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Abstract

Climate projections for the southwestern US suggest a warmer, drier future and have the

potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest

structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can

stabilize the remaining C by moderating wildfire behavior. Previous research has demon-

strated that fire maintained forests can store more C over time than fire suppressed forests

in the presence of wildfire. However, because the climate future is uncertain, I sought to

determine the efficacy of forest management to moderate fire behavior and its effect on for-

est C dynamics under current and projected climate. I used the LANDIS-II model to simulate

carbon dynamics under early (2010–2019), mid (2050–2059), and late (2090–2099) century

climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in north-

ern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn)

and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline

throughout the simulation period, regardless of climate. Thin and burn TEC increased fol-

lowing treatment implementation and showed more differentiation than the control in

response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as

measured by mean fire severity, was not impacted by climate. Fire effects were evident in

the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simula-

tion period, 32.8–48.9% of the control landscape was either C neutral or a C source to the

atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink.

These results suggest that in southwestern ponderosa pine, restoring forest structure and

surface fire regimes provides a reasonable hedge against the uncertainty of future climate

change for maintaining the forest C sink.

Introduction

The increasing size and severity of wildfires in the western US poses many ecological and soci-

etal challenges, which are likely to be compounded by on-going climate change [1–4]. Efforts

to restore forest structure and ecosystem function in dry, fire-prone forests are expanding in

scale, but have the potential to create a positive feedback with the climate system as the amount

PLOS ONE | DOI:10.1371/journal.pone.0169275 January 3, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Hurteau MD (2017) Quantifying the

Carbon Balance of Forest Restoration and Wildfire

under Projected Climate in the Fire-Prone

Southwestern US. PLoS ONE 12(1): e0169275.

doi:10.1371/journal.pone.0169275

Editor: Julia A. Jones, Oregon State University,

UNITED STATES

Received: April 19, 2016

Accepted: December 14, 2016

Published: January 3, 2017

Copyright: © 2017 Matthew D. Hurteau. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

from https://figshare.com/articles/Camp_Navajo_

Simulation_Output_using_Projected_Climate/

4262411 and at https://www.serdp-estcp.org/

Program-Areas/Resource-Conservation-and-

Climate-Change/Climate-Change/Land-Use-and-

Carbon-Management/RC-2118/RC-2118.

Funding: Funding for this research was provided

by the US Department of Defense’s Strategic

Environmental Research and Development

Program (SERDP, project RC-2118); https://www.

serdp-estcp.org/. The funders had no role in study

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169275&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169275&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169275&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169275&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169275&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169275&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://figshare.com/articles/Camp_Navajo_Simulation_Output_using_Projected_Climate/4262411
https://figshare.com/articles/Camp_Navajo_Simulation_Output_using_Projected_Climate/4262411
https://figshare.com/articles/Camp_Navajo_Simulation_Output_using_Projected_Climate/4262411
https://www.serdp-estcp.org/Program-Areas/Resource-Conservation-and-Climate-Change/Climate-Change/Land-Use-and-Carbon-Management/RC-2118/RC-2118
https://www.serdp-estcp.org/Program-Areas/Resource-Conservation-and-Climate-Change/Climate-Change/Land-Use-and-Carbon-Management/RC-2118/RC-2118
https://www.serdp-estcp.org/Program-Areas/Resource-Conservation-and-Climate-Change/Climate-Change/Land-Use-and-Carbon-Management/RC-2118/RC-2118
https://www.serdp-estcp.org/Program-Areas/Resource-Conservation-and-Climate-Change/Climate-Change/Land-Use-and-Carbon-Management/RC-2118/RC-2118
https://www.serdp-estcp.org/
https://www.serdp-estcp.org/


of carbon (C) stored in the forest is reduced [5]. However, the remaining C can be held in a

more stable form that is resistant to loss from wildfire because forest restoration treatments are

effective at modifying fire behavior and reducing overstory mortality [6–7]. Previous research

in southwestern ponderosa pine (Pinus ponderosa) forest has demonstrated that a restored

condition that is maintained by regular surface fire can store more C than the fire-suppressed

condition when the effects of stochastic wildfire are incorporated [8]. However, this result is

predicated on reduced tree mortality during wildfire and continued tree growth following

wildfire in the restored forest condition.

In the southwestern US, the rate at which forests sequester C is heavily influenced by water

availability, which can diminish as temperature increases [9]. Climate projections for the

southwestern US include a drier future as higher temperatures increase atmospheric water

demand [10]. A warmer, drier future is also projected to increase wildfire probability and size

in the western US [11–13]. Yet, fire severity may diminish as post-fire vegetation recovery is

influenced by changing climate and less biomass is available to burn [14]. These factors may

alter the efficacy of restoration treatments for stabilizing forest C as climate changes.

