
RESEARCH ARTICLE

Locating Structural Centers: A Density-Based

Clustering Method for Community Detection

Xiaofeng Wang, Gongshen Liu*, Jianhua Li, Jan P. Nees

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

* lgshen@sjtu.edu.cn

Abstract

Uncovering underlying community structures in complex networks has received consider-

able attention because of its importance in understanding structural attributes and group

characteristics of networks. The algorithmic identification of such structures is a significant

challenge. Local expanding methods have proven to be efficient and effective in community

detection, but most methods are sensitive to initial seeds and built-in parameters. In this

paper, we present a local expansion method by density-based clustering, which aims to

uncover the intrinsic network communities by locating the structural centers of communities

based on a proposed structural centrality. The structural centrality takes into account local

density of nodes and relative distance between nodes. The proposed algorithm expands a

community from the structural center to the border with a single local search procedure. The

local expanding procedure follows a heuristic strategy as allowing it to find complete com-

munity structures. Moreover, it can identify different node roles (cores and outliers) in com-

munities by defining a border region. The experiments involve both on real-world and

artificial networks, and give a comparison view to evaluate the proposed method. The result

of these experiments shows that the proposed method performs more efficiently with a com-

parative clustering performance than current state of the art methods.

Introduction

The modern science of networks has brought significant advancements to our understanding

of complex systems [1, 2]. One of the most important features for complex networks is com-

munity structure, which usually represent an organization of nodes in clusters, with high-den-

sity links within the clusters and comparatively low density between them. Such communities

can be considered as independent compartments of networks. More importantly, community

structures are often associated with organizational and functional characteristics of the under-

lying networks [3, 4]. Identifying communities helps uncover group characteristics and deduce

their respective attributes, according to their role in the community, such as cores, and outli-

ers. Therefore community detection is important in social network analysis, and is a significant

tool that enables the study of mesoscopic structures.

Many community detection methods have been developed in recent years. These methods

attempt to explore community structure characteristics in networks from various perspectives.
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The traditional graph partitioning methods divide the nodes into a predefined number of

groups with predefined size, so that the inter-group edges is minimal [1]. Hierarchical cluster-

ing techniques reveal the multilevel grouping structure of a graph, which can be classified

into agglomerative clustering and divisive clustering [2, 5]. Spectral clustering algorithms

divide a network into groups by using the eigenvectors of similarity matrices [6, 7]. Modularity

maximization technologies convert the task of community detection into an optimization

problem of a modularity function to get optimal group partitioning [8–10]. In addition, fuzzy

approaches also are used to compute communities, which quantify the strength of association

between all pairs of nodes and communities with relax membership degree [11–13]. Most of

the above methods are global approaches, but suffer from common limitations [14]. The main

limitation is that global methods generally depend on prior knowledge of the entire network,

such as the number of communities and network size, which are usually unavailable and

unpredictable in advance, especially for large-scale and evolving networks. Moreover, many

global methods with high accuracy tend to be computationally demanding. Therefore, it is

non-trivial to get a good trade-off between accuracy and efficiency for community detection.

Many local approaches have been proposed to solve the limitations for uncovering commu-

nities listed above. They are based purely on local information of nodes. Local methods based

on various optimizing strategies has been surveyed in recent study [14], where the local meth-

ods are empirically divided into clique-percolation based methods [15, 16], label propagation

algorithms [17, 18], link clustering [19–21] and local expansion optimization methods [22–

26]. Among them, local expansion optimization methods are widely used for local community

detection in large networks, due to the advantages both in effectivity and accuracy. Such meth-

ods aim to optimize the local functions of community quality from the starting nodes [22, 23],

while also being sensitive to initial seeds and built-in parameters. Lancichinetti et al. proposed

a local optimization algorithm (LFM) based on a local fitness measure [24], which generates

hierarchical community structure of the network by randomizing the starting node. The LFM

may produce unstable results, due to its sensitivity to the starting nodes. Lee et al. introduced a

greedy clique expansion (GCE) algorithm [25], which selects distinct cliques as starting seeds,

and expands these seeds by greedy optimization. Huang et al. [26] introduced a similarity-

based quality function and present a local tightness expansion algorithm (LTE) for revealing

community structures from a random vertex. In addition, density-based clustering methods

are also noteworthy. Xu et al. proposed a density-based clustering method extended from the

DBSCAN algorithm to discovery community structures [27]. However, like other density-

based clustering methods [28–31], it still depends on manual parameter choice and provides

no automated way to find the appropriate parameters.

In this work, we present a new method for community detection which is termed as LCCD.

It is a density-based clustering method, inspired by recent research on data analysis [32]where

data points are clustered by finding the cluster centers. In order to investigate community

structures in complex networks, we locate the structural centers in community structures by

exploring the local centrality of nodes. Based on the assumption that cluster structural centers

are characterized by a higher density than their neighbors and by a relatively large distance

from nodes with higher densities, we propose a structural centrality to identify the local struc-

tural centers in networks. Then LCCD expands each community from the structural center to

the boundary with a local search procedure. It is a fast and simple approach to identify intrinsic

community structures, including cores and outliers. In addition, the local expansion method

avoids the randomness of seed selection to improve its stability. Compared with previous local

expanding algorithms that optimize the sub-graph quality from random seeds, the proposed

method expands communities based on identified structural centers and accelerates the con-

vergence to optimal solutions. Moreover, it avoids manual choice of built-in parameters.

Locating Structural Centers and Density-Based Clustering
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The remainder of this paper is organized as follows. We present the related research about

density based clustering methods for community detection in Section 2. Section 3 describes

the formulation of community detection problem and the basic idea of LCCD algorithm. The

proposed algorithm is described in detail in Section 4. Section 5 presents experimental results.

Section 6 presents the conclusions.

Related Work

Density-based clustering approaches have been commonly used in cluster analysis recently

[33]. Density-based spatial clustering of application with noise (DBSCAN) is the pioneer work

in this area [34]. In DBSCAN, the density is defined locally as the neighbors of a data point

within a certain region. Given an appropriate density threshold � and a minimum cluster size

μ, one can assign regions of high density to different clusters and discard the points in regions

with densities lower than this threshold as noise. The density-based clustering approach has

been applied to social network analysis [27, 30]. Two algorithms DENGRAPH [30]and SCAN

[27]extended from the DBSCAN have been proposed to detect communities, which introduce

two different distance functions in the clustering process. DENGRAPH introduced an interac-

tion-based distance that calculates the aggregated number of interactions between two users in

a social network [30]. SCAN introduced structural similarity as the distance measure that cal-

culates shared neighbors between nodes [27]. The SCAN can also identify hubs and outliers in

a community. However, like DBSCAN, the two algorithms still depend overly on manually

choosing thresholds, which can be difficult to determinate.

Other algorithms have been proposed for years. Huang et al. proposed a clustering algo-

rithm gSkeletonClu by projecting a network to its core-connected maximal spanning tree [31].

It converts the density based rule to detect core connectivity components on a spanning tree.

In this method, one of the two parameters is assumed given, and the other is regarded as

index, and modularity is applied to choose the best partition. Huang et al. presented another

density-based method called DenShrink that combines modularity optimization algorithm to

overcome the resolution limit [35]. A physical topological distance was introduced in density-

based clustering [36], which detects communities by additionally optimizing the kernel scale

parameter. Because of the difficulty in setting appropriate parameters, Gong et al. [28]pro-

posed to dispose all partitions under various parameters by classification, combination,

decomposition and recombination, so as to produce proper community structures, but it

increases computational cost and is unbeneficial for parameter selection. However, most of the

above algorithms still depend on manual parameter choice and optimum iterative procedure,

which limits their application in large-scale networks.

Problem Formulations

Complex networks are generally represented as graphs with nodes and links between nodes.

Such a representation has led to numerous insights on community structure. Due to the abun-

dance of related works and the variety of adopted perspectives, there is no unique and widely

accepted definition of community. Community definitions are formulated with reference to

the network structure under study and are commonly bound to some property either of some

set of vertices (local definitions) or of the whole network (global definitions) [37]. Local defini-

tions focus on the concepts of subgroup cohesiveness and mutuality, such as cliques, k-cores.

Global community conceptions consider community structure as a property of the whole net-

work, such as normalized cut, conductance and modularity [38]. An alternative means of

defining communities is by considering some community formation process, Such as label

propagation scheme [17] and stochastic block modeling [39].

