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Abstract

While the positive relationship between avian diversity and habitat heterogeneity is widely

accepted, it is primarily based on observed species richness without accounting for imper-

fect detection. Other facets of diversity such as functional diversity are also rarely explored.

We investigated the avian diversity-landscape heterogeneity relationship in agricultural

landscapes by considering two aspects of diversity: taxonomic diversity (species richness)

estimated from a multi-species dynamic occupancy model, and functional diversity (func-

tional evenness [FEve] and divergence [FDiv]) based on traits of occurring species. We also

assessed how agricultural lands enrolled in a conservation program managed on behalf of

declining early successional bird species (hereafter CP38 fields, an agri-environment

scheme) influenced avian diversity. We analyzed breeding bird data collected at CP38 fields

in Mississippi, USA, during 2010–2012, and two principal components of environmental var-

iables: a gradient of heterogeneity (Shannon’s landscape diversity index) and of the amount

of CP38 fields (percent cover of CP38 fields; CP38). FEve did not show significant

responses to environmental variables, whereas FDiv responded positively to heterogeneity

and negatively to CP38. However, most FDiv values did not significantly differ from random

expectations along an environmental gradient. When there was a significant difference,

FDiv was lower than that expected. Unlike functional diversity, species richness showed a

clear pattern. Species richness increased with increasing landscape heterogeneity but

decreased with increasing amounts of CP38 fields. Only one species responded negatively

to heterogeneity and positively to CP38. Our results suggest that the relationships between

avian diversity and landscape heterogeneity may vary depending on the aspect of diversity

considered: strong positive effects of heterogeneity on taxonomic diversity, but weakly posi-

tive or non-significant effects on functional diversity. Our results also indicate that effective-

ness of CP38 in conserving avian diversity, particularly, taxonomic diversity, could be

limited without the consideration of landscape heterogeneity.
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Introduction

The relationship between diversity (i.e., biodiversity or species diversity) and habitat heteroge-

neity, e.g., heterogeneous vegetation structure at the local scale or heterogeneous habitat type

at the landscape scale, is one of the most widely studied in ecology. Heterogeneous habitats are

assumed to provide more niches or complementary resources and thus increase diversity of

animals and plants [1, 2]. Although several recent studies suggest that the relationship can be

non-linear [3–5], the positive relationship between diversity and habitat heterogeneity at local

and landscape scales is generally accepted, particularly in agricultural landscapes [6–9].

Species richness is commonly used as a surrogate of diversity to examine the diversity-habi-

tat heterogeneity relationship. However, richness is calculated based on observed richness by

summing or averaging species found during surveys without accounting for imperfect detec-

tion (i.e., a species may not be detected even if present at a site). It is well recognized that

ignoring imperfect detection for individuals and species can mislead inferences about species-

habitat relationships and lead to biased estimates of occupancy, abundance, and richness [10–

12]. In particular, incorporating detection probability (i.e., the probability of detecting species

when it is present at a site) in the estimation of richness is crucial when the community is com-

posed of large numbers of infrequently detected species [13, 14], as is often the case with avian

communities. In recent years, several hierarchical models have been developed to estimate

richness while accounting for heterogeneous detection probabilities among species. These

models also produce species-level responses to environmental variables that cannot be

obtained in single- species models. Although these models have been applied to evaluate effects

of fragmentation, conservation management, and anthropogenic disturbance on richness [14–

18], they are rarely used to assess the diversity-heterogeneity relationship. The species diver-

sity-heterogeneity relationship can be more properly depicted with hierarchical multi-species

models because such models provide relatively unbiased estimates of richness and species-

level responses.

Moreover, richness represents only one aspect of diversity. While most inferences about the

diversity-heterogeneity relationship are based on taxonomic diversity (mainly richness and the

Shannon index), functional diversity has received less attention. Functional diversity quantifies

the distribution and range of organismal traits (morphological, physiological, behavioral, or

phenological traits) influencing ecosystem functioning or species’ responses to environmental

conditions in a community [19, 20]. Functional diversity goes beyond guild classifications

because it can deal with multiple traits simultaneously. Trait-based measures of diversity such

as functional diversity have been recognized as alternatives that complement traditional diver-

sity measures such as richness [21–25]. There is a growing consensus that the use of functional

diversity combined with taxonomic diversity can improve our understanding of the interac-

tions between aspects of biodiversity and environmental constraints [23]. Functional diversity

is considered an important descriptor of ecosystem-level processes and of the effects of distur-

bances on ecosystem services or biodiversity [25–30]. Functional diversity indices are also

often used to reveal community assembly processes (environmental filtering and competition

or limiting similarity) by adopting a null model approach [23, 31–33]. Environmental filtering

is assumed to play an important role in structuring a community when functional diversity is

lower than the expected value obtained from random communities (i.e., species in a commu-

nity are more functionally similar to each other than random expectation). Conversely, higher

functional diversity than expected is recognized as evidence for limiting similarity, allowing

the coexistence of functionally dissimilar species. Previous studies have demonstrated a decline

in functional diversity for an array of taxa (birds, mammals, plants, and insects) and evidence

of environmental filtering in agricultural landscapes [27, 32, 34].
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Although various functional diversity indices have been proposed, many are redundant and

highly correlated with species richness [23, 35]. Recent studies show that functional evenness

(FEve) and functional divergence (FDiv) are not only relatively independent of other indices

[23] but also better multi-trait indices for analyzing ecosystem functioning [36]. FEve defines

the evenness of species abundance in functional space [37, 38]. FEve is low when abundance is

unevenly distributed among species or functional distances among species are irregular. FDiv

quantifies how the most abundant species are distributed within the volume of functional

space [37, 38]. It also measures the degree of niche differentiation in a community [37]. FDiv

decreases as the functional traits of the most abundant species are close to the center of the

trait space.