The ability of forest restoration treatments to moderate wildfire behavior has been demon-

strated in many dry forest types [15]. Additionally, reducing tree density through thinning has

been shown to reduce drought stress and increase growth and C sequestration relative to a

fire-suppressed condition during dry periods [9,16]. These results suggest that management

efforts to reduce high-severity wildfire risk and restore surface fire in southwestern ponderosa

pine forests could help build the capacity to cope with changing climate.

Given the effects of forest restoration treatments on moderating fire behavior and stabiliz-

ing forest C, I sought to determine how the C balance of treatments changes as a function of

projected climate. Using climate projections from early- (2010–19), mid- (2050–59), and late-

century (2090–99) with a landscape forest simulation model to run 100-year simulations, I

hypothesized that 1) treated forests would store more C than untreated forests and that total

ecosystem C within treatments would decrease as a function of warming climate because of

increased atmospheric water demand and 2) late-century climate would cause the largest

decrease in productivity, leading to an overall reduction in wildfire emissions relative to early-

and mid-century climate because of reduced biomass available for combustion.

Materials and Methods

Study Area

Camp Navajo is an 11,610 ha military installation located in northern Arizona, approximately

20 km west of Flagstaff (Fig 1). Mean annual precipitation is 493 mm and is split evenly

between summer rains and winter snow. The mean summer maximum temperature is 27˚C

and the mean winter minimum temperature is -11˚C, with a mean annual temperature of

6.9˚C (National Climate Data Center, GHCND USC00020678). The forest is predominantly

ponderosa pine with a Gambel oak (Quercus gambelii) and Rocky Mountain juniper (Juniperus
scopulorum) component. This landscape was historically shaped by frequent surface fires

occurring every 2–20 years [17], but livestock grazing, logging, and fire suppression have

altered the forest structure such that tree density, canopy cover, and surface fuels have all

increased relative to the fire-maintained condition, transitioning the fire regime from frequent

surface fires to infrequent stand-replacing fires [18–19].

Simulation Model

I used the LANDIS-II forest succession and disturbance model in conjunction with the Cen-

tury succession, Leaf Biomass Harvest, and Dynamic Fire and Fuels extensions to simulate
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forest carbon dynamics with different management scenarios and wildfire under projected cli-

mate [20–24]. In LANDIS-II, the gridded landscape is populated with tree species represented

by biomass in different age classes. Succession and species growth are governed by species-spe-

cific life history parameters that control competitive ability, dispersal, and reproduction [20].

Within and among grid cells, cohorts of species grow, compete, disperse, and reproduce. Dis-

turbances can affect cohorts within individual cells or clusters of grid cells. The model requires

the landscape be subdivided into abiotically similar ecoregions and that an initial forest com-

munities layer be developed that includes the spatial distribution of age-cohorts of species. Fol-

lowing Hurteau et al. [8] I used the same 150m grid, six ecoregions, and initial communities

layer (comprised of ponderosa pine and Gambel oak) that were developed based on soil prop-

erties, topographic variables, forest inventory data, and age-size distributions from Fulé et al.

[19] and Mast et al. [25] for all simulations.

I used the Century succession extension to simulate pools and fluxes of C, the Leaf Biomass

Harvest extension to simulate thinning and prescribed burning treatments, and the Dynamic

Fire and Fuels extension to simulate wildfire. The Century succession extension was developed

based on the CENTURY soil model [26–28]. The extension simulates above and belowground

C and nitrogen pools and fluxes as influenced by species-specific parameters, climate, soils,

Fig 1. Map of Camp Navajo. The installation is comprised of ponderosa pine forest with some Gambel oak in the understory (dark green)

and savanna/grassland (tan) that includes widely spaced ponderosa pine and Gambel oak. The green area within the border of Arizona

shows the distribution of ponderosa pine forest within the state. This figure is similar to but not identical to the original image, and is therefore

for illustrative purposes only.

doi:10.1371/journal.pone.0169275.g001
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and their interaction [21–22]. The Century succession extension was parameterized by Hur-

teau et al. [8] using the SSURGO database (NRCS 2013) and soil samples from the installation.

Model spin-up is conducted for the length of time equivalent to the age of the oldest tree

cohort and is used to initialize biomass and soil organic matter pools. The maximum cohort

age in the initial communties layer at Camp Navajo was 120 years, resulting in a 120 year spin-

up period for the model and for this study I used the climate data specific to each climate sce-

nario for spin-up. Soil organic matter decay rates were calibrated following Loudermilk et al.