Locating Structural Centers and Density-Based Clustering
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The basic assumption behind most local methods for community detection is that commu-

nities are essentially local structures, involving the nodes belonging to the groups plus

extended neighbors of them [24]. Here, we present an alternative conception of community

structure. From a mesoscopic perspective, we assume that a community can be regarded as a

local centralized structure, which is naturally decomposed into a central node, cores and

periphery. Central nodes should be well-connected to core nodes as well as peripheral nodes,

although a network may not have an absolute center. Such structures can be commonly found

in social networks, where nodes of some common attribute aggregate around the centers to

form clusters. We call such central nodes as structural centers. Structural centers have not only

high connectivity density in communities but relative large distance from each other. We

therefore propose a new centrality based on the idea that structural centers are characterized

by a higher density than their neighbors and by a relatively large distance from nodes with

higher densities, in order to locate structural centers.

Exploring such structural centers of a network is important to community detection. Once

the structural centers are identified, the number of clusters can be determined intuitionally.

Moreover, it is able to overcome the randomness of seed choice for local expansion methods

and has a faster convergence to optimal solutions. Although many centrality indices, including

degree, betweenness, closeness and percolation centrality, have been defined to characterize

the importance of nodes [40], these indices cannot characterize the centrality described above.

There are two reasons for this issue. First, a centrality metric is optimal in one case but often

sub-optimal in another case. Second, existing centrality indices are explicitly designed to pro-

duce a ranking which indicates the most important nodes [41], which cannot indicate the rela-

tive importance between nodes. In addition, a node with high centrality does not mean that it

is the structural center of a community. For instance, nodes with high betweenness centrality

are close to the boundary of community, and two nodes with high closeness centrality may be

in the same community.

Based on above observation, we propose an alternative centrality, i.e., structural centrality,

to measure such structural centers. It takes into account two indices: node density and relative

distance in a two-dimensional space, which both depend on the distance measurement between

nodes. We formulize relevant concepts and definitions on structural centrality as follows. Gen-

erally, an undirected and unweighted network employs the graph notation G = (V, E), where G
represents the whole network, V stands for the set of all nodes and E for the set of all edges. The

topologic structure of the network can be represented by an adjacent matrix A, which is crisp

relation to characterize the connectivity among nodes with 0 or 1.

Definition 1. (Node Density) Let A be the adjacency matrix of network. The density of node i
in the network is defined as:

ri ¼
X

j

cðdij � dcÞ; ð1Þ

where ψ(x) = 1 if x� 0, and ψ(x) = 0 otherwise; dij denotes the distance between node i and j in
A, and dc is a cutoff distance.

In this definition, ρi is equivalent to the number of neighbor nodes within the distance dc.
Geodesic distance is used to measure the distance between nodes, other distance metrics, such

as common neighbors, information distance, can be used as alternative measures. The algo-

rithm is sensitive only to the relative magnitude of ρi, which implies that the results are robust

with respect to choice of dc. Based on the suggestion in the reference [32], the cutoff distance

dc can be automatically chosen so that the mean number of neighbors is around 1 to 2 percent

of the total number of the nodes in the network. In our experiments, we observe that dc is

Locating Structural Centers and Density-Based Clustering
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restricted to several values which are smaller than the network diameter. In most case dc equals

1, this issue is discussed in appendix. Moreover, varying cutoff distance dc on a variety of net-

works produces mutual consistent results, which verifies that the results are robust to the

choice of dc. Therefore, as a rule of thumb, we set dc = 1 in our method for community detec-

tion. In this case, the node density is equivalent to degree centrality.

Definition 2. (Relative Distance) The relative distance δi is measured by computing the mini-
mum distance between the node i and any other nodes with higher density, it is formulized as fol-
lows:

di ¼ min
j:rj>ri
ðdijÞ; ð2Þ

For the node with the largest local density, we conventionally take δi = maxj(dij). Note that

δi is much larger than the nearest neighbor distance, but only for nodes that are local or global

maxima in the density. So, community structural centers are recognized as nodes for which

the value of δi is anomalously large.

Definition 3. (Structural Centrality) The structural centers are characterized by a higher den-
sity than their neighbors and by a relatively large distance from nodes with higher density. The
structural centrality of node i is defined as:

sci ¼ ri � di; ð3Þ

From this definition, the structural centrality is proportional to node density and relative

distance, respectively. Eq (3) expresses a simple and intuitive form of the definition. The

value of structural centrality can be normalized with different formulations during the com-

putation. Relative distance measures the distance between nodes with density maxima, so it

avoids the situation that more than one node with high centrality in the same community are

identified as the structural centers. Thus, structural centers of clusters can be recognized as

these nodes with the local maxima of the structural centrality. Moreover, the structural cen-

ters are obviously separated from other nodes in the plot of relative distance as a function of

node density.

This observation is illustrated in Fig 1 by the Zachary’s karate club network [42]that is a

real-world social network. This interactive network with 34 nodes, ultimately split into two

Fig 1. A schematic example to illustrate the idea of our method. (A)The Zachary’s karate club network with

two clusters. (B)The decision graph for the nodes in the network.

doi:10.1371/journal.pone.0169355.g001
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distinct groups, because of a disagreement between the administrator (vertex 1) and the

instructor (vertex 34), as shown in Fig 1(A). Fig 1(B) shows the plot of δi as a function of ρi for

each node. We can find that node 1 and node 34 have the density maxima which are identified

as the structural centers. The result is consistent with the description of the original network.

The representation of the plot is called decision graph, where a slight jitter is imposed on their

actual values to avoid the overlap between nodes. In fact, the node 34 has the maximal density

ρ34 = 17 and maximal relative distance δ34 = 4, and node 1 has ρ1 = 16 and δ1 = 2, while the rest

nodes have lower density with the same relative distance δ = 1. Especially, the nodes 4 and

node 32 have same values of ρ and δ, while they belong to different clusters because they are

close to different structural centers. As expected, the nodes with both high local density and

high relative distance are identified as the community structural centers.

The identified structural centers are separated distinctly from other nodes in decision

graphs so that the structural centers arise automatically, which is especially obvious in net-

works with heterogeneous degree distributions. By a local expansion around the structural

centers, underlying community structures can be uncovered. In addition, we can choose the

exact number of structural centers by the plot of structural centrality sorted in decreasing

order as a function of node number. This graph shows that this quantity is by definition large

for structural centers. Although it’s possible that there are more than two nodes with the same

largest structural centrality in one community, especially for a symmetric graph such as com-

plete graph, the proposed method can also obtain stable results. This is because that the pro-

posed method is a deterministic algorithm. On one hand, the algorithm selects the first node

as structural center and eliminates the nodes close to the structural center in the procedure of

locating structural center. So it can identify unique structural center for each community. On

the other hand, during the expansion, the algorithm chooses the structural center in decreasing

order and neglects other nodes if they have been identified in one community, and ultimately

get a unique community.

Materials and Methods

In this section, we present our algorithm framework for uncovering underlying community

structures in unweighted and undirected networks. Our method is inspired by density-based

clustering formulation proposed by Rodriguez and Laio in cluster analysis [32]. However, our

method focuses on node clustering in complex networks and uncover underlying community

structures. We propose the LCCD algorithm based on the idea that structural centers are sur-

rounded by neighbors with lower local density and they are at a relative large distance from

any nodes with a higher local density. This idea forms the basis of a clustering procedure in

which the number of communities arises intuitively, disjoint communities are detected, cores

and outliers are automatically identified by node assignment. The LCCD algorithm is divided

into three phases: location of community structural centers (LCC algorithm), local expansion

(LCE algorithm) and node assignment (NA algorithm).

Given an unweighted and undirected network G = (V, E), where V represents the set of

nodes and E represents the set of edges. A community partition of the network is represented

as P = {C1, C2,� � �, CK}, where Ci stands for the ith community structure in the partition and k
stands for the number of communities. The main procedure of the LCCD algorithm is given

as Algorithm 1. Firstly we present the approach for locating community centers with the

proposed structural centrality, which is the core of the method. Secondly, a local expansion

clustering algorithm based the identified structural centers is proposed to find the optimal

clustering of network nodes. Finally, LCCD performs a node assignment process by finding a

border region to identify cores and outliers in communities.

Locating Structural Centers and Density-Based Clustering
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Algorithm 1 Main procedure of Local Expanding Algorithm (LCCD)
Input:AdjacencymatrixA of networkG = (V, E).
Output:NetworkcommunitypartitionP = {C1, C2 ,. . .,Ck}, and set of coresand
outliersfor each community.
1: Labelall nodesin V unclassifiedU;
2: Locatethe structuralcentersby callingLCC algorithm;
3: Take a structuralcenteras the initialcommunity,and expandlocalcommu-
nitiesby callingLCE algorithm;
4: Identifythe coresand outliersby callingNA algorithm;
5: UpdateU by removingthe identifiednodesfrom U, repeat3 and 4 until all
nodeshave been grouped;
6: returnNetworkpartitionP, coresand outliersfor each community.