We investigated the relationship between avian diversity and landscape heterogeneity (hab-

itat heterogeneity at a landscape scale) in agricultural landscapes by considering functional

diversity (FEve and FDiv) and taxonomic diversity (species richness). We calculated functional

diversity based on traits of occurring species (observed richness, hereafter), whereas we esti-

mated taxonomic diversity by accounting for heterogeneous detection probability among spe-

cies. We were primarily interested in how landscape heterogeneity, such as the diversity of

non-crop vegetation land covers or natural and semi-natural habitat types, influences avian

diversity and individual avian species on Conservation Practice (CP38) fields, former produc-

tion agricultural lands that have been restored to semi-grassland habitat. These CP38 fields are

enrolled in a federal conservation program (similar to an agri-environment scheme in other

countries) and are managed for early successional/grassland avian species (e.g., Northern Bob-

white [Colinus virginianus]; S1 Table) in Mississippi, USA. Our secondary objective was to

assess how the amount of CP38 fields affects avian species diversity, about which little is

known. We expected that landscape heterogeneity would increase both functional diversity

and taxonomic diversity because heterogeneous habitats in a landscape can provide more

niches or complementary/supplementary resources for a wider range of species’ traits. How-

ever, FEve and FDiv may behave differently. For instance, species richness is expected to

increase as heterogeneity increases. If species added to the community have unique traits,

functional divergence will increase, whereas functional evenness may not show a significant

change, or even decrease, depending upon the distribution of new species’ abundances across

the trait space. We also expected that while an increasing amount of CP38 fields influences the

probability of occupancy by early successional/grassland species positively, both taxonomic

and functional diversity may decrease because a high amount of CP38 fields could reduce

landscape heterogeneity.

Methods

Ethics statement

All field data used in our study were collected based on direct observation of birds, i.e., count-

ing birds by sight and sound; see “Bird surveys and data” below. We confirm that our study

did not involve endangered species or the handling of any animal. This type of observational

study does not require approval from an Institutional Animal Care and Use Committee or

equivalent animal ethics committee, thus no approval was sought. We also confirm that our

study did not involve protected areas as it was performed on agricultural lands (See Fig 1 for

location), and we acquired permission from land owners to access their land.

Study sites

The study was conducted on CP38 fields located along an agriculture-forest gradient in north-

ern Mississippi, USA (Fig 1). Conservation Practice 38 is a new initiative offered by the United

Avian Diversity-Landscape Heterogeneity Relationship
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States Department of Agriculture (USDA) Farm Service Agency that allows states to design

conservation programs based on their own wildlife conservation needs. In Mississippi, CP38

aims to restore native grassland habitats for early successional/grassland species (S1 Table),

particularly Northern Bobwhite but also other species such as Dickcissel (Spiza americana)

and Eastern Meadowlark (Sturnella magna), by establishing native warm-season grasses, forbs,

legumes, and shrubs on formerly agricultural lands. Production agricultural lands such as row-

crop and pasture/hay fields are prevalent across the study region. Forest is also dominant in

some areas (Fig 1).

We selected a random sample of CP38 fields from the USDA Farm Service Agency contract

database, resulting in 70 sample fields (Fig 1). One point was established at the center of each

field or> 100 m from an edge.

Bird surveys and data

Bird surveys were conducted by the same observer at sample points from mid-May through

June each year during 2010–2012, using the CP38E-SAFE Mississippi monitoring protocol

which was developed from the Conservation Program 33 monitoring protocol [39]. All points

were surveyed once in 2010 and twice during 2011–2012. At each point, the observer recorded

all birds detected within a 500 m radius of a sample point during a 10-min period. Care was

Fig 1. The Land cover and location of study regions surveyed in Mississippi, USA during 2010–2012. The numbers on the

map represent the number of sample points (average 0.52 km apart, range from 0.2 to 1 km).

doi:10.1371/journal.pone.0170540.g001
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taken to avoid double counting the same bird during the period. Each survey was performed

between sunrise and 10:00. Surveys were not conducted during periods of rain or high wind.

A total of 76 species were detected at least once during 2010–2012; however, we excluded

flyovers (birds only passing over the area via flight), waterfowl, nocturnal species, and raptors.

Additionally, species that were detected on< 5% of the points were excluded; thus we used 46

species for analyses (See S1 Table for species list).

Landscape data and environmental variables

To generate landscape variables, we digitized the satellite imagery from 2010 National Agricul-

ture Imagery Program and the world imagery base map available in ArcGIS version 10. We

classified land cover into 8 classes: production agriculture (rowcrop and pasture/hay field),

CP38 field, pine forest, non-pine forest (hardwood forest and mixed forest), shrubland, open

habitat (early successional vegetation and open-forest, > 50% open canopy cover of any for-

ests), built-up/barren (house, road, and bare ground), and open water (mostly pond)

(Table 1). In our study, areas classified as rowcrop field and pasture/hay field were production

agricultural lands and they were not enrolled in any conservation program. We calculated the

percent cover of each class within a 1.5 km radius surrounding a sample point using FRAG-

STATS. We chose a 1.5 km radius large enough to encompass different matrices surrounding

a CP38 field, given that the size of several CP38 fields wass> 50 ha and the total size of closely

located CP38 fields was > 100 ha.