[29] and Martin et al. [30] such that after model spin-up, soil C values fell within the field-sam-

pled range. Species-specific parameter values for the Century succession extension were

obtained from the CENTURY user guide, published literature, and US Government databases

[9, 27, 31–35] and the distribution of grid cell C values across the landscape compared well

with the distribution of empirical values derived from inventory data (see [8]). The only

change in Century succession parameterization from Hurteau et al. [8] was a decrease in the

probability of establishment from 1 to 0.5 to improve representation of the episodic nature of

ponderosa pine regeneration [36]. The probability of establishment parameter is a global

parameter that affects all species in the simulation and serves as a maximum value. It limits

regeneration only when species-specific parameterizations for growing degree days, drought

tolerance, and minimum January temperature are not limiting. This parameter value does not

impact Gambel oak re-sprouting following disturbance. I used the Century succession exten-

sion to produce annual spatial outputs of net ecosystem exchange (NEE).

Century succession uses monthly averages and standard deviations of minimum and maxi-

mum temperature and precipitation to create distributions for drawing monthly climate

parameters used during simulations. For this study I used CMIP5 climate data from 41 climate

model projections ([37], S1 Table) forced by representative concentration pathway 8.5 (RCP

8.5). RCP 8.5 represents a business-as-usual greenhouse gas emission pathway, with late-cen-

tury radiative forcing of 8.5 W m-2 [38]. I obtained 1/8˚ bias-corrected constructed-analogs

downscaled climate data products from the Downscaled CMIP3 and CMIP5 Climate and

Hydrology Projections archive (http://gdo-dcp.ucllnl.org, [37, 39]). From these climate model

projections, I developed climate data sets for three periods (2010–2019, 2050–2059, 2090–

2099) by calculating the mean daily minimum and maximum temperature and precipitation

from the 41 climate projections. I used the mean daily values to calculate the mean and stan-

dard deviation of monthly minimum and maximum temperature and precipitation for use in

LANDIS-II (S2 Table). Growing season (Apr-Oct) mean minimum and maximum tempera-

ture increased by approximately 2˚C for each climate period and winter precipitation for all

three projected climate periods was greater than for the historic period (S1 Fig).

I used the Leaf Biomass Harvest extension, which is capable of simulating multiple, overlap-

ping treatments, to simulate thinning and prescribed burning [23]. I used the same thinning

and prescribed burning treatment developed by Hurteau et al. [8], which removed approxi-

mately 30% of the live tree C, targeting the youngest cohorts first, and simulated prescribed

burning using a 10-year return interval. The treatments were designed to represent treatments

commonly implemented in this forest type to reduce the risk of stand-replacing wildfire. Har-

vest treatments were implemented on 12% of the installation per year, until all areas designated

for treatment were thinned once and prescribed fire treatments were applied to 10% of the

landscape per year to simulate a 10-year fire return interval. I excluded the same areas from

treatment as Hurteau et al. [8], which included areas with slopes > 14% because they are

potential Mexican spotted owl (Strix occidentalis lucida) nest sites and include many opera-

tional limitations, including the type and timing of treatments (S2 Fig) [40]. I used the

Dynamic fire and fuels extension to simulate stochastic wildfire. This extension accounts for

changes in fuel characteristics that result from thinning, prescribed burning, and wildfire and

Carbon Forest Restoration and Projected Climate
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links fuel conditions with climate and topographic information to simulate wildfire using a

methodology based on the Canadian Forest Fire Behavior Prediction System [41–42]. I used

the same wildfire parameterization developed by Hurteau et al. [8], which used fire data from

the Coconino National Forest to obtain fire size distribution, ignition frequency, and seasonal-

ity. The same fire weather and fuel moisture conditions were used in all climate scenarios to

prevent increasing flammability of fuels with mid- and late-century climate, which allowed me

to isolate the effects of climate and management on forest C dynamics. Thus, the only interac-

tion between climate scenario and wildfire is through the amount of biomass available to burn.

Wildfire simulations used a fire occurrence probability of 2% yr-1, which falls in the lowest bin

of posterior probabilities for this region estimated by Dickson et al. [43] from empirical fire

data. The fuel model parameterization includes an “open” type for when no live trees are pres-

ent in a grid cell and was parameterized to reflect fire spread consistent with a grassland fire. I

used the Dynamic Fire and Fuels extension to produce spatial outputs of annual wildfire sever-

ity. Wildfire severity is scaled from 1 to 5, with 5 equal to stand-replacing fire (�0.9 crown

fraction burned (CFB)) and the effects of fire for 1–4 being a function of the age of the cohorts

and the fire tolerance of the species. For cohorts other than the youngest (�10 years), severity

classes 1 and 2 represent surface fire, severity class 3 includes some torching of mature trees

(0.1�CFB�0.495), and severity class 4 includes some high severity patches (0.495�CFB<0.9).