Locating Community Structural Centers

As described above, community structural centers are characterized by a higher density than

their neighbors and by a relatively large distance from nodes with higher densities. In order

to locate the structural centers in a network, we define a structural centrality. The structural

centrality not only measures the local centrality of node but also quantifies the interrelation

between clusters. The structural centers of community structures are recognized as the nodes

with local maxima in the structural centrality of network nodes. In the plot of the structural

centralities, this quantity for structural centers is obviously large, so that the structural centers

are automatically separated from other nodes. This process of locating structural centers can

identify a unique structural center for each community, which implies that the number of

communities arises intuitively.

Fig 2 illustrates the procedure of locating the structural centers on a LFR benchmark net-

work [43]which have similar properties found in real networks. We generate a benchmark

network with 1,000 nodes and 9 known community structures. Fig 2(A) shows the node distri-

bution in the decision graph. In the decision graph, we observe only 9 nodes which are dis-

tinctly separated from others. These nodes have local maxima in node density and relative

distance and are identified as the underlying structural centers. However, it is still not clear to

locate the exact number of structural centers. Through observation on the distribution of struc-

tural centrality, a hint for choosing the number of structural centers is provided by the plot of

structural centers sorted in decreasing order (Fig 2(B)). The figure shows that the structural

Fig 2. Location of structural centers on synthetic LFR network with 1,000 nodes and 9 ground-truth

communities. (A)The node distribution in the decision graph. (B)The plot of structural centrality sorted in

decreasing order as a function of node number for the network.

doi:10.1371/journal.pone.0169355.g002
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centrality is by definition large for structural centers and gap away from other nodes. There-

fore, these nodes above the horizontal dash line correspond to the 9 structural centers.

This observation provides the basis for a criterion for the choice of the structural centers. In

order to identify the structural centers exactly, we propose to select the structural centers with

a threshold. This threshold can be chosen by the plot of structural center sorted in decreasing

order. These nodes with structural centralities above this threshold are identified as underlying

structural centers. In some cases, however, a low threshold may lead to some general nodes

being selected. For validating the reliability of selected structural centers, we further check if

there is a candidate node that is close to the identified structural centers. As defined above,

structural centers have large relative distance from each other, and only the nodes correspond-

ing to structural centers are separated by a sizeable gap from the other nodes.

The main steps of LCC algorithm for locating the community structural centers are given

as Algorithm 2. The set of structural centers is represented with C ¼ fc1; c2; . . . ; ckg, where k
denotes the number of communities. LCC first calculates the structural centrality of each node

in network and draws the plot of structural centrality sorted in decreasing order. By a given

threshold ε, LCC then selects these nodes with higher centrality than the threshold ε as candi-

date structural centers (cc) and takes the first node as the first cluster center. If the distance

between the second node and the first structural center is not less than the cutoff distance dc,
the second candidate node will be chosen as the next structural center, otherwise, it will be

deleted from the candidate queue. This process is repeated until all structural centers are

located. It means that the nodes close to structural centers are eliminated from the candidate

queue by this procedure.

Algorithm 2 Locating Community Centers (LCC)
Input:AdjacencymatrixA of networkG = (V, E), thresholdε.
Output:Communitystructuralcenters C ¼ fc1; c2; . . . ; ckg.
1: //Calculatethe structuralcentralitydistributionof nodes;
2: sci ρi � δi;
3: //Insertcandidatestructuralcentersinto queue cc
4: cc {vi j sci > ε, vi 2 V};
5: cc sort cc in descendingorder;
6: //Checkwhetherv is a communitystructuralcenter;
7: k 0;
8: whilecc 6¼ ; do
9: k k + 1
10: ck the first node in cc
11: removeck from cc
12: //Mergeclose candidatecenters;
13: for each node v 2 cc do
14: if dist(v,ck) < dc then
15: removev form cc
16: else
17: Next
18: end if
19: end for
20: end while
21: return C.

The results of the LCC algorithm do not depend on the order of nodes, because this algo-

rithm ranks nodes by their structural centrality, and searches nodes in descending order.

Moreover, the structural centrality of a node does not need recalculation. The structural cen-

ters have a higher density than their neighbors and a relatively large distance from nodes with

higher densities, which implies the only node with the largest structural centrality is identified

as the structural center in one community. Therefore, the number of structural centers

Locating Structural Centers and Density-Based Clustering
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indicates the number of communities in a network. The LCC algorithm can also be applied to

other community detection methods, especially for these methods that need to be given the

number of clusters manually in community detection.

Local Community Expansion

After identifying community structural centers, we can obtain corresponding community

structures around these structural centers based on a measure of the sub-graph, which is simi-

lar to other community expanding methods that expand a community based on a seed node,

such as LFM [24], GCE [25] and LTE [26]. However, there are some significant differences.

Firstly, communities expand locally around the structural centers in the proposed method, in

contrast with other clustering algorithms where seed nodes are selected randomly. Moreover,

such expanding strategy accelerates the convergence to optimal solutions. Here, we define a

new local community measure, i.e., sub-graph density. A community is recognized as the sub-

graph identified by maximization of its density measure.

Definition 4. (Subgraph Density) For a community C with nC nodes and mC edges, the sub-
graph density is defined as follow:

DC ¼
mCPnc
i¼1

ri
; ð4Þ

where ρ has been defined in Eq (1). It is equivalent to DC ¼ mC=
Pnc

i¼1
ki when dc = 1, where ki is

the degree of node i.
In our local expansion, we adopt a greedy strategy which aims to find a sub-graph starting

from a structural center such that the inclusion of a new node would increase the sub-graph

density DC, or the elimination of a node from the sub-graph would lower the sub-graph den-

sity DC. Thus, we can get a complete community based on a structural center by maximization

of its sub-graph density. The similar idea of uncovering communities by a local optimization

of some metric has already been applied in earlier work [22–24, 26]. The expansion procedure

based on the LCC is given in Algorithm 3.

Algorithm 3 Local Community Expanding Algorithm (LCE)
Input:AdjacencymatrixA, a Communitystructuralcenter c 2 C.
Output:CommunitystructureC.
1: Labelall unclassifiednodesin V as U
2: whileU 6¼ ; do
3: initializecommunityC ;
4: if c 2 U then
5: insertc into C
6: end if
7: insertneighborsof communityC into Q
8: whileQ 6¼ ; do
9: for each node v in Q do
10: ΔDv DC+v − DC
11: m sort(ΔDv)
12: end for
13: if m < 0 then
14: break
15: end if
16: add v into C
17: updateneighborsset Q of communityC
18: end while
19: updateunclassifiednode set U.
20: end while
21: returnC.

Locating Structural Centers and Density-Based Clustering
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The algorithm performs a local expansion from center to boundary. A natural community

is identified by the maximization of sub-graph density. The community around structural cen-

ter c can be uncovered with the following procedure. To begin with, the structural center c is

chosen as the initial community C, where DC = 0. Then, we consider the neighbors of commu-

nity C not included in C and evaluate the gain of sub-graph density that would take place by

adding neighbors into C. A neighbor node is added into the community for which the gain

is maximum, but only if the gain is positive. If a node turns out to have negative gain, it is

removed from C. This process is repeated iteratively until no further improvement is achieved

and a local maxima of sub-graph density is attained. Finally, all community structures corre-

sponding to identified structural centers can be detected by this local expansion procedure.

Node Assignment

In this section, we further explore different roles of nodes in a community during node cluster-

ing, based on attained community structures. Except for structural centers in communities,

there are two types of nodes that play special roles: core nodes that cohesively connected to the

structural center and outliers that are marginally connected to communities [27]. Identifying

cores is useful because they compose the principal part of community structures. In addition,

outliers may play a special role in community structures. We attempt to identify the cores and

outliers in a community by defining a border region in the community. Some definitions are

formulized as follows.