We used Shannon’s Diversity Index (SHDI) to represent landscape heterogeneity. SHDI is

calculated based on the number of non-crop vegetation cover types (which can be referred to

as natural and semi-natural habitat) including CP38 field, pine-forest, non-pine forest, shrub-

land, and open habitat class, and their evenness within a landscape. We acknowledge that we

focused on the compositional heterogeneity of the landscape. We did not include configu-

rational heterogeneity because configuration indices such as interspersion/juxtaposition index

and contagion index were correlated with SHDI in our study (Pearson correlation, r = 0.62

and r = -0.97, respectively).

For environmental variables, we included SHDI, percent cover of CP38 fields, and percent

cover of production agricultural land use (rowcrop and pasture/hay field) to account for a gra-

dient of agricultural land that is a dominant anthropogenic land use across our study region.

However, percent cover of production agricultural land and SHDI were highly correlated

(r = -0.72). We performed a principal component analysis on those three variables to identify

Table 1. Summary statistics of land covers in a 1.5 km radius area surrounding a sample point.

Type Mean % (standard deviation) Min% Max%

Production agriculture 38.4 (14.6) 9.20 66.1

CP38 field 7.3 (4.4) 1.2 19.8

Pine forest 11.9 (8.8) 0.0 35.1

Non-pine forest 26.6 (12) 5.5 54.4

Shrubland 2.3 (4.1) 0.0 26.9

Open habitat 7.1 (6.0) 1.0 30.3

Built-up/barren 5.1 (4.9) 0.4 25.7

Open water 1.5 (1.4) 0.0 5.4

Open-forest (> 50% open canopy cover of any forest but mostly pine forest) and early successional

herbaceous vegetation were grouped into open habitat because both classes function similarly and the

amount of open-forest was very low.

doi:10.1371/journal.pone.0170540.t001
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independent patterns of environmental variation within our data set and to avoid statistical

multicollinearity. We retained two principal components with eigenvalues� 1, capturing 91%

of the total variation: heterogeneity, a gradient from agricultural lands to increasing SHDI;

and CP38, a gradient of increasing the amount of CP38 fields (i.e., percent cover of CP38

fields) within a landscape. Those components were used as environmental variables in all

analyses.

Functional diversity

To characterize functional diversity, we used traits known to be functionally important in

other studies [27, 29, 30, 31, 40, 41]: one continuous trait type—body mass—and 11 binaries of

three trait types—diet, foraging behavior and location—and migratory status (Table 2 and see

S1 Table for detail description). All traits but migratory status are strongly associated with

resource use. We compiled data on all traits from The Birds of North America online database

(BNA, [42]) and Ehrlich et al. [43]. Missing body mass data from BNA were compiled from

Dunning [44]. We used species observed (not from the hierarchical model below) to calculate

functional diversity. We did not incorporate imperfect detection into the calculation of func-

tional diversity because there is no available method to do so. We pooled 3 years (2010–2012)

of survey data and considered a species as detected if it was observed at least once during the

surveys. For abundance, we used the maximum number of individuals observed.

We used FEve and FDiv as functional diversity indices and calculated their values at each

point following a common approach employed in other studies [30, 31, 35, 38]. We first con-

structed a trait matrix for 46 species and converted it into a dissimilarity matrix, the Gower

dissimilarity matrix [45]. Using the dissimilarity matrix, we performed a principal coordinate

analysis (PCoA). We selected four PCoA axes that explained 76% of the variation in the dis-

tance matrix. Those PCoA axes were adopted as new traits to estimate the values of functional

diversity indices. The number of PCoA axes defines the number of dimensions of functional

space, which in turn affects the measurement of functional diversity. To determine the quality

of functional spaces represented by four PCoA axes, we calculated the mean squared deviation

(mSD) following the method proposed by Maire et al. [46]. The mSD assesses the degree of

inconsistency between initial and final functional distances: as mSD is close to 0, the quality of

functional space is high. The mSD of the first four (0.0017) or five (0.0016) PCoA axes was

lower than the mSD of other PCoA axes (S1a Fig). The scree plot also showed a break between

the fourth and fifth components or axes, indicating that components after the fourth

accounted for a trivial amount of variance in our data (S1b Fig). Given these patterns, we are

confident that four PCoA axes chosen for our study represent the functional distance between

species appropriately and thus any bias associated with the choice is minimal. We used Info-

Stat (version 2012, [47]) to create a distance matrix and to perform the PCoA and the software

program FDiversity [48] to calculate the functional diversity indices.

Table 2. Traits used for the estimation of functional diversity indices.

Trait type Trait categories Value type of

each trait category

Body mass Body mass Continuous

Diet Insects, seeds/grains, various items (omnivorous),

others

Categorical

Foraging (behavior and

location)

Bark gleaning, foliage gleaning, ground foraging,

hawking, sallying, others

Categorical

Migratory status Migrant Binary

doi:10.1371/journal.pone.0170540.t002
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We adopted a null model approach of community data matrix randomization and calcu-

lated the standardized effect size [49, 50] at each sample point or community to assess

whether changes in observed functional diversity are dominated by changes in species rich-

ness. A null model approach is recommended for analysis utilizing functional diversity mea-

sures to make inference, particularly, when those measures are correlated with species

richness [49]. Comparison between observed values and expected values calculated from

random communities is also commonly used to examine community assembly processes. In

our data, species richness was moderately correlated with FDiv (Pearson’s correlation

r = 0.408, P< 0.001) but not with FEve (r = 0.014, P = 0.91); thus, we applied the null model

approach to FDiv. We simulated 999 communities by randomly choosing species from the

species pool (all species found at any point) while maintaining species richness as constant

(i.e., the same as observed richness) at each point. Abundance of each species was also ran-

domly selected, and the pattern of abundance remained constant within a point. This ran-

domization was carried out using the picante package in R. The deviation in observed FDiv

from expected FDiv was measured based on the standardized effect size, FDiv.SES = (Obs

− Expmean)/Expsd, where Obs is the observed FDiv value and Expmean and Expsd stand for the

mean and the standard deviation of expected FDiv values (FDiv values calculated from 999

random communities). FDiv.SES values below -1.96 (the lower confidence bound) or above

+1.96 (the upper confidence bound) were considered statistically significant at P< 0.05 [50].

Significantly low and high FDiv.SES indicates the evidence for environmental filtering and

limiting similarity, respectively.

The relationship between functional diversity and two environmental variables was ana-

lyzed with a linear regression model, using FEve and FDiv as response variables. We also used

null models to test the non-randomness of the overall trend in the relationship between FDiv

and environmental variables, i.e., whether the relationship differed from random expectations.

We simulated the linear regression model of FDiv 999 times with the FDiv value generated

from each of 999 random communities as a response variable for each simulation. Then,

parameter estimates (regression coefficients) from an empirical model were compared with

parameter estimates from the null models at α = 0.05 (two-tailed test). We determined spatial

autocorrelation by constructing Moran’s I correlograms of the regression model residuals in

SAM 4.0 (Spatial Analysis in Macroecology, [51]). We did not find significant spatial autocor-

relation (P> 0.05) in the residual of any response variable.

Richness and species-level responses

We adopted the hierarchical modelling framework of a multi-species occupancy model [13,

14] and a multi-season (dynamic) occupancy model [15, 52, 53] to investigate the effects of

heterogeneity and CP38 on species richness and individual species. These models require pres-

ence/absence (detection/non-detection) data from repeated surveys. They were developed to

take into account imperfect detection by incorporating a detection probability into occupancy

estimation. Multi-species occupancy models consider species as random effects governed by

common community-level distributions and deal with heterogeneous detections among spe-

cies. They also account for both species-level effects and overall effects of environmental covar-

iates on the community. Multi-season occupancy models, in general, are applied to studies

where surveys are conducted during multiple seasons/years with repeated visits within a sea-

son/year. They allow for changes in occupancy status at a site due to extinction/survival or col-

onization events between seasons/years. While we conducted two surveys per year during

2011–2012, we had only one survey in 2010. In open-population modelling, we found that the

missing 2nd survey during the 1st year resulted in overestimation of mean detection for the

Avian Diversity-Landscape Heterogeneity Relationship
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year. To minimize possible biases associated with a lack of repeated surveys, we did not include

the 2010 data and used 2-year data collected during 2011–2012.

Before analyses, we examined Moran’s I correlograms of Pearson residuals from a logistic

regression model including two environmental variables. Of the 46 species, the residuals of 15

were correlated. To account for the spatial dependency of occupancy status among sites, we

calculated an autocovariate (Acov) by modifying Royle and Dorazio’s method ([13]; See S1

Appendix for details) and added Acov to the model as an additional covariate for those 15

species.

Our model follows the typical structure of hierarchical occupancy models, linking two

regression models: an ecological process model estimating the true occupancy state (latent

state) and an observation model estimating the observed occupancy state by combining the

latent state and detection probability [53]. In the ecological process model, Zijt denotes the

latent occupancy state of species i at site j during year t where Zijt = 1 if species i occupies site j
during year t and Zijt = 0 otherwise. The latent occupancy state was modelled to be drawn

from a binomial distribution, i.e., Zijt ~ binomial(ψijt, 1), where ψijt is the probability that spe-

cies i occupies site j during year t. In the observation model, the observed occupancy state

(yijtk) was specified similarly, but as a product of the latent occupancy state and detection prob-

ability: yijtk ~ binomial(pijtk�Zijt, 1), where pijtk is the detection probability of species i at site j,
year t and survey k and yijtk is 1 if species i is detected at site j, year t and survey k and yijtk = 0

otherwise.

We assumed the occupancy status of site j by species i could change between the two years.

We adopted Russell et al.’s approach [15] that was derived from Royle and Kéry’s multi-season

occupancy model [52], but we included two sets of parameters associated with survival (species

remaining at a site from previous year) and colonization (species occupying a site, which was

unoccupied the previous year) [18]. Occupied site j (Zij1 = 1 and 1- Zij1 = 0) by species i during

year 1 can be re-occupied following year 2 with an effect of κi (a coefficient governing survival

between years 1 and 2). Conversely, an unoccupied site j (Zij1 = 0 and 1- Zij1 = 1) by species i
during year 1 can be occupied following year 2 with an effect of υi (a coefficient governing col-

onization between years 1 and 2). We used the logit link function for ψijt and modelled as a lin-

ear combination of a species effect and site- and/or species-specific covariates (landscape

heterogeneity, the amount of CP38, and autocovariate) as follows:

logitðcij1Þ ¼ ui þ a1i � Heterogeneityj þ a2i � CP38j þ di � Acovij for t ¼ 1

and

logitðcij2Þ ¼ ui þ ki � Zij1 þ ui � ð1 � Zij1Þ þ a1i � Heterogeneityj þ a2i

� CP38j þ di � Acovij for t ¼ 2

where ui is a species-level intercept, the coefficients α1i, α2i, and δi represent effects of the rele-

vant covariates on the occupancy of species i, and κi and υi are survival and colonization effects

between year 1 (t = 1) and year 2 (t = 2), respectively. The parameters ui, α1i, α2i, κi, υi and δi

are normally distributed species-specific random effects, for example, α1i ~ N(μα1, σα1) and

α2i ~ N(μα2, σα2).