Emissions from wildfire vary as a function of severity class (Table 1).

Model Sensitivity

Prior to initiating the simulation experiment, I conducted a series of simulations that excluded

management to quantify the effect of projected climate, projected climate and wildfire, and the

reduction in the probability of establishment on TEC. I ran simulations with projected early

(2010–19), mid (2050–59), and late (2090–99) century climate for comparison with historical

(1909–2012) climate simulations from Hurteau et al. [8]. Parameterizations were exactly the

same for the projected climate simulations, including a probability of establishment equal to

1.0, to isolate the effect of climate on TEC. I ran 15 replicate simulations for each climate

period and each simulation excluded both management and wildfire. I compared simulation

year 100 TEC values for the different climate scenarios using ANOVA and Tukey HSD mean

comparison. Year 100 TEC under historical climate was significantly greater (p<0.0001) than

any of the projected climate scenarios, year 100 TEC under early climate was significantly

greater (p<0.002) than both mid- and late-century TEC, and TEC was not significantly differ-

ent between mid- and late-century climate (S3 Table, S3 Fig). In the Century succession exten-

sion, net primary production is influenced by temperature, moisture, nitrogen, and leaf area

index. Given that precipitation variability did not differ substantially between historical and

projected climate, these results demonstrate that increased temperature under the three differ-

ent climate periods is sufficient to drive declines in TEC relative to simulations run using his-

torical climate.

Table 1. Wildfire emissions by severity class. Severity classes 1 and 2 represent surface fire and have

the same parameterization. Severity class 3 includes some torching of mature trees. Severity class 4 includes

some high severity patches. Severity class 5 is stand-replacing fire.

Severity Class Mean Emissions (Mg C ha-1) Standard Deviation

1–2 2.27 1.69

3 3.26 4.59

4 7.54 8.32

5 12.88 7.35

doi:10.1371/journal.pone.0169275.t001
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To quantify the effect of climate-fire interactions on TEC, I ran the same set of climate sce-

narios and included wildfire. The wildfire parameterizations, including fire weather, were held

constant for all climate scenarios. I compared simulation year 100 TEC values for the different

climate scenarios with wildfire using ANOVA and Tukey HSD mean comparison. Year 100

TEC under historical climate was significantly greater (p<0.0001) than any of the projected

climate scenarios and there were no significant differences between projected climate scenar-

ios (S4 Table, S4 Fig).

I evaluated the effect of reducing the probability of establishment on total ecosystem carbon

(TEC) by running simulations that included wildfire and excluded management for the three

climate scenarios used in this study and compared year 100 TEC for scenarios with the two

probability of establishment values for each climate scenario. Using a probability of establish-

ment of 0.5 decreased the year 100 TEC by 5.6 to 11.6 Mg C ha-1 across climate scenarios. The

only statistically significant decrease in TEC occurred for simulations using early (2010–2019)

century climate (S5 Table, S5 Fig).

Simulation Experiment

I ran simulations with two different treatments (control, thin and burn) and three different cli-

mates, early-century (2010–19), mid-century (2050–59), and late-century (2090–99) for a total

of six different scenarios over a 100-year simulation period with a one-year time-step to quan-

tify the effects of treatment and climate on forest C dynamics. I used climate distributions

from the three different periods to determine the effects that a particular climate distribution

would have on the ability of the system to sequester and store C. I calculated mean and 95%

confidence intervals for total ecosystem carbon (TEC, inclusive of live and dead above and

belowground carbon and soil organic carbon) from 15 replicate simulations of each scenario. I

used ANOVA and Tukey HSD mean comparison to compare year 100 TEC values among sce-

narios. To determine the efficacy of treatments in moderating fire severity, I calculated mean

fire severity for each scenario using all time-steps from the 15 replicate simulations. I calcu-

lated mean fire severity for each grid cell by averaging all fire severity values for any time-step

where a fire burned the grid cell for all replicate simulations. I calculated mean and 95% confi-

dence intervals of cumulative fire emissions (wildfire + prescribed fire) for each scenario using

the 15 replicates to determine if there were any treatment-climate interactions. I used ANOVA

and Tukey HSD mean comparison to compare year 100 cumulative fire emission values

among scenarios. To quantify the effects of climate on net ecosystem exchange (NEE) over the

simulation period, I calculated mean cumulative NEE by taking the average cumulative NEE

of the 15 replicate simulations. NEE is the exchange of carbon between the ecosystem and

atmosphere and is simulated from an atmospheric perspective such that negative values indi-

cate the ecosystem is removing C from the atmosphere. The variability between replicate simu-

lations was a function of climate values drawn from the monthly distributions for each time-

step and wildfire occurrence and size drawn from the respective distributions for each time-

step. I conducted all analyses in R using the Raster package and produced figures using the

ggplot2 package [44–46].

Results

Total ecosystem carbon (TEC) showed an initial decline under all scenarios as a result of wild-

fire (Fig 2). Fire size distributions were fairly consistent between scenarios because wildfire

parameterization was held constant between simulations (S6 Fig). Early in the simulation

period, late-century climate had the largest effect on the thin and burn TEC, causing the mean

to be 3–6% lower than all other scenarios. By simulation year 25, thinning treatments were

Carbon Forest Restoration and Projected Climate
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fully implemented and areas slated for prescribed burning had been burned twice, causing

thin and burn TEC to increase as the area affected by high-severity fire decreased because of

treatment (Fig 2). Within the thin and burn scenarios, year 100 TEC under early-century cli-

mate was significantly greater (p = 0.05) than year 100 TEC under late-century climate. All

other thin and burn year 100 TEC comparisons were not significantly different. The effects of

climate were most pronounced in the thin and burn treatments, with the effects of climate

resulting in the highest mean TEC under early-century climate and the lowest mean TEC

Fig 2. Mean total ecosystem carbon for two simulated treatments (control (C), thin and burn (TB)) under three

different climate periods (2010–2019, 2050–2059, 2090–2099) with the same wildfire parameterization over the

100-year simulation period. Shaded areas are the 95% confidence intervals.

doi:10.1371/journal.pone.0169275.g002

Carbon Forest Restoration and Projected Climate
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under late-century climate. In the control simulations, there was little effect of climate on TEC

(Fig 2).

Cumulative fire emissions over the 100 year simulation period were highest for the con-

trol simulations and lowest for the thin and burn simulations (Fig 3). Year 100 mean cumula-

tive wildfire emissions for the thin and burn were early-century 29.8 Mg C ha-1 (sd = 7.7),

mid-century 31.5 Mg C ha-1 (sd = 7.5), and late-century 33.3 Mg C ha-1 (sd = 8.1). Cumula-

tive prescribed fire emissions contributed an additional 6.6–6.8 Mg C ha-1 to cumulative fire

Fig 3. Mean cumulative wildfire and prescribed fire emissions for two simulated treatments (control (C), thin

and burn (TB)) under three different climate periods (2010–2019, 2050–2059, 2090–2099) with the same wildfire

parameterization over the 100-year simulation period. Shaded areas are the 95% confidence intervals.

doi:10.1371/journal.pone.0169275.g003

Carbon Forest Restoration and Projected Climate
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emission values for the thin and burn. Interestingly, although not significantly different, in

the thin and burn scenario late-century climate produced higher cumulative wildfire emis-

sions than the other two climate scenarios. This is in part due to the late-century thin and

burn having about 50% more Gambel oak carbon (0.69 Mg C ha-1) than the early-century

thin and burn (0.45 Mg C ha-1, S7 Fig). Although a relatively small contribution to total eco-

system carbon, re-sprouting Gambel oak increases the fuel continuity and smaller individu-

als are combusted during fire.

The thin and burn treatment caused a substantial decrease in mean wildfire severity, with lit-

tle effect of climate scenario (Figs 4 and S8). In the thin and burn scenarios, mean fire severity

was generally three or lower, which is indicative of some torching. Whereas in the control sce-

narios the majority of grid cells had mean fire severity ranging from 3.5–4.2, indicative of torch-

ing and some crowning (Fig 4). Fire effects were also evident in the mean cumulative NEE, with

control scenarios having 32.8–48.9% of the landscape that was either carbon neutral or a carbon

source over the simulation period (Fig 5, Table 2). The majority (>90%) of the landscape under

the thin and burn scenarios was a moderate carbon sink (-100< -10 Mg C ha-1) over the simu-

lation period, with 7.2–8.9% of the landscape being a strong carbon sink (�-100 Mg C ha-1,

Table 2). Although thinning and prescribed burning shift the age distribution toward older

cohorts (S9 Fig), the competitive release can help sustain growth through dry periods [16].

Fig 4. Mean fire severity from 15 replicate simulations for the control 2010–19 climate (A), control 2050–59

climate (B), control 2090–99 climate (C), thin and burn 2010–19 climate (D), thin and burn 2050–59 climate (E),

thin and burn 2090–99 climate (F) with the same wildfire parameterization over the 100-year simulation period.

The fire severity index ranges from one to five with one being the least and five being the most severe.

doi:10.1371/journal.pone.0169275.g004
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Consistently higher mean fire severity in the control meant a larger fraction of the mature

individuals were being killed by fire. The higher rates of mortality translated into more consis-

tent NEE values as demonstrated by the standard deviation of cumulative NEE (Fig 6). Mean

fire severity in the thin and burn scenarios was 3 (indicative of some torching of mature indi-

viduals) across a large fraction of the landscape. As a result of these fire effects in the thin and

burn scenarios, the standard deviation of cumulative NEE was generally larger and had greater

variability than in the control scenarios (Fig 6). Thus, the stochastic fire effects drive variability

in cumulative NEE.

Fig 5. Mean cumulative net ecosystem exchange (NEE, Mg C ha-1) from 15 replicate simulations for the control

2010–19 climate (A), control 2050–59 climate (B), control 2090–99 climate (C), thin and burn 2010–19 climate (D),

thin and burn 2050–59 climate (E), thin and burn 2090–99 climate (F) with the same wildfire parameterization over

the 100-year simulation period. Negative values indicate a sink and positive values a source of carbon to the

atmosphere. Bin ranges are -100 (�-100), -50 (-100< -10), 0 (-10�10), 50 (>10).

doi:10.1371/journal.pone.0169275.g005

Table 2. Percentage of the landscape that had cumulative net ecosystem exchange (NEE, Mg C ha-1) that was a strong carbon sink (NEE� -100), a

moderate carbon sink (-100<NEE<-10), had little net change in carbon (-10�NEE�10), or was a carbon source (NEE>10).

Scenario NEE�-100 -100<NEE<-10 -10�NEE�10 NEE>10

Control2010 0.5% 56.7% 34.6% 8.2%

Control2050 0.3% 66.9% 31.1% 1.7%

Control2090 0.5% 50.6% 37.1% 11.8%

ThinBurn2010 8.8% 90.9% 0.3% 0%

ThinBurn2050 7.2% 92.0% 0.8% 0%

ThinBurn2090 8.9% 90.1% 1% 0%

doi:10.1371/journal.pone.0169275.t002

Carbon Forest Restoration and Projected Climate
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Discussion

Projected changes in climate and climate-driven changes in large wildfire frequency present

major challenges to conifer forests in the western US [11–12, 47–48] and are likely to exacer-

bate the current complex of stressors that are already impacting these forests [49]. Fire-exclu-

sion has increased the flammability of dry western conifer forests and restoring natural fire

regimes in these systems is central to mitigating the effects of increasingly large disturbance

events [49–50]. Yet, the effects of management actions can persist for decades and how these

actions and the continued provision of ecosystem services will be affected by changing climate

is uncertain [1, 51].

Given the uncertainty about the future global emissions pathway and the role of climate in

determining how much carbon a particular system can maintain, I ran simulations using pro-

jected climate from three different periods. My results demonstrate that the efficacy of forest

restoration treatments that include thinning small diameter trees and restoring surface fires is

maintained under projected climate (Fig 2). The restoration of forest structure and the mainte-

nance of that structure with regular surface fire helped sustain the forest C sink, even under

Fig 6. Standard deviation of cumulative net ecosystem exchange (NEE, Mg C ha-1) from 15 replicate simulations for the control

2010–19 climate (A), control 2050–59 climate (B), control 2090–99 (C), thin and burn 2010–19 climate (D), thin and burn 2050–59

climate (E), thin and burn 2090–99 climate (F) with the same wildfire parameterization over the 100-year simulation period. Bin

ranges are 15 (1–15), 30 (>15–30), 45 (>30–45), 60 (>45–60), 75 (>60–75).

doi:10.1371/journal.pone.0169275.g006
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increasingly hotter climate (Fig 5). By using climate distributions from three different periods,

rather than a continuous trajectory of change, my results demonstrate how forest C dynamics

are affected by 100 years of climate that has stabilized at a particular point along the projected

trajectory of a high emissions future. These findings suggest that if climate were to stabilize at

the late-century conditions simulated in this study, C stability could be maintained with

treatments.

Hurteau et al. [8] found that the influence of management on moderating wildfire effects

on the system were central to maintaining C stocks and the strength of the C sink under cur-

rent climate. Similarly, I found that regardless of the climate scenario, management reduced

mean fire severity over the simulation period (Figs 4 and S8). This is in part due to the fact that

fire is self-limiting and it has been demonstrated that both natural and management fires influ-

ence subsequent wildfire size and the area burned by wildfires [52–53]. Interestingly, the

effects of wildfire were larger than those of climate on carbon dynamics between the different

climate scenarios in the control simulations (Fig 2). This may be a function of simulation

length, with the effects of warmer-drier climate requiring additional time to be realized follow-

ing an initial reduction in TEC resulting primarily from wildfire. Notably, my control simula-

tion TEC results under projected climate show steady decline whereas those of Hurteau et al.

[8] increased using the same wildfire parameterization. This difference was driven by forest

response to climate as demonstrated by S3 and S4 Figs and a shift in the distribution of fire

sizes (S6 and S10 Figs). While the parameterized fire size distribution was held constant

between all model runs, when a fire size is drawn from this distribution, it represents the maxi-

mum fire size. The simulated fire size is a function of fire weather (also held constant between

simulations) and fuels. Under early-century projected climate, mean year 100 Gambel oak C

was 2.02 Mg C ha-1 (sd = 0.54) and under historical climate mean year 100 Gambel oak C was

0.71 Mg C ha-1 (sd = 0.28). The increase in Gambel oak contributed to increased fuel connec-

tivity and enhanced fire spread.

Previous studies have hypothesized the potential for disturbances, such as wildfire, to tran-

sition forests to an alternative vegetation type, such as grassland or shrubland, with a marked

decrease in the ability of the system to sequester and store C [7, 49]. While my results do not

show a complete vegetation type transition with changing climate and wildfire, they do dem-

onstrate the potential for a decline in total ecosystem C and an increase in the proportion of C

stored in Gambel oak in the absence of management (Figs 2 and S1). While the Gambel oak

results were consistent across climate scenarios for the control, the increase in Gambel oak C

under the late-century climate thin and burn scenario suggests a differential response by spe-

cies to changing climate when wildfire behavior is moderated by treatments (S1 Fig). This

result is similar to the findings of Laflower et al. [54] that late-century climate warming and

associated drying altered composition in the more species-diverse forests of the Puget Sound.

The impacts of hotter drought on forests present another challenge to sustaining forest C

stocks and sequestration in the southwestern US. Periods of high atmospheric water demand,

which are likely to become more frequent with warming climate, have produced large-scale

mortality events in the past, with a higher frequency of high vapor pressure deficit events pro-

jected for the future [48, 55]. Furthermore, evaluation of CMIP5 model projections against his-

torical extreme events show that the model bias for warm extremes is low and for cold

extremes is high in the western US [56]. Summer precipitation from monsoon rains is an

important precipitation input for this system and monsoon precipitation is biased low and the

distribution of precipitation shifts to later in the year over the current distribution [57]. Given

the climate model bias and because the modeling framework I used for this study does not

include an explicit parameterization for the effects of punctuated, high vapor pressure deficit

events, my results carry the caveat that widespread mortality could undermine the sink
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strength and carbon stock projected under late-century climate. However, the thin and burn

scenario is likely to be less impacted by drought than the control because of reduced water

competition in the less dense forest, an outcome that has been demonstrated in empirical stud-

ies of southwestern ponderosa pine [9, 16, 35].

Another source of uncertainty in my results is the interaction between climate and wildfire.

I kept wildfire size distributions and ignition probabilities consistent between simulations to

isolate the effects of projected climate and management on C dynamics. As a result, the only

pathway through which climate can influence wildfire in the model is through the amount of

biomass available to burn. In the southwestern US, the area burned from 2003–2012 increased

by 1266% over the 1973–1982 average as a result of increasing spring and summer temperature

and earlier spring snowmelt [58]. If this trend of increasing area burned with warming climate

holds, as is projected for other regions [11–12], I would expect a steeper decline in TEC than

occurred in my control simulations.

The current suite of issues facing forest managers is likely to be compounded by on-going

climate change. In forests of the southwestern US, increasingly large wildfires and drought

already carry ecological and socioeconomic costs [49, 59], costs that have the potential to rise

with changing climate. While managing forests for an uncertain climate future requires a

diversity of approaches [60], the results of this study suggest that restoring forest structure and

surface fire to southwestern ponderosa pine provides an opportunity to maintain system struc-

ture and function, even under the projected warmer, drier future that is likely to have

increased fire frequency.

Supporting Information

S1 Fig. Climate data means and standard deviations used in the simulations. Mean monthly

minimum and maximum temperature, and mean monthly precipitation for the three pro-

jected climate periods (early: 2010–19, mid: 2050–59, late: 2090–99) and the historic period

(1909–1912).

(TIFF)

S2 Fig. Map of Camp Navajo management areas. The landscape was classified based on fire

severity from a series of random ignitions to determine areas with the greatest risk of high-

severity fire. Grid cells within the landscape were binned based on mean fire severity. This sur-

face was combined with a slope surface to identify areas for treatment. Areas excluded from

management were excluded because slopes >14% limit mechanical harvesting and these areas

have the highest likelihood of providing Mexican spotted owl habitat. Areas selected for treat-

ment were ranked based on risk of high-severity fire, with the highest risk areas treated first.

The colors represent the management area boundaries as determined from fire severity risk

and slope.

(TIF)

S3 Fig. Year 100 total ecosystem carbon without wildfire. Comparison of year 100 total eco-

system carbon (TEC) for simulations using projected early (2010–19), mid (2050–59), and late

(2090–99) century climate and historical (1909–2013) climate without management or wildfire.

With the exception of climate scenario, all parameters were held constant and probability of

establishment was equal to 1. Plots constructed from 15 replicate simulations of each scenario.

(TIFF)

S4 Fig. Year 100 total ecosystem carbon with wildfire. Comparison of year 100 total ecosys-

tem carbon (TEC) for simulations using projected early (2010–19), mid (2050–59), and late

(2090–99) century climate with wildfire and historical (1909–2013) climate with wildfire. With
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the exception of climate scenario, all parameters were held constant and probability of estab-

lishment was equal to 1. Plots constructed from 15 replicate simulations of each scenario.

(TIFF)

S5 Fig. Year 100 total ecosystem carbon comparison of seedling establishment probabili-

ties. Comparison of year 100 total ecosystem carbon (TEC) for simulations using projected

early (top, 2010–19), mid (middle, 2050–59), and late (bottom, 2090–99) century climate with

wildfire for seedling establishment probabilities of 0.5 and 1.0. Plots constructed from 15 repli-

cate simulations of each scenario.

(TIFF)

S6 Fig. Distribution of fire sizes. Frequency distributions of fire size constructed from 15 rep-

licate simulations of each scenario. Panels are no management with wildfire in the left column

and thinning and burning with wildfire in the right column for early (top, 2010–19), mid

(middle, 2050–59), and late (bottom, 2090–99) century climate.

(TIFF)

S7 Fig. Mean aboveground carbon for Gambel oak. Mean aboveground carbon for gambel

oak (QUGA) for two simulated treatments (control (top), thin and burn (bottom)) under

three different climate periods (2010–2019, 2050–2059, 2090–2099) with the same wildfire

parameterization over the 100-year simulation period. Shaded areas are the 95% confidence

intervals. Note that the y-axis scales differ between plots.

(TIFF)

S8 Fig. Area burned by mean fire severity. Histograms of area burned (ha) by fire severity

class constructed from 15 replicate simulations of each scenario. Control simulations are in

the left column and thin and burn simulations are in the right column for early (top, 2010–19),

mid (middle, 2050–59), and late (bottom, 2090–99) century climate.

(TIFF)

S9 Fig. Distribution of median tree cohort ages. Distribution of median tree cohort ages in

year 100 for the control (top row) and thin and burn scenarios (bottom row) for early (left,

2010–19), mid (middle, 2050–59), and late (right, 2090–99) century climate.

(TIFF)

S10 Fig. Distribution of fire sizes under historic climate. Frequency distribution constructed

from 15 replicate simulations of the control scenario with wildfire from Hurteau et al. (2016).

(TIFF)

S1 Table. CMIP5 climate projections and modeling groups.

(PDF)

S2 Table. Climate means and standard deviations used in simulations. Monthly mean and

standard deviation of minimum and maximum monthly temperature and precipitation used

in the LANDIS-II simulations. Values were calculated from CMIP5 climate projections forced

using RCP 8.5.

(PDF)

S3 Table. Comparison of year 100 total ecosystem carbon without wildfire. Comparison of

year 100 total ecosystem carbon for simulations using early (2010–19), mid (2050–59), and

late (2090–99) century climate and historical (1903–2013) climate without management or

wildfire. Mean separation using Tukey’s HSD and15 replicate simulations of each scenario.

(PDF)
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S4 Table. Comparison of year 100 total ecosystem carbon with wildfire. Comparison of

year 100 total ecosystem carbon for simulations using projected early (2010–19), mid (2050–

59), and late (2090–99) century climate with wildfire and historical (1909–2013) climate with

wildfire. Mean separation using Tukey’s HSD and 15 replicate simulations of each scenario.

(PDF)

S5 Table. Comparison of seedling establishment probabilities. T-test comparison of year

100 total ecosystem carbon for simulations using projected early (2010–19), mid (2050–59),

and late (2090–99) century climate with wildfire for seedling establishment probabilities of 0.5

and 1.0.

(PDF)
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