Definition 5. (Community Border) In a community Ci, a node v 2 Ci is called a border node,
if there exists a node w =2 Ci within a cutoff distance dc of v.All border nodes in community Ci con-
sist of a community border region denoted by Bi:

Bi ¼ fv j v 2 C i;w =2C i; distðv;wÞ � dcg; ð5Þ

Definition 6. (Border Density) In a community structure C, the highest density within its bor-
der region B 2 C is defined as the border density of C denoted by ρb:

rb ¼ max
i2B

ri; ð6Þ

Definition 7. (Core) In a community structure C, a node v 2 C is called the core node of com-
munity, if its density is higher than ρb. Cores(C) denotes the set of cores in community C, for-
mally:

CoresðCÞ ¼ fv j rv � rb; v 2 Cg; ð7Þ

Definition 8. (Outlier) In a given community structure C, a node v 2 C is called an outlier, if
its density is lower than ρb. Outliers(C) denotes the set of outliers in community C, formally:

OutliersðCÞ ¼ fv j rv < rb; v 2 Cg; ð8Þ

In some density-based methods like SCAN [27], one consider core nodes with density

above a threshold, this might lead to low density communities being classified as outliers. In

our work, we characterize different roles of nodes in a community by finding a border region

with their density. The border region is defined as set of nodes assigned to the community but

being within a distance dc from these nodes belonging to other communities. We can find a

border region for each community. In a community, we find the node with highest density

within its border region, and take the highest density as border density ρb. Therefore, nodes in

the community whose density is higher than ρb are considered as community cores, and the

other nodes are identified as outliers.

Locating Structural Centers and Density-Based Clustering
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As shown in Fig 3, nodes are labeled with their density order, and the length of edges denotes

the distance between nodes. Node 1 and 2 are identified aa structural centers in two communi-

ties, respectively. In community 1 (ellipse region), node 5 which is the nearest to the other com-

munity, is of the highest density in border region (circular region), so ρb = ρ5. According to our

assignment criterion, we can identify node 3 and 4 as cores and node 8 as outlier.

Based on the above description, the main steps of the proposed node assignment algorithm

are given in Algorithm 4. This algorithm identifies cores and outliers by finding a border

region for each community, based on detected network partition. At the beginning, for each

community structure, we identify the neighbors of each internal node within a trade-off dis-

tance dc. If there is a neighbor that belongs to other community, this internal node is identified

as a border node, and the border density ρb takes the average density of the two nodes. Then,

assignment algorithm finds all border nodes to form a border region, and update the border

density with the maximal ρb. A node with higher density than ρb is identified as cores, other-

wise, it is an outlier. The algorithm does not stop until all nodes have been assigned to one of

these roles.

Algorithm 4 Node Assignment Algorithm (NA)
Input:AdjacencymatrixA, a CommunitystructureC.
Output:Cores and outliersin C.
1: initializerC

b  0

2: for each node v 2 C do
3: Ndc(v) neighborsof v withindistancedc
4: for each node w 2 Ndc(v) do
5: if dist(v,w)� dc then
6: r  ðrv þ rwÞ=2

7: if r > rC
b then

8: rC
b  r

9: end if
10: end if
11: end for
12: if rv � rC

b then
13: labelv as a core
14: else
15: labelv as a outlier
16: end if
17: end for
18: returnCores(C)and Outliers(C).

Fig 3. An illustration of node assignment with an abstract graph.

doi:10.1371/journal.pone.0169355.g003
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Complexity Analysis

In this section, the computational complexity of the proposed algorithm LCCD is analyzed. As

described above, LCCD algorithm includes three phases, locating structural centers (LCC),

local community expanding process (LCE), and node assignment process (NA). Given a net-

work with n nodes and m edges, the time complexity for computing structural centrality distri-

bution scales as O(n2), and the search process of structural centers requires O(klogn) time,

where k denotes the number of community structures, so the time complexity of the LCC algo-

rithm scales as O(n2 + klogn). In the expanding phase, the local expanding process depends on

the number of community structures, the complexity of a single community expansion is lin-

ear on typical and sparse networks. So the time complexity for the local expanding algorithm

LCE scales as O(kn). The node assignment process relies on community size. If we assume that

the average size of network communities is s, the NA algorithm cost O(s(n−s)) time. The time

complexity for NA algorithm scales as O(sn). So the total time complexity of the LCCD algo-

rithm scales as O(n2 + kn + sn). For a community structure in a network, its size is far smaller

than the scale of the network. Therefore, the time complexity of LCCD can be simplified as

O(n2).

For the compared algorithms mentioned in Section 5, we have collected estimates of how

the cost scales with network observables. For general graphs irrespective of density, the Walk-

trap algorithm has the highest computational complexity O(n4), and the time complexity of

Infomap scales as O(n2logn), while the efficient modularity-based algorithm Louvain has

lower time complexity which scales as O(n2). The time complexity of the CNM algorithm

scales as O(n2 dlogn) where d denotes the depth of the dendrogram. LPA takes a near linear

time, while it is essentially an indeterministic algorithm that needs multiple iterations to attain

stable performance. In general, the most accurate method tends to be more computationally

expensive [44]. Compare with these algorithms, the proposed algorithm LCCD has lower time

complexity and higher accuracy, this will be shown in following experiments.

Experimental Results

In this section, we test the performance of the LCCD algorithm against a variety of networks

that have been commonly used in community detection. We compare LCCD with various

classic community detection algorithms on real-world networks and synthetic networks to

illustrate the performance of the proposed method on uncovering community structures. In

addition, we adopt two important evaluation criteria, i.e., modularity and normalized mutual

information, to evaluate the effectiveness of community detection algorithms. To ensure the

stability of results, all algorithms have been independently run 10 times on each dataset. Our

algorithm is implemented in RStudio, and all the experiments were conducted on a PC with a

2.0GHz Intel processor and 4 GB of RAM.

Evaluation Criteria

To evaluate the effectiveness of a community detection algorithm in the experiments, we intro-

duce two different criteria. In real world networks of various size and levels of community

cohesiveness, there is no ground truth community structure. Therefore, we adopt modularity

to measure the quality of division into communities and the cohesiveness of discovered com-

munity structures. On the other hand, in order to measure the similarity between the planted

partition and that uncovered by algorithms, we adopt the normalized mutual information

(NMI) to evaluate the performance of our method against synthetic networks of known

ground truth community structures.
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The modularity is one of the most popular criteria for measuring the quality of community

partitions [3]. It is based on the idea that a random graph is not expected to have a community

structure, so the possible existence of communities is uncovered by the comparison between

the actual network partition and corresponding null model [1]. Modularity can be written as

follows:

Q ¼
1

2M

X

ij
½Aij � Pij�dðCi;CjÞ; ð9Þ

where M denotes the total number of edges in a network, Aij represents the connection relation

between node i and node j in adjacency matrix, Pij represents the expected number of edges

between the node i and node j in the null model. A standard choice is Pij = ki kj/2M, ki and kj
being the degree of node i and node j. Ci represents the community that node i belongs to.

if node i and node j belong to the same community, the value of δ(Ci, Cj) equals one, zero

otherwise.

Normalized mutual information (NMI) is an information-theory based measurement,

which is widely used in measuring the performance of graph clustering algorithms [44]. It

enables one to compare partitions and covers, the measurement NMI can be defined as:

NMIðA;BÞ ¼
� 2
PCA

i¼1

PCB
j¼1

log
NijN
Ni:N:j

PCA
i¼1
Ni: log

Ni:

N
þ
XCB

j¼1
N:j log

N:j

N

; ð10Þ

where A and B denotes detected community partition and real partition respectively, and CA,

CB is the number of communities in A and B. N is the confusion matrix, Nij is the number of

nodes in common between community Ci and Cj, Ni. is the sum over row i of N and N.j is the

sum over column j of N. Note that the value of NMI ranges between 0 and 1, higher values

mean more accurate results for an algorithm.

Comparison with Other Methods

In this section, the performance of the proposed algorithm LCCD for uncovering community

structures is illustrated by comparing with some widely used algorithms. The compared algo-

rithms contain three local methods and three global methods. The local community detection

methods include LPA [25], SCAN [27] and Walktrap [45]. LPA represents a label propagation

algorithm that is based on an iterative dynamic processes. It is computationally efficient and

conceptually simple for identifying network communities. SCAN is a density-based clustering

method, which is effective to discovery sub-graph structures with well-specified properties.

Walktrap algorithm computes communities using random walk, which is excellent for vertex

partition. The global algorithms include two representative modularity-based methods: CNM

[8] and Louvain [46], and an information-theory based method called Infomap [47]. CNM is a

classic modularity optimization algorithm for community detection. Louvain also optimize

modularity but with a heuristic search process. The Infomap algorithm turned out to be the

best performing algorithms in community detection and has remarkable performance [48].

All of the above algorithms are used to evaluate and compare the performance of methods in

community detection. In our experiments, all algorithms are tested on a variety of synthetic

networks and real-world networks.

Test on Synthetic Networks. In the following, we will evaluate the clustering accuracy of

LCCD, which is compared with other classic algorithms on computer-generated networks,

including GN benchmark networks [42] and LFR benchmark networks [43]. By varying the
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parameters of benchmark graphs, we generate a variety of benchmark graphs. We adopt the

NMI measure to evaluate the accuracy of algorithms on these benchmarks. In order to avoid

the randomness of benchmark networks, we generate 10 networks with the same parameters

and take the average as the final result.

GN benchmark networks. We first test all algorithms on the GN benchmark networks,

which have well defined community structures [42]. We generate a variety of benchmark

graphs with various parameters, each graph is constructed with 128 nodes that are divided into

four clusters with 32 nodes. Edges between node pairs are placed randomly, with probability

Pin for nodes belonging to the same community and Pout for nodes in different communities,

where Pout< Pin. The probabilities are adjusted to keep the average degree z of each node to

16, i.e., zin + zout = 16, where zout implies the external degree of a node. For simplicity, we use

mixing parameter μ ranging from 0.1 to 0.8 to represent the average ratio of external degree

zout in total degree for each node. The greater the mixing parameter, the more difficult to

uncover the community structure in graphs.

Fig 4 shows the experimental results for different algorithms on GN benchmark networks.

As shown in the figure, all algorithms get NMI = 1 when the mixing parameters μ is less than

0.15, this means that all algorithms can identify the true community structures. However, the

performance of these algorithms decline to various degree, as the mixing parameter increases.

When μ is no larger than 0.4, there are only four algorithm, i.e., Walktrap, Infomap, Louvain

and LCCD, can uncover the ground true community structures. As the mixing parameter fur-

ther increase, the border between communities becomes more obscure, and the accuracy of

algorithms goes down greatly. As can be seen from the figure, however, the LCCD still get

greater NMI values when μ> 0.4, compared with other algorithms. The NMI scores of LCCD

Fig 4. Comparison on GN benchmarks. The NMI value is averaged over 10 networks generated with the

same parameters.

doi:10.1371/journal.pone.0169355.g004

Locating Structural Centers and Density-Based Clustering

PLOS ONE | DOI:10.1371/journal.pone.0169355 January 3, 2017 14 / 23



are slightly lower than that of Walktrap but higher than that of Louvain when μ is no less than

0.4 and no greater than 0.55, but LCCD obviously superior to Louvain when μ> 0.55 on GN

benchmark networks. This is because LCCD adopts a local clustering process and is effective

in avoiding the resolution limit of modularity [9], while the Louvain algorithm tends to pro-

duce some big communities by merging small communities. Moreover, the Walktrap algo-

rithm gains remarkable results when μ< = 0.55. In fact, Walktrap makes use of a local

random-walk based similarity between nodes to derive an optimal clustering structures. This

further demonstrates the advantage of local method in community detection.

LFR benchmark networks. For a more standardized comparison, we also test LCCD algo-

rithm on the LFR benchmark networks [43], to evaluate its performance. The LFR networks

reflect the heterogeneity in the distribution of node degree and community size, which are

claimed to possess properties found in real networks. There are some important parameters

for the benchmark networks: n: number of nodes; k: average degree of the nodes; maxk: maxi-

mum degree; minc: minimum for the community sizes; maxc: maximum for the community

sizes; t1: exponent for the degree distribution; t2: exponent for the community size distribution;

μ: mixing parameter. The mixing parameter μ means that each node shares the fraction μ of

neighbors with other nodes within the community and connect a fraction (1−μ) nodes without

the community. By varying these parameters, we generate benchmark networks with different

community structures. For a benchmark graph, the higher the mixing parameter it has, the

more difficult it is to reveal the community structure.

To analyze the performance of the algorithm, and check how much the performance of the

algorithm is affected by the network scale and community size, here, we generate a variety of

unweighted and undirected benchmark networks with two kinds of network scale, N = 1,000

and N = 10,000. For each scale, two kinds of networks are generated with different ranges of

community size, where S means that the sizes of communities in the network are relatively

small and B means that the sizes of communities are relatively large. All network are generated

with fixed value t1 = 2 and t2 = 1. The other parameters of these benchmark networks are given

in Table 1. We generate various non-overlapped networks for each type dataset by ranging

mixing parameter μ from 0 to 0.8 with an interval of 0.05.

The NMI scores for the seven algorithms on LFR benchmark networks are presented in

Figs 5 and 6. The plots correspond to two network sizes. As shown in the figures, the proposed

LCCD algorithm gets NMI = 1 when μ< = 0.5 on the small networks with different commu-

nity sizes (Fig 5), and get NMI = 1 when μ< = 0.6 on the large networks with two types of

community sizes (Fig 6), this means that a perfect match with the original network structures.

In our experiments, we find that the Infomap algorithm on the whole attains better perfor-

mance when μ< = 0.6, compared with other algorithms, while its performance declines

sharply as the mixing parameter increases. The CNM and SCAN perform worse compared to

other algorithms throughout the experiments. The LPA detect the ground truth community

Table 1. The main parameters of the generated benchmark networks.

Network N hki maxk minc maxc

1000S 1,000 20 50 10 50

1000B 1,000 20 50 20 100

10000S 10,000 40 100 50 100

10000B 10,000 40 100 100 200

N represents number of nodes; hki denotes average degree of nodes; maxk represents the maximum degree of nodes; minc denotes the minimum

community size, and maxc the maximum one. All benchmark networks are generated with fixed value t1 = 2 and t2 = 1.

doi:10.1371/journal.pone.0169355.t001
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structures both on the small network (μ< 0.5) and the large network (μ< 0.6), but its perfor-

mance drops sharply when mu increases. This is because big communities are produced dur-

ing label propagation when the boundary between communities is increasingly obscure.

As shown in Fig 5(A), the NMI values for Louvain are near to 1 when μ< 0.6, because the

resolution limit of the modularity exists in networks with lots of small communities. Such situ-

ation is not obvious in following experiment, since the size of community increases gradually.

There are two algorithms, i.e., Walktrap and Louvain, which achieve comparable performance

to the proposed algorithm LCCD. In the small networks, all the three algorithm can identify

the ground truth community structures (NMI = 1) when mixing parameter μ is less than 0.5,

and then their performance declines, as shown in Fig 5(B). However, such trend is different in

the large networks. The three algorithms detect the true community structures when μ is no

Fig 5. Comparison of different community detection algorithms on LFR benchmark networks with N = 1,000. (A) Benchmark

networks with communities of small size. (B) Benchmark networks with communities of big size.

doi:10.1371/journal.pone.0169355.g005

Fig 6. Comparison of different community detection algorithms on LFR benchmark networks with N = 10,000. (A) Benchmark

networks with communities of small size. (B) Benchmark networks with communities of big size.

doi:10.1371/journal.pone.0169355.g006

Locating Structural Centers and Density-Based Clustering

PLOS ONE | DOI:10.1371/journal.pone.0169355 January 3, 2017 16 / 23



larger than 0.65. Comparing the Fig 6(A) and 6(B), we note that Louvain gradually shows obvi-

ous advantage in the aspects of identify big communities, and achieves better performance

when μ> 0.7. On the other hand, we find that LCCD has an advantage over other methods in

finding small community structures in networks. Based on above comparative analysis, we can

conclude that our algorithm works well and achieve better performance, compared to other

algorithms.

Test on Real-world Networks. In order to further illustrate the effectivity and feasibility

of the proposed method, we compare the performance of LCCD with the compared algorithms

on sixteen real-world networks. These networks include social networks, such as Zachary’s

karate club network and dolphin social network, and politic book network, scientist collabora-

tion network, and biological networks. All these networks have been commonly used in com-

munity detection. The simple description of each network is as follows.

The Zachary’s Karate club network [49] reflects social interactions among the members of a

karate club, which contains 34 members and 78 edges. The club ultimately was divided into

two distinct groups because of a disagreement between the administrator (vertex 1) and the

instructor (vertex 34), and these two groups are used as the ground truth communities in

benchmark studies.

The dolphin social network was constructed based on the observations recording frequent

associations between a group of 62 bottlenose dolphins over a period of 7 years from 1994 to

2001 [50]. In this network, dolphins represented as nodes have an edge with each other if they

are observed together more often than expected by chance. In previous study, it is generally

divided into two communities or four sub-communities in term of sex and age of dolphins.

Social network of positive sentiment [51]described the social relationships between inmates

in prison, in which nodes represent people in a group, and edges represent positive sentiment

directed from one group member to another, based on questionnaires. Lesmis network [52]is

a coappearance network of characters in the novel “Les Miserables”, which consists of 77

nodes and 254 edges.

Political book network includes 105 nodes that represent books about US politics sold by

the online bookseller Amazon.com [53]. Edges represent frequent co-purchasing of books by

the same buyers, as indicated by the “customers who bought this book also bought these other

books” feature on Amazon. The political viewpoints of these books are given by “liberal”, “neu-

tral” and “conservative”, respectively, which are taken as the ground-truth in our experiment.

Word network is the adjacency network of common adjectives and nouns in the novel

“David Copperfield” by Charles Dickens [54]. Nodes represent the most commonly occurring

adjectives and nouns in the book. Edges connect any pair of words that occur in adjacent posi-

tion in the text of the book. College football network represents the schedule of games between

American college football teams during regular season [40]. In the network nodes denote the

115 teams that are divided into 12 conferences, and the edges represent 616 games.

Jazz musicians networks modeled the topology structure of the collaboration network of

jazz musicians, which includes 198 bands that performed between 1912 and 1940 [55]. An

edge between two bands is established if they have at least one musician in common.

Three biological networks are included. Neural network represents the neural network of

C. Elegans [56]. Metabolic network represents metabolic system of C.Elegans [57]. Yeast tran-

scription network describes transcription interactions between regulatory proteins and genes

in the bacterium and the yeast [58].

Email network represents e-mail interchanges between members of the Univeristy Rovira i

Virgili [59]. Polblogs network describes the political blogosphere network of hyperlinks between

weblogs on US politics in 2004 [60]. Netscience network records coauthorship of scientists

working on network theory and experiments [54], in which various connected components
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exist. Power network represents the topology of the Western States Power Grid of the United

States [56]. Collaboration network covers scientific collaborations between authors’ papers sub-

mitted to General Relativity and Quantum Cosmology category [61].

The size of these networks above ranges from tens of to thousands of nodes, and the num-

ber of communities varies in different networks. Some weighted networks are transformed to

unweighted ones by setting the weight of all edges as 1. Detailed information about these net-

works are shown in Table 2. All network dataset can be attained from webpages [62–64].

We adopt the modularity measurement to evaluate the accuracy of algorithms on these

real-world networks. Larger modularity scores indicate more cohesive community structures.

The comparative results of modularity are shown in Table 3. Numbers in boldface denote the

largest values of modularity in the corresponding row. In this table, we get the following obser-

vations. The LCCD algorithm performs better and obtains optimal results for over half of the

16 real-world networks (56%) in terms of modularity, compared to other algorithms. In addi-

tion, Louvain acquires best results in other 6 networks (37.5%), and CNM gets a best value

only in the Word network. Higher percentage indicates more stable performance on various

networks. This result shows that LCCD method illustrates the superiority of local expansion

strategy and achieves better performance on real-world networks of complicated organiza-

tional structures.

Moreover, LCCD gets better results on all networks (100%) compared to SCAN, Walktrap,

and LPA. In general, LPA has satisfying time efficiency, but its performance is far from satisfy-

ing because of the indeterminacy in label propagation. The modularity values of CNM on

most networks are smaller than LCCD except on Word network. LCCD also outperforms

Infomap on most networks (87.5%), except for the Lesmis and Metabolic network. This obser-

vation is in agreement with the fact that our algorithms can achieve better performance on

synthetic networks shown in Figs 5 and 6. Therefore, we can conclude that the proposed

LCCD is an effective and competitive method for identifying community structures.

Table 2. The basic information of the real-world networks.

Network N M hki nCluster

Karate 34 78 4.59 2

Dolphin 62 159 5.13 2

Social 67 182 4.24 21

Lesmis 77 254 6.59 6

Polbooks 105 441 8.40 3

Word 112 425 7.59 7

Football 115 613 10.66 12

Jazz 198 2,742 27.70 4

Neural 297 2,148 14.46 5

Metabolic 453 2,025 8.94 25

Yeast 688 1,078 3.13 26

Email 1,133 5,451 9.62 11

Polblogs 1,490 16,715 22.44 4

Netscience 1,589 2,742 3.45 406

Power 4,941 6,594 2.67 40

Collaboration 5,242 14,496 8.30 395

N and M represent the number of nodes and the numbers of edges in network, respectively. hki denotes the average degree of the network. nCluster

denotes the numbers of the ground truth communities in the network or the optimal number of communities with the largest modularity value.

doi:10.1371/journal.pone.0169355.t002
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Conclusion

In this work, we formulate the community structure as a centralized hierarchical structure

which is constituted by structural center, cores and outliers. In order to identify such struc-

ture, a novel density-based algorithm named as LCCD has been presented. The main charac-

teristic of LCCD is that it is based on the proposed structural centrality, which takes into

account local density of nodes and relative distance between clusters. With structural cen-

trality, we have developed the algorithm for locating structural centers that can determine

the number of clusters in networks automatically. This algorithm depends on finding local

maximum of structural centrality, and can be combined with other clustering algorithms for

community detection.

LCCD uncovers intrinsic community structures by a local expansion from the identified

structural centers with a local search procedure. Such expanding process avoids the randomness

of seed selection and manual choice of built-in parameters. Furthermore, by defining a border

region in a community, cores and outliers can be identified in node assignment phase, which is

an important feature that LCCD includes. The extensive experiments on both synthetic and

real-world networks demonstrate the advantages of LCCD from three aspects. First of all, the

local expanding procedure based on structural centers accelerates its convergence to optimal

partition, and make the algorithm perform more steadily. Secondly, our algorithm is local

expansion method for community detection, which avoids the resolution problem of modular-

ity. Lastly, LCCD not only uncovers natural community structures effectively, but also identifies

hierarchical structure of a community. Some meaningful extensions can be made to LCCD in

the future. With some improvement, it can be used for uncovering overlapping community.

Supporting Information

S1 Fig. A schematic example to illustrate the idea of the method. (A) The Zachary’s karate

club network with two clusters; (B) The decision graph for the nodes in the network.

(TIF)

Table 3. The comparison of modularity values on the real-world networks.

Network CNM SCAN LPA Walktrap Infomap Louvain LCCD

Karate 0.3807 0.3409 0.1328 0.3532 0.4020 0.4188 0.4197

Dolphin 0.4955 0.2887 0.4876 0.4888 0.5247 0.5185 0.5257

Social 0.5565 0.4292 0.5515 0.5460 0.5697 0.5741 0.5702

Lesmis 0.5006 0.2258 0.5344 0.5214 0.5462 0.5556 0.5376

Polbooks 0.5020 0.4045 0.4874 0.5070 0.5228 0.5205 0.5255

Word 0.2947 0.1130 0 0.2162 0.0092 0.2886 0.2425

Football 0.5497 0.5143 0.6022 0.6029 0.6005 0.6046 0.6072

Jazz 0.4389 0.2689 0.2780 0.4384 0.2800 0.4431 0.4529

Neural 0.3723 0.2256 0.2090 0.3532 0.3582 0.3876 0.3670

Metabolic 0.4055 0.3078 0.0585 0.3487 0.4134 0.4407 0.3512

Yeast 0.7572 0.3109 0.7351 0.7426 0.7194 0.7639 0.7484

Email 0.5070 0.3017 0.0717 0.5307 0.5231 0.5426 0.5676

Polblogs 0.4269 0.3269 0.4258 0.4254 0.4228 0.4269 0.4336

Netscience 0.9551 0.8957 0.9101 0.9559 0.9303 0.9597 0.9659

Power 0.9335 0.5674 0.8019 0.8310 0.8161 0.9363 0.9398

Collaboration 0.8142 0.6945 0.7952 0.7817 0.7936 0.8630 0.8232

Bold number in each row denotes the best value in corresponding item.

doi:10.1371/journal.pone.0169355.t003
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S2 Fig. Location of structural centers on synthetic LFR network with 1,000 nodes and 9

ground-truth communities. (A) The node distribution in the decision graph; (B) The plot of

structural centrality sorted in decreasing order as a function of node number for the network.

(TIF)

S3 Fig. An illustration of node assignment with an abstract graph.

(TIF)

S4 Fig. Comparison on GN benchmarks.

(TIF)

S5 Fig. Comparison of different community detection algorithms on LFR benchmark net-

works with N = 1,000. (A) Benchmark networks with communities of small size; (B) Bench-

mark networks with communities of big size.

(TIF)

S6 Fig. Comparison of different community detection algorithms on LFR benchmark net-

works with N = 10,000. (A) Benchmark networks with communities of small size; (B) Bench-

mark networks with communities of big size.

(TIF)

S1 Table. The main parameters of the generated benchmark networks. N represents num-

ber of nodes, hki denotes average degree of nodes. All benchmark networks are generated with

fixed value t1 = 2 and t2 = 1.
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S2 Table. The basic information of the real-world networks. N and M represent the number

of nodes and the number of edges in network, respectively. hki denotes the average degree of

the network. nCluster denotes the numbers of the ground truth communities in the network

or the optimal number of communities with the largest modularity value.

(DOCX)

S3 Table. The comparison of modularity values on the real-world networks. Bold number

in each row denotes the best value in corresponding item.

(DOCX)

S1 Appendix. Independence on the cutoff distance.

(PDF)

Acknowledgments

The authors would like to thank Newman Mark, Alon U and Arenas A for providing real-

world network datasets. This work was supported by National 973 Key Basic Research Pro-

gram of China (2013CB329603), and the National Natural Science Foundation of China with

Grant No. 61472248 and No. 61431008.

Author Contributions

Conceptualization: XW.

Formal analysis: XW.

Funding acquisition: JL.

Investigation: XW GL JL JPN.

Locating Structural Centers and Density-Based Clustering

PLOS ONE | DOI:10.1371/journal.pone.0169355 January 3, 2017 20 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169355.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169355.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169355.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169355.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169355.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169355.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169355.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169355.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169355.s010


Methodology: XW.

Project administration: GL JL.

Resources: GL JL.

Software: XW.

Supervision: GL JL.

Validation: XW GL JL JPN.

Visualization: XW.

Writing – original draft: XW.

Writing – review & editing: XW GL JL JPN.

References
1. Fortunato S. Community detection in graphs. Phys Rep. 2010; 486(3-5):75–174. doi: 10.1016/j.

physrep.2009.11.002 WOS:000274500900001.

2. Newman MEJ. Communities, modules and large-scale structure in networks. Nat Phys. 2012; 8(1):25–

31. doi: 10.1038/nphys2162 WOS:000298423000011

3. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E. 2004;

69:026113. doi: 10.1103/PhysRevE.69.026113 PMID: 14995526

4. Hric D, Darst RK, Fortunato S. Community detection in networks: Structural communities versus ground

truth. Phys Rev E. 2014; 90:062805. doi: 10.1103/PhysRevE.90.062805

5. Shen H, Cheng X, Cai K, Hu M-B. Detect overlapping and hierarchical community structure in networks.

Physica A. 2009; 388(8):1706–1712. doi: 10.1016/j.physa.2008.12.021

6. Filippone M, Camastra F, Masulli F, Rovetta S. A survey of kernel and spectral methods for clustering.

Pattern Recognit. 2008; 41(1):176–190. doi: 10.1016/j.patcog.2007.05.018

7. Nascimento MCV, Carvalho ACD. Spectral methods for graph clustering:A survey. Eur J Oper Res.

2011; 211(2):221–231. doi: 10.1016/j.ejor.2010.08.012

8. Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E.

2004; 70(6):066111. doi: 10.1103/PhysRevE.70.066111

9. Lancichinetti A, Fortunato S. Limits of modularity maximization in community detection. Phys Rev E.

2011; 84:066122. doi: 10.1103/PhysRevE.84.066122 PMID: 22304170

10. Sun PG, Gao L, Yang Y. Maximizing modularity intensity for community partition and evolution. Inf Sci.

2013; 236:82–92. doi: 10.1016/j.ins.2013.02.032

11. Wang XF, Liu GS, Li JH. A Detecting Community Method in Complex Networks with Fuzzy Clustering.

In: Proceedings of International Conference on Data Science and Advanced Analytics. 2014;P.484–

490.

12. Gregory S. Fuzzy overlapping communities in networks. J Stat Mech. 2011; 2011(02):P02017. doi: 10.

1088/1742-5468/2011/02/P02017

13. Zhang S, Wang R-S, Zhang X-S. Identification of overlapping community structure in complex networks

using fuzzy -means clustering. Physica A. 2007; 374(1):483–490. doi: 10.1016/j.physa.2006.07.023

14. Li J, Wang X, Wu P. Review on community detection methods based on local optimization. Bull Chin

Acad Sci. 2015; 30(2):238–257.

15. Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex net-

works in nature and society. Nature. 2005; 435(7043):814–8. doi: 10.1038/nature03607 PMID:

15944704

16. Farkas I, Abel D, Palla G, Vicsek T. Weighted network modules. New J Phys. 2007; 9(6):180. doi: 10.

1088/1367-2630/9/6/180

17. Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-

scale networks. Phys Rev E. 2007; 76(3 Pt 2):036106. doi: 10.1103/PhysRevE.76.036106 PMID:

17930305

18. Gregory S. Finding overlapping communities in networks by label propagation. New J Phys. 2010; 12

(10):103018. doi: 10.1088/1367-2630/12/10/103018

Locating Structural Centers and Density-Based Clustering

PLOS ONE | DOI:10.1371/journal.pone.0169355 January 3, 2017 21 / 23

http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1038/nphys2162
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
http://dx.doi.org/10.1103/PhysRevE.90.062805
http://dx.doi.org/10.1016/j.physa.2008.12.021
http://dx.doi.org/10.1016/j.patcog.2007.05.018
http://dx.doi.org/10.1016/j.ejor.2010.08.012
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.84.066122
http://www.ncbi.nlm.nih.gov/pubmed/22304170
http://dx.doi.org/10.1016/j.ins.2013.02.032
http://dx.doi.org/10.1088/1742-5468/2011/02/P02017
http://dx.doi.org/10.1088/1742-5468/2011/02/P02017
http://dx.doi.org/10.1016/j.physa.2006.07.023
http://dx.doi.org/10.1038/nature03607
http://www.ncbi.nlm.nih.gov/pubmed/15944704
http://dx.doi.org/10.1088/1367-2630/9/6/180
http://dx.doi.org/10.1088/1367-2630/9/6/180
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://www.ncbi.nlm.nih.gov/pubmed/17930305
http://dx.doi.org/10.1088/1367-2630/12/10/103018


19. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in net-

works. Proc Natl Acad Sci U S A. 2004; 101(9):2658–2663. doi: 10.1073/pnas.0400054101 PMID:

14981240 PubMed Central PMCID: PMC365677.

20. Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature.

2010; 466(7307):761–764. doi: 10.1038/nature09182 PMID: 20562860

21. Subelj L, Bajec M. Ubiquitousness of link-density and link-pattern communities in real-world networks.

Eur Phys J B. 2012; 85:32. doi: 10.1140/epjb/e2011-20448-7

22. Clauset A. Finding local community structure in networks. Phys Rev E. 2005; 72(2):026132. doi: 10.

1103/PhysRevE.72.026132

23. Luo F, Wang JZ, Promislow E. Exploring local community structures in large networks. Web Intell Agent

Syst. 2008; 6(4):387–400.

24. Lancichinetti A, Fortunato S, Kertesz J. Detecting the overlapping and hierarchical community structure

in complex networks. New J Phys. 2009; 11(3):033015. doi: 10.1088/1367-2630/11/3/033015

25. Lee C, Reid F, McDaid A, Hurley N. Detecting highly overlapping community structure by greedy clique

expansion. In: Proceedings of SNAKDD Workshop2010. p.33–42.

26. Huang J, Sun H, Liu Y, Song Q, Weninger T. Towards online multiresolution community detection in

large-scale networks. PloS one. 2011; 6(8):e23829. doi: 10.1371/journal.pone.0023829 PMID:

21887325; PubMed CentralPMCID: PMC3161084.

27. Xu X, Yuruk N, Feng Z, Schweiger TA. Scan: a structural clustering algorithm for networks. In: Proceed-

ings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining:

ACM; 2007. p. 824–833.

28. Gong M, Liu J, Ma L, Cai Q, Jiao L. Novel heuristic density-based method for community detection in

networks. Physica A. 2014; 403:71–84. doi: 10.1016/j.physa.2014.01.043

29. Subramani K, Velkov A, Ntoutsi I, Kroger P, Kriegel HP. Density-based community detection in social

networks. In: Proceedings of IEEE 5th International Conference on Internet Multimedia Systems Archi-

tecture and Application; Bangalore: IEEE; 2011. p.1–8.

30. Falkowski T, Barth A, Spiliopoulou M. DENGRAPH: A Density-based Community Detection Algorithm.

In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence; Fremont, CA: IEEE;

2007. p. 112–115.

31. Huang JB, Sun HL, Song QB, Deng HB, Han JW. Revealing Density-Based Clustering Structure from

the Core-Connected Tree of a Network. IEEE Trans Knowl Data Eng. 2013; 25(8):1876–1889. doi: 10.

1109/TKDE.2012.100 WOS:000321261000015.

32. Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science. 2014 Jun 27; 344

(6191):1492–1496. doi: 10.1126/science.1242072 PMID: 24970081

33. Chu Y-H, Huang J-W, Chuang K-T, Yang D-N, Chen M-S. Density conscious subspace clustering for

high-dimensional data. IEEE Trans Knowl Data Eng. 2010; 22(1):16–30 doi: 10.1109/TKDE.2008.224

34. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial

databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery

and Data Mining: AAAI 1996. p. 226–231.

35. Huang J, Sun H, Han J, Feng B. Density-based shrinkage for revealing hierarchical and overlapping

community structure in networks. Physica A. 2011; 390(11):2160–2171. doi: 10.1016/j.physa.2010.10.

040

36. Jin H, Wang S, Li C. Community detection in complex networks by density-based clustering. Physica A.

2013; 392(19):4606–4618. doi: 10.1016/j.physa.2013.05.039

37. Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P. Community detection in social media. Data

Min Knowl Discov. 2012; 24(3):515–554. doi: 10.1007/s10618-011-0224-z

38. Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth. Knowl Inf

Syst. 2015; 42:181–213. doi: 10.1007/s10115-013-0693-z

39. Karrer B, Newman MEJ. Stochastic blockmodels and community structure in networks. Phys Rev E.

2011; 83(1):016107. doi: 10.1103/PhysRevE.83.016107

40. Borgatti SP, Everett MG. A graph-theoretic perspective on centrality. Social networks. 2006 Oct; 28

(4):466–484. doi: 10.1016/j.socnet.2005.11.005

41. Borgatti SP. Centrality and network flow. Social networks. 2005; 27(1):55–71. doi: 10.1016/j.socnet.

2004.11.008

42. Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Natl Acad Sci U

S A. 2002; 99(12):7821–7826. doi: 10.1073/pnas.122653799 PMID: 12060727; PubMed Central

PMCID: PMC122977.

Locating Structural Centers and Density-Based Clustering

PLOS ONE | DOI:10.1371/journal.pone.0169355 January 3, 2017 22 / 23

http://dx.doi.org/10.1073/pnas.0400054101
http://www.ncbi.nlm.nih.gov/pubmed/14981240
http://dx.doi.org/10.1038/nature09182
http://www.ncbi.nlm.nih.gov/pubmed/20562860
http://dx.doi.org/10.1140/epjb/e2011-20448-7
http://dx.doi.org/10.1103/PhysRevE.72.026132
http://dx.doi.org/10.1103/PhysRevE.72.026132
http://dx.doi.org/10.1088/1367-2630/11/3/033015
http://dx.doi.org/10.1371/journal.pone.0023829
http://www.ncbi.nlm.nih.gov/pubmed/21887325
http://dx.doi.org/10.1016/j.physa.2014.01.043
http://dx.doi.org/10.1109/TKDE.2012.100
http://dx.doi.org/10.1109/TKDE.2012.100
http://dx.doi.org/10.1126/science.1242072
http://www.ncbi.nlm.nih.gov/pubmed/24970081
http://dx.doi.org/10.1109/TKDE.2008.224
http://dx.doi.org/10.1016/j.physa.2010.10.040
http://dx.doi.org/10.1016/j.physa.2010.10.040
http://dx.doi.org/10.1016/j.physa.2013.05.039
http://dx.doi.org/10.1007/s10618-011-0224-z
http://dx.doi.org/10.1007/s10115-013-0693-z
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1016/j.socnet.2005.11.005
http://dx.doi.org/10.1016/j.socnet.2004.11.008
http://dx.doi.org/10.1016/j.socnet.2004.11.008
http://dx.doi.org/10.1073/pnas.122653799
http://www.ncbi.nlm.nih.gov/pubmed/12060727


43. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms.

Phys Rev E. 2008; 78(4):046110. doi: 10.1103/PhysRevE.78.046110

44. Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community structure identification. J Stat

Mech. 2005:P09008. WOS:000232204800010.

45. Pons P, Latapy M. Computing communities in large networks using random walks. In: Proceedings of

20th International Symposium on Computer and Information Sciences: Springer; 2005. p. 284–293.

46. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J

Stat Mech. 2008;(10):P10008. doi: 10.1088/1742-5468/2008/10/P10008

47. Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure.

Proc Natl Acad Sci U S A. 2008; 105(4):1118–1123. doi: 10.1073/pnas.0706851105 PMID: 18216267

48. Lancichinetti A, Fortunato S. Community detection algorithms: a comparative analysis. Phys Rev E Stat

Nonlin Soft Matter Phys. 2009; 80(5 Pt 2):056117. doi: 10.1103/PhysRevE.80.056117 PMID: 20365053

49. Zachary WW. An information flow model for conflict and fission in small groups. J Anthropol Res. 1977;

33:452–473. doi: 10.1086/jar.33.4.3629752

50. Lusseau D. The emergent properties of a dolphin social network. In: Proceedings of the Royal Society

of London B: Biological Sciences. 2003; 270(Suppl 2):S186–S8. doi: 10.1098/rsbl.2003.0057

51. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, et al. Superfamilies of evolved and

designed networks. Science. 2004; 303(5663):1538–1542. doi: 10.1126/science.1089167 PMID:

15001784

52. Knuth DE. The structure and function of complex networks. ACM, New York, USA: Addison-Wesley;

1993.

53. Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci U S A. 2006; 103

(23):8577–8582. doi: 10.1073/pnas.0601602103 PMID: 16723398; PubMed Central PMCID:

PMC1482622.

54. Newman MEJ. Finding community structure in networks using the eigenvectors of matrices. Phys Rev

E. 2006 Sep 11; 74(3):036104 doi: 10.1103/PhysRevE.74.036104

55. Gleiser PM, Danon L. Community struture in jazz. Advs Complex Syst. 2003; 6(4):565–573. doi: 10.

1142/S0219525903001067

56. Watts DJ, Strogatz SH. Collective dynamics of’small-world networks. Nature. 1998; 393:440–442. doi:

10.1038/30918 PMID: 9623998

57. Duch J, Arenas A. Community detection in complex networks using extremal optimization. Phys Rev E.

2005; 72(2):027104. doi: 10.1103/PhysRevE.72.027104

58. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network Motifs: Simple Building

Blocks of Complex Networks. Science. 2002; 298(5594):824–827. doi: 10.1126/science.298.5594.824

PMID: 12399590

59. Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A. Self-similar community structure in a network

of human interactions. Phys Rev E. 2003; 68(6):065103. doi: 10.1103/PhysRevE.68.065103

60. Adamic LA, Glance N. The political blogosphere and the 2004 US election:divided they blog. In: Pro-

ceedings of the 3rd international workshop on Link discovery. ACM.2005.P.36–43.

61. Leskovec J, Kleinberg J, Faloutsos C. Graph evolution: Densification and shrinking diameters. ACM

Trans Knowl Discov Data. 2007 Mar; 1(1):2. doi: 10.1145/1217299.1217301

62. Newman M. Network data. [updated April 19, 2013 cited 2016 Feb 12]. Available from: http://www-

personal.umich.edu/mejn/netdata.

63. Alon U. Collection of Complex Networks. [cited 2016 Feb 12]. Available from: http://www.weizmann.ac.

il/mcb/UriAlon/download/collection-complex-networks.

64. Arenas A. Alex Arenas Website. [cited 2016 Feb 12]. Available from: http://deim.urv.cat/alexandre.

arenas/data/welcome.htm.

Locating Structural Centers and Density-Based Clustering

PLOS ONE | DOI:10.1371/journal.pone.0169355 January 3, 2017 23 / 23

http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1073/pnas.0706851105
http://www.ncbi.nlm.nih.gov/pubmed/18216267
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://www.ncbi.nlm.nih.gov/pubmed/20365053
http://dx.doi.org/10.1086/jar.33.4.3629752
http://dx.doi.org/10.1098/rsbl.2003.0057
http://dx.doi.org/10.1126/science.1089167
http://www.ncbi.nlm.nih.gov/pubmed/15001784
http://dx.doi.org/10.1073/pnas.0601602103
http://www.ncbi.nlm.nih.gov/pubmed/16723398
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://dx.doi.org/10.1103/PhysRevE.72.027104
http://dx.doi.org/10.1126/science.298.5594.824
http://www.ncbi.nlm.nih.gov/pubmed/12399590
http://dx.doi.org/10.1103/PhysRevE.68.065103
http://dx.doi.org/10.1145/1217299.1217301
http://www-personal.umich.edu/mejn/netdata
http://www-personal.umich.edu/mejn/netdata
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://deim.urv.cat/alexandre.arenas/data/welcome.htm
http://deim.urv.cat/alexandre.arenas/data/welcome.htm