For the observation model, we assumed that detection probability varied by species (vi, spe-

cies-level effect). The species-level effect was also modelled by incorporating a correlation (ρ)

between species occurrence and detection to account for potential bias in detectability because

abundant species are likely to be more easily detected and prevalent across the landscape as

described in Royle and Dorazio [13] and Zipkin et al. [14] (See S1 Appendix for details). We

did not include survey-specific, observer, or year effects because those effects on detection are

Avian Diversity-Landscape Heterogeneity Relationship
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likely negligible in our study given that the observer remained constant for all surveys, the

time between surveys within a year did not vary greatly (< 21 days), and surveys were con-

ducted during similar periods for both years. The detection probability was modelled as:

logitðpijtkÞ ¼ vi

where vi is a species-level intercept and represents a species-specific random effect.

We conducted the analysis using the R2jags package in R. Model code is provided as S1

Appendix. We ran three parallel chains for 120,000 iterations, discarded the first 50,000 for

burn-in, and thinned the posterior chains by 20. We also confirmed that our model converged

and fit the data well based on the Gelman-Rubin statistic (Gelman-Rubin statistics, shrinking

factor R < 1.1) and Bayesian P-value (Bayesian P-value = 0.52), respectively. Precision of

parameter estimates was determined using the 95% Bayesian credible interval (BCI) which is

similar to a 95% confidence interval.

Results

Functional diversity

FEve did not show a clear pattern with observed richness, confirming the independent rela-

tionship between FEve and observed richness. However, FEve tended to peak at the intermedi-

ate level of observed richness, though the trend was very weak (S2 Fig). FDiv showed a

saturated pattern: it increased moderately with observed richness to a certain point and then

flattened (S2 Fig). There was no significant correlation between expected FDiv and observed

richness (r = -0.027, P> 0.05).

While FEve did not respond significantly to either heterogeneity or CP38, FDiv responded

positively to landscape heterogeneity and negatively to the amount of CP38 fields (Table 3).

FDiv increased as different types of non-crop vegetation land covers (pine forest, hardwood

and mixed forest, open habitat, etc.) increased and percent cover of agricultural lands

decreased within a landscape. It also decreased with increasing amount of CP38 fields

(Table 3). Both regression coefficients (i.e., Heterogeneity and CP38) were significantly differ-

ent from random expectations. Heterogeneity and CP38 from the empirical model were more

positive (P< 0.001, Z-score = 3.303) and negative (P< 0.05, Z-score = -2.407) than coeffi-

cients of null models, respectively.

However, observed values of FDiv were not notably different from expected values (mean

values of 999 random communities) in most cases. Of 70 sample points, only 4 points showed

a significant departure in observed FDiv from expected FDiv along a gradient of landscape het-

erogeneity (Fig 2a). FDiv.SES values of those 4 points were negative. All of the 4 points were

located in the landscapes with a low level of heterogeneity and high level of agricultural land

Table 3. The estimates of the environmental covariates from a regression model for functional evenness (FEve) and functional divergence (FDiv).

Parameter estimates that significantly differed from simulated parameter estimates are in bold.

Indices Estimate (standard error) Adjusted R2

Heterogeneity CP38

FEve -0.004 (0.005) 0.000 (0.005) 0.022

FDiv 0.020 (0.004)** -0.012 (0.004)* 0.361**

Significance:

*, P <0.05;

**, P < 0.001.

doi:10.1371/journal.pone.0170540.t003
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use (average percent cover of agricultural lands, 57.1 with a standard deviation of 7.7). In the

case of CP38, significant FDiv.SES values were found at 4 points. Their FDiv.SES values were

also negative and mostly located at the landscapes with moderate to high amount of CP38

fields (Fig 2b).

Fig 2. Variation in FDiv.SES along a gradient of landscape heterogeneity (a) and amount of CP38 fields (b) within a landscape. A

black triangle indicates a significant FDiv.SES value.

doi:10.1371/journal.pone.0170540.g002
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Community (richness)- and species-level responses

The estimates (μα1 and μα2) of community-level hyper-parameters for heterogeneity and CP38

were positive and negative, respectively (Table 4). These estimates represent the mean effects

of heterogeneity and CP38 on occupancy across all species in the community. These results

suggest that the mean occupancy probability of species was greater when a CP38 field was

embedded in a matrix composed of diverse non-crop vegetation versus an agriculture-domi-

nated matrix. Conversely, the mean occupancy probability was low when the amount of CP38

fields was high. In summation, species richness increased with increasing landscape heteroge-

neity but decreased with increasing amount of CP38 fields in a landscape. The mean effect of

CP38 was 1.53 times (0.43/0.28) greater than that of heterogeneity. The 95% Bayesian credible

interval (BCI) of both estimates did not contain 0, indicating relatively constant responses

across species in the community to those environmental variables.

There was a weak positive correlation between occurrence and detection (mean ρ = 0.24);

however, a wide 95% BCI (-0.18–0.58) indicated large uncertainty in the correlation among

species. In addition, the estimated richness from the model that accounted for variable detec-

tion probabilities among species was higher than observed richness (the number of species

detected) (S3 Fig).

Species-level responses to environmental variables showed a similar pattern to the commu-

nity-level responses. Eight species had 95% BCIs not containing 0, or only slightly overlapped

0, and all open-forest and shrub species (Indigo Bunting [Passerina cyanea], Orchard Oriole

[Icterus spurius], Prairie Warbler [Setophaga discolor], White-eyed Vireo [Vireo griseus], Yel-

low-breasted Chat [Icteria virens]) showed positive responses to landscape heterogeneity (Fig

3a; S4 Fig for all species’ responses). The response of early successional/grassland species

(Dickcissel and Field Sparrow [Spizella pusilla]) varied by species. While the probability of

occupancy by Field Sparrow increased with heterogeneity, the probability of occupancy by

Dickcissel decreased. Increasing the amount of CP38 fields in a landscape negatively influ-

enced species occupancy and only Dickcissel showed a strong positive response (Fig 3b; S4 Fig

for all species’ responses).

