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Preface	  

Conducting optimization under conditions of uncertainty has long been a very difficult 
problem. Thus, when analysts have done optimization under uncertainty, they have 
introduced severe limitations to restrict how uncertainties can be factored in. This paper 
describes a new approach to optimization under uncertainty that is aimed at finding the 
optimal solution to a problem by designing a number of search algorithms or schemes in 
a way that reduces the dimensionality constraints that analysts have had to contend 
with until now. 
 
The specific purpose of this paper is to convert a provisional patent application entitled 
Portfolio Optimization by Means of a Ranking and Competing Search by the author into 
a published volume available for public use. The provisional patent application was filed 
with the United States Patent and Trademark Office on July 30, 2012. Given the goal of 
making this a publication for public use, this paper has been structured differently—
more in accord with a scientific paper than a patent application. Also, some background 
materials and examples from the author’s past studies have been added to illustrate the 
new approach and contrast it and its associated algorithms with those of existing 
approaches, and some editorial changes have been made to make it easier for general 
audiences to comprehend. The ideas and techniques presented in this paper may be 
used by anyone for any purpose with citation. 
 
This paper may be of interest to designers of optimization search algorithms. 
Businesses in both the public and private sectors may also find this paper of use, 
because they can incorporate the new approach and the developed algorithms into their 
optimization models to better deal with the future, which is rife with uncertainty. 
 
The research behind this new search approach and the multiple algorithms that go with 
it was conducted as part of a series of previously released RAND studies by Brian G. 
Chow, Richard Silberglitt, Scott Hiromoto, Caroline Reilly, and Christina Panis: 
 

 Toward Affordable Systems II: Portfolio Management for Army Science and 
Technology Programs Under Uncertainties (2011) 

 Toward Affordable Systems III: Portfolio Management for Army Engineering and 
Manufacturing Development Programs (2012). 

 
These in turn built on a number of earlier studies on optimizing under conditions of 
certainty, including 
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• Toward Affordable Systems: Portfolio Analysis and Management for Army 
Science and Technology Programs, Brian G. Chow, Richard Silberglitt, and Scott 
Hiromoto (2009) 

• A Delicate Balance: Portfolio Analysis and Management for Intelligence 
Information Dissemination Programs, by Eric Landree, Richard Silberglitt, Brian 
G. Chow, Lance Sherry, and Michael S. Tseng (2009). 

 
The Toward Affordable Systems series was conducted in the RAND Arroyo Center and 
sponsored by the Deputy Assistant Secretary of the Army (Cost and Economic 
Analysis), Office of Assistant Secretary of the Army (Financial Management and 
Comptroller). The research behind A Delicate Balance was executed within the 
Acquisition and Technology Policy Center of the RAND National Defense Research 
Institute (NDRI) and sponsored by the National Security Agency.  
 
RAND Arroyo Center, part of the RAND Corporation, is a federally funded research and 
development center (FFRