing the plume to spread northward on its rear edge. At the

same time, low-level stratus clouds and fog covering almost the entire Czech Republic are well

observable in the satellite image, indicating the presence of a strong inversion in the lower

atmosphere, which is typical in late autumn anticyclones (Fig 6).

Atmospheric dispersion of iodine-131
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Fig 3. HYSPLIT model results for 25 October 2011. Left: surface concentration of 131I at 0 UTC, 25 October

2011; right: 24-hour trajectories started hourly between 9–15 UTC, 24 November 2011. The locations of

Prague and Budapest are marked. Simulated with the HYSPLIT model [10] using the GFS meteorological

data.

doi:10.1371/journal.pone.0172312.g003

Fig 2. Reported detection in Prague on 24–25 October was correctly predicted by the models. Modeled

surface concentration of 131I at 0 UTC, 25 October 2011 with a Lagrangian (RAPTOR) and an online

integrated Eulerian model (WRF-Chem) using the WRF meteorological data. The cities of Prague and

Budapest are outlined.

doi:10.1371/journal.pone.0172312.g002
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While the southerly wind transported the pollutants northward above the inversion, the

near-surface wind turned towards Prague, which could cause the plume to reach the city (Fig

6). Meanwhile, in the middle and high troposphere, the wind above the eastern Czech Republic

turned into north-western direction, flowing almost oppositely to the low-level flow.

The vertical wind shear explains the large difference among model results. The direction of

transport largely depended on the height of the plume, the latter being very sensitive on turbu-

lence parameterization and the PBL height data. Wind shear also reveals the reason behind the

contradiction of HYSPLIT dispersion and trajectory results (Fig 5). Deterministic HYSPLIT

trajectories were transported in lower altitudes than particles in the HYSPLIT dispersion simu-

lation affected by strong stochastic vertical turbulent mixing. This separation in altitude led to

different transport directions due to the vertical wind shear.

To better understand the difference among model results, our WRF meteorological output

was also used as an input of HYSPLIT trajectory model keeping the same dispersion settings as

in the case of the GFS-driven simulation (Fig 7). Interestingly, the results showed a rapid

northward transport, largely contradicting to what was obtained from WRF—Chem with the

Fig 4. Reported detection in Prague on 4–5 November was correctly predicted only by the WRF-Chem

model. Modeled surface concentration of 131I at 0 UTC, 5 November 2011 with a Lagrangian (RAPTOR) and

an online integrated Eulerian model (WRF-Chem) using the WRF meteorological data. The cities of Prague

and Budapest are outlined.

doi:10.1371/journal.pone.0172312.g004
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Fig 5. The contradiction between dispersion and trajectory results can be explained with the large

vertical wind shear. Top: surface concentration of 131I at 0 and 6 UTC, 5 November 2011; bottom: 24-hour

trajectories started from 40 m height hourly between 9–15 UTC, 4 November 2011. The locations of Prague

and Budapest are marked. Modeled with the HYSPLIT model [10] using the GFS meteorological data.

doi:10.1371/journal.pone.0172312.g005

Fig 6. Visible satellite image at 12 UTC, 4 November 2011. Fog and stratus clouds covering the Czech

Republic indicates the presence of a strong low-level inversion. Wind below the inversion layer (950 hPa,

white arrows) differs significantly from the wind above the inversion layer (850 hPa, orange arrows). Red dots

show the locations of Prague and Budapest. Data obtained from EUMETSAT and GFS.

doi:10.1371/journal.pone.0172312.g006
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same meteorological data (Figs 4 and 7). Considering the wind field in Fig 6, we can assume

that particles were lifted to higher altitudes in this simulation.

Besides the wind fields obtained from NWP model results (Fig 6), the radiosonde measure-

ment in Prague at 18 UTC, 4 November 2011 also supports the assumption that the plume

could only reach the city in the lowest layers. The wind changed with altitude from south-east-

erly to south-westerly in the layer between 750–1100 m above mean sea level, and turned fur-

ther rightward with height to gain north-westerly direction above 2300 m. Therefore, the shear

in wind direction exceeded 60˚ in the lowest 1100 m and 180˚ in the lowest 2400 m thick layer.

The complexity of the weather situation was further strengthened by the fog and the inversion

capping the near-surface plume.

Discussion

It has been shown that although Lagrangian dispersion models provide reliable results in most

cases, complex weather situations can give rise to prediction errors. Although mesoscale con-

vection is usually considered to be a main source of uncertainty in atmospheric trajectories,

the chance of errors occurring near a low-level inversion must not be underestimated. The

detections in Dubna and Stockholm, both occurring under foggy conditions, warned that even

a generally reliable dispersion simulation can show large uncertainties in surface concentra-

tions if low-level inversion is present as the simulation of downward mixing of the upper-level

plume is critical. Coinciding with vertical wind shear, the false prediction of vertical mixing

can cause errors in the transport direction, an issue that has been demonstrated primarily

through the case of a 131I release on 4 November, 2011 from the laboratory of the Institute of

Isotopes Ltd., Budapest.