Discussion

We found that the effect of landscape heterogeneity was strongly positive on taxonomic diver-

sity (species richness) but weakly positive (FDiv) or non-significant (FEve) on functional

diversity. While these results partly supported the hypothesis predicting the positive relation-

ship between avian diversity and habitat heterogeneity, they indicated that taxonomic and

functional diversity can respond differently to landscape heterogeneity. Negative responses of

taxonomic diversity to the amount of CP38 fields suggested a need to consider landscape het-

erogeneity to enhance the effectiveness of CP38 as a community-level conservation program.

Table 4. Summary of community-level hyper parameters for the occupancy covariates.

Hyper parameters Mean Standard deviation 95% BCI

Heterogeneity μα1 0.277 0.118 0.053–0.520

σ α1 0.503 0.119 0.301–0.766

CP38 μα2 -0.43 0.135 -0.710 –-0.176

σ α2 0.623 0.142 0.383–0.941

μα1 and μα2 are the mean effects of landscape heterogeneity and of amount of CP38 fields (CP38) across all species, respectively. σ α1 and σ α2 represent

the standard deviation of each variable among species.

doi:10.1371/journal.pone.0170540.t004
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Fig 3. Species level responses to two environmental covariates, heterogeneity (a) and CP38 (b).

Heterogeneity (landscape heterogeneity) represents a gradient from agricultural lands to increasing

Shannon’s Diversity Index (SHDI); and CP38 represents a gradient of increasing the amount of managed

fields (CP38) within a landscape that covers a 1.5 km radius area surrounding a sample point. All values were

estimated from the multi-species dynamic occupancy model. The graph shows only the species with 95%

Bayesian credible intervals (bars on the graph) that did not or only marginally contain 0. See S4 Fig for the

complete responses of all species.

doi:10.1371/journal.pone.0170540.g003
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Taxonomic diversity

Species richness increased with landscape heterogeneity defined by different non-crop vegeta-

tion cover, i.e., natural and semi-natural habitats within a landscape. At the species-level, the

probability of occupancy for most species, especially open-forest and shrub species, also

increased with landscape heterogeneity. These results supported the positive relationship

between diversity and habitat heterogeneity that is widely observed in avian studies [1, 6, 54].

According to the habitat heterogeneity hypotheses [1, 2, 55], heterogeneous landscapes (land-

scapes composed of diverse vegetation cover types) can offer more niches or complementary

resources, such as food and nest sites, than homogeneous landscapes, particularly where local

heterogeneity is low due to intensive agricultural land uses. Landscape heterogeneity can also

facilitate resource use by providing species with supplemental habitats containing resources

required by the species (landscape supplementation [56]). Thus, diversity, which is commonly

measured by species richness, is expected to increase through an accumulation of species

related to the cover types and presence of species that require more than one cover type in a

landscape as landscape heterogeneity increases [8]. For that reason, habitat heterogeneity at

multiple spatial and temporal scales is often identified as a key factor in restoring or maintain-

ing biodiversity in agricultural landscapes [6, 8]. Our study confirms the importance of hetero-

geneity of the surrounding landscapes to enhance taxonomic diversity in agriculture-

dominant areas.

However, it should be pointed out that the positive diversity-habitat heterogeneity relation-

ship may not be monotonic. Several recent studies describe tradeoffs between heterogeneity

and the amount of effective area available per habitat type because increasing heterogeneity

would decrease the amount of effective area, leading to a reduction in the population size that

each habitat supports and consequently increases the risk of stochastic extinction [3–5]. High

landscape heterogeneity can also increase habitat fragmentation per se and thus influence

diversity negatively. Given the positive relationship observed in our study, the heterogeneity

level does not seem to reach the break point that could generate negative responses. Most habi-

tat types, except forest (pine and non-pine), may not have been abundant enough to support

large populations because agricultural land use was so predominant. However, it is possible

that more increases in heterogeneity can fragment even forest patches to a level that each patch

is too small to support the local population and becomes functionally disconnected from adja-

cent patches. Further study is needed to examine the potential unimodal (humpback shaped

curve) relationship between diversity and heterogeneity and define the break point of hetero-

geneity shifting the relationship from positive to negative.

We did not find strong positive effects of CP38 on species richness. The management of

CP38 targets early successional/grassland avian species inhabiting grassland and open forest in

agricultural landscapes (S1 Table). Although CP38 largely focuses on Northern Bobwhite as a

representative species of early successional/grassland birds in Mississippi, it also considers

other species such as Dickcissel, Eastern Meadowlark, and Prairie Warbler. Given that the

occupancy by Dickcissel (grassland species) increased with the amount of CP38 fields, our

results indicate that CP38 can be beneficial for some early successional/grassland species. This

Dickcissel response is consistent with other studies that assessed the effects of Conserve

Reserve Programs (CRP, including CP38 and other similar practices) on grassland birds [39,

57]. While negative responses of forest interior species (e.g., Northern Parula [Parula ameri-
cana], Red-eyed Vireo [Vireo olivaceus], Tufted Titmouse [Baeolophus bicolor], Wood Thrush

[Hylocichla mustelina]) are not surprising, non-significant or negative responses of other early

successional/grassland species and open-forest species (e.g., Eastern Meadowlark, Field Spar-

row, Northern Bobwhite, Indigo Bunting, Prairie Warbler) may raise a question about the

Avian Diversity-Landscape Heterogeneity Relationship
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effectiveness of CP38 as a community-level conservation program. Many studies have docu-

mented variable effects of CRP on avian species: the effect can be positive, negative, or neutral,

depending on species, landscapes, and regions [57–59].

CP38 fields in our study have been managed for only 2–3 years. This relatively short history

of management may not have notably improved the habitat quality of CP38 fields, which may

make CP38 fields indistinguishable from surrounding agricultural lands, especially, pasture/

hay fields (i.e., low ecological contrast, [60]). More time may have been needed for other spe-

cies to colonize these newly created fields. Thus, our results should not be taken as evidence of

the ineffectiveness of CP38, but as an indication that the effectiveness of current CP38 manage-

ment for avian conservation beyond several early successional/grassland species can be limited

without incorporating information about the heterogeneity of surrounding landscapes.

Our study adopted a recently developed hierarchical multi-species model to investigate the

relationship between richness and heterogeneity. The relatively greater richness estimates

compared to observed richness could be a result of taking into account variable detection

probabilities among species in the model. However, we note that while the hierarchical multi-

species model enables us to observe responses of each of 46 species, parameter estimates of

some infrequently detected species (e.g., American Goldfinch, [Spinus tristis], Brown Thrasher

[Toxostoma rufum], and Ruby-throated Hummingbird [Archilochus colubris]) exhibited large

uncertainty (wide 95% BCI). This result suggests that sparse detection data can still be an issue

as reported in other studies [15, 17] and intensive single-species monitoring efforts may be

required for those species to reduce uncertainty, especially where they are of interest to man-

agement [15].

Functional diversity

Unlike taxonomic diversity, responses of functional diversity to the two environmental vari-

ables were subtle. FEve, which was independent of species richness, did not show a clear pat-

tern with varying landscape heterogeneity or the amount of CP38 fields. FEve may indicate

under/over utilization of resources available to species [37]. Resources would be more effi-

ciently used in a community with high FEve because the distribution of the abundance of

each species is relatively even throughout the trait space. Resources would be underex-

ploited in a community with low FEve, and this may make the community more susceptible

to invasion (empty niche hypothesis [61]). Non-significant response of FEve in our study

suggests that landscape heterogeneity and the amount of CP38 fields do not have a strong

impact on the regularity of spacing between species in trait space and efficiency in resource

utilization.

Responses of FDiv were similar to species richness: positive to landscape heterogeneity and

negative to the amount of CP38 fields. The most abundant species are farther from the center

of trait space in heterogeneous landscapes where agricultural land use is relatively low and in

landscapes where the amount of CP38 fields is low. Significant differences between parameter

estimates from an empirical model and from null models also indicated non-random patterns

in the responses of FDiv. However, based on FDiv.SES at each sample point, a majority of

FDiv values were consistent with random expectations, suggesting that to some degree the var-

iation in FDiv is influenced by changes in species richness. Although most FDiv values did not

differ from expected values, it is noteworthy that all significant departures from expected FDiv

(4 of 70 sample points) were negative (i.e., FDiv.SES values were below the lower confidence

bound) and found in relatively homogeneous, agriculture dominant landscapes. Lower func-

tional diversity compared to random expectation is generally considered as an evidence for

environmental filtering in structuring communities. Anthropogenic land use is known to
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influence the strength of environmental filtering [62]. Although there is some inconsistency in

the strength among indices used in previous studies, most studies show the increasing role of

environmental filtering and decline in functional diversity for an array of taxa as the intensity

of agricultural land use increases, largely due to disturbances created by agricultural practices

(non-crop vegetation removal, cropping, grazing, etc.) and simplified habitat structure and

composition [23, 27, 32, 63]. The pattern observed in our study is somewhat congruent with

the findings of previous studies, implying that environmental conditions constrain traits

occurring in a bird community in our study region where production agricultural land-use is

dominant. However, it is also noticeable that FDiv.SES values tended to shift slowly from nega-

tive to positive with increasing heterogeneity. Although all positive departures were non-sig-

nificant, the trend might be an indication of potential niche differentiation and increasing

strength of limiting similarity in heterogeneous landscapes. To test this possibility, further

investigation using an increased number of sites representing wide heterogeneity is needed.

As for CP38, significantly lower FDiv, in 3 of 4 significant cases, were found at landscapes

with moderate to high amount of CP38 fields. While overall effect of the amount of CP38 fields

on FDiv could be trivial (i.e., differences between FDiv and expected values were non-signifi-

cant across sample points), this result may support, as discussed previously, the possibility of

poor habitat quality of CP38 fields for avian communities, which may result in a trivial differ-

ence in quality between CP38 fields and surrounding agricultural lands as a habitat for birds.

FDiv showed a positive correlation with species richness at low richness, but flattened after

a certain point. Moderate correlation of FDiv with species richness is contrary to the theoreti-

cal expectation (no correlation) from Villéger et al. [38] and Mouchet et al. [23]; however, dif-

ferent relationships (saturating or negative relationship) between functional diversity indices

and species richness have been observed in other studies [31, 32, 64]. The saturating pattern

with increasing richness indicates that bird communities with low richness are likely com-

posed of functionally unique species, but as richness increases, new species added to the com-

munity could be more functionally redundant [30].

Considering the overall non-significant deviations of functional diversity values from ran-

dom expectations and the saturating relationship between FDiv and species richness, one

may conclude that landscape heterogeneity did not have a positive effect on functional diver-

sity but only on taxonomic diversity. However, we observed significantly low FDiv only at

low levels of heterogeneity (i.e., high levels of agricultural land uses) and the tendency of

increasing FDiv with heterogeneity. This pattern indicates that in a predominantly agricul-

tural landscape, a slight increase in heterogeneity can enhance both species richness and

functional diversity. In that sense, landscape heterogeneity may have some positive effect on

functional diversity but its effect is not as strong as on species richness. Given that the posi-

tive relationship between avian functional diversity and landscape heterogeneity has been

rarely tested empirically, there are few studies for comparison. Recently, Sittes et al. [65]

found that in fire-prone system, environmental heterogeneity (heterogeneous vegetation

composition and structure) enhanced by fire increased functional diversity. However, Sitter

et al. considered more traits (6 types) and levels (~ 40 binary categories) than ours. The value

of functional diversity can be strongly influenced by the type and number of traits chosen for

a study [27]. We used four traits that are commonly used in other studies and known to be

important for birds regarding resource use and acquisition. However, one category in diet

type is predominantly shared by most species in our study. More than 90% of species prey

upon insects to some degree in their life cycle, particularly, during breeding season, although

40% of those species also feed upon other items (seeds, invertebrates, etc.; S1 Table). Rela-

tively small variations in the diet type might obscure the relationship between functional

diversity and landscape heterogeneity in our study.
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Limitation

Our results demonstrate varying relationships between avian diversity and environmental

variables; however, there are several caveats that may affect the strength of inference. First,

we used a 1.5 km landscape size which is close to the common scale (1 km landscape size)

used in numerous avian studies. However, significant avian species-environmental relation-

ships can occur at larger scales (e.g., 5 km landscape size; [66]). Species’ responses to land-

scape features (composition vs. configuration) or habitat heterogeneity can be scale-

dependent [67, 68]. A recent study also demonstrated that the association of anthropogenic

land use with functional diversity and taxonomic diversity can change with scale [69]. Due to

logistical constraints associated with producing land cover data by digitization and the low

accuracy of available land cover data, we could not employ a multiple scale approach to verify

the adequacy of the scale or test possible effects of variation in heterogeneity at larger scales.

Thus, our inferences about the diversity-heterogeneity relationship may be limited to the

scale used in our study rather than generalized across all scales. Second, while our study

focused on compositional heterogeneity (SHDI), configurational heterogeneity (complexity

of spatial arrangements among patches) can also impact the diversity-heterogeneity relation-

ship given the well-known effects of landscape configuration on population persistence, dis-

persal, and movement behavior [8, 70]. We excluded configurational heterogeneity due to

the correlation between configurational metrics and SHDI. Although these correlations

cause a multicollinearity issue and difficulty in assessing the relative effects of compositional

and configurational components of landscapes, landscape heterogeneity can be described

comprehensively with a combination of both components [8]. Thus, landscape heterogeneity

in our study may reflect one aspect of actual landscape heterogeneity due to the exclusion of

configurational heterogeneity. Last, we adopted a focal patch sampling approach [71] with

CP38 field as the focal patch. While this is a common approach in landscape research, it can-

not fully depict properties of a whole landscape and their influences on species, assemblage,

and ecological processes [72, 73]. A sampling design including multiple habitats within a

landscape is considered more suitable for the assessment of landscape-level biodiversity;

however, it is rarely adopted because of the intensive sampling efforts required [72, 74].

Although the relatively large-sized area (500 m radius) used for avian point counts likely alle-

viates the limitation of a focal sampling approach, our inference may be constrained to local-

level biodiversity focused on a single habitat type (CP38 field).

Conclusion

Our study shows that the positive relationship between avian diversity and landscape hetero-

geneity, which is often assumed in agricultural landscapes, can vary depending on the aspect

of diversity explored. While the number of species in a community increases as landscape

heterogeneity increases, functional traits of the species newly added to the community may

not significantly differ from those of species already present in the community. That is, land-

scape heterogeneity has a strong positive effect on taxonomic diversity (species richness),

whereas its influence on functional diversity can be weakly positive or non-significant. These

patterns highlight the importance of considering multiple aspects of diversity to comprehen-

sively understand the relationship between diversity and environmental constraints. Our

study also suggests that future implementation of conservation measures in agricultural

landscapes should consider the landscape context to assure maximum efficacy and perhaps

reduce negative impacts to non-targeted species. Adopting a hierarchical multi-species

model can improve inference by providing species-level responses and community-level

responses. We emphasize a need for future studies investigating the responses of richness
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and functional diversity to compositional and configurational heterogeneity at different

scales. A model that incorporates detection probability into the calculation of functional

diversity indices is needed and may promote accuracy of those indices and subsequent

inference.
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9. Ekroos J, Kuussaari M, Tiainen J, Heliölä J, Seimola T, Helenius J. Correlations in species richness

between taxa depend on habitat, scale and landscape context. Ecol Indic. 2013; 34: 528–535.

10. MacKenzie D, Nichols JD, Lachman GG, Droege S, Royle JA, Langtimm CA. Estimating site occupancy

rates when detection probabilities are less than one. Ecology. 2002; 83: 2248–2255.

11. Williams BK, Nichols JD, Conroy MJ. Analysis and management of animal populations. San Diego:

Academic Press; 2002.
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com.ar/.

48. Casanoves F, Pla L, Di Rienzo JA, Diaz S. FDiversity: a software package for the integrated analysis of

functional diversity. Methods Ecol Evol. 2010; 2: 233–237.

49. Swenson NG. Functional and phylogenetic ecology in R. New York: Springer; 2014.

50. Gotelli NJ, Rohde K. Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecol Lett.

2002; 5: 86–94.

51. Rangel TF, Diniz-Filho JAF, Bini LM. SAM: a comprehensive application for Spatial Analysis in Macroe-

cology. Ecography. 2010; 33: 46–50.
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