A low-level inversion with strong vertical wind shear was present over the Czech Republic. A

significant portion of the emitted radioiodine was trapped below the inversion and transported

by the low-level north-westward winds to Prague. This effect was poorly predicted in Lagrang-

ian model simulations (RAPTOR and HYSPLIT). The source of this error can be identified in

the high planetary boundary layer (PBL) heights provided by the meteorological model.

Fig 7. WRF-HYSPLIT model results. Surface concentration of 131I at 0 UTC, 5 November 2011 modeled

with the HYSPLIT model [10] using the WRF meteorological data. The locations of Prague and Budapest are

marked. Northward transport was caused by higher level winds.

doi:10.1371/journal.pone.0172312.g007
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Although the low-level wind shear at approximately 400–500 m altitude was correctly repre-

sented in the GFS meteorological data, the temperature inversion was underestimated and the

PBL height was assumed to be 800–1200 m. Lagrangian models are designed to provide efficient

mixing within the PBL, therefore simulated particles reached altitudes higher than the inversion

in a large fraction of time. In reality, the inversion capped the low-level pollutants and provided

very poor upward mixing. As a result, simulated particles followed a more eastern path, driven

by winds above the inversion in a large fraction of the simulation time.

Lagrangian models show high sensitivity on the input PBL height data that can be uncertain

in complex situations. The correct prediction of the WRF-Chem model can be explained by

the online coupled simulation of meteorology and dispersion: instead of relying on turbulent

mixing profiles fit to the overestimated PBL height, turbulent diffusion was online calculated

at each vertical level within the primary model run. Indeed, the advantages of online coupling

are not exclusive to the Eulerian approach and have also been shown in Lagrangian applica-

tions [28].

The significance of online coupling is further increased considering the fact that the overes-

timation of PBL heights was more serious in the WRF than in the GFS simulation, probably

due to the finer representation of orography that further increased the vertical turbulence. The

wind shear was large enough to cause 60–90˚ error in the transport direction by only a few

hundred meters difference in the altitude of the plume. Therefore, HYSPLIT and RAPTOR

model runs with WRF meteorology resulted in a rapid northward transport due to winds in

the altitude between 1200–2000 m, a result that contradicts to the online coupled WRF-Chem

simulation yielding slower northwestward plume motion by near-surface winds.

In real-life situations, it is usually not affordable to run WRF-Chem or another online inte-

grated model in case of an accidental release. Although the transport of the plume to Prague

had been poorly predicted by Lagrangian models, there were clues that would have made it

possible to detect the error. Deterministic HYSPLIT trajectories showed a much more west-

ward transport direction than dispersion results from the same model (Fig 5). It might have

warned the user of the presence of the wind shear and a possibility of a significantly different

pathway than the one predicted by the dispersion model. Furthermore, by simply looking at

the surface wind observations during the release period, the chance of pollutants to reach

Prague could have become obvious (Fig 8). These results underline the importance of correct

interpretation of dispersion model results considering different types of atmospheric transport

models and also basic meteorological aspects to identify possible error sources in dispersion

model results.

Conclusion

Atmospheric dispersion simulations have been carried out in cases of four 6-hour long 131I

release from Budapest in October and November 2011. Model results from the Lagrangian dis-

persion model RAPTOR, developed at Eötvös Loránd University, were compared to those of

Lagrangian HYSPLIT and Eulerian WRF-Chem, two of the most widely applied atmospheric

transport models. Simulation results were evaluated based on reported detections in Dubna

(Russia), Stockholm (Sweden) and Prague (Czech Republic). Dispersion models have been

proven to provide reliable results on local to global scale in several studies and are essential

tools of risk management. However, the users must not ignore possible error sources in com-

plex weather situations characterized by low-level inversions with fog and a significant direc-

tional wind shear.

In three of the four investigated cases, the existence and the arrival time of the plume above

the detection sites was well predicted. However, concentration values showed large uncertainty

Atmospheric dispersion of iodine-131

PLOS ONE | DOI:10.1371/journal.pone.0172312 February 16, 2017 10 / 13



and variability among the models due to complex local weather with fog and very low mixing

heights occurring in the two cities during the sampling period.

In case of the 131I detection in Prague, 4 November 2011, the simulated plume of Lagrang-

ian models avoided or just marginally affected the city. On the other hand, the online coupled

simulation of WRF-Chem showed the plume to largely move towards Prague. This contradic-

tion was explained by a strong low-level wind shear and the overestimation of planetary

boundary height in the meteorological models. We propose that possible errors in model

results can be suspected without costly WRF-Chem simulations by considering deterministic

trajectory calculations and surface wind observations. The results underline the importance of

the identification of low-level inversions and wind shears in the interpretation of dispersion

model results.
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Writing – original draft: ÁL.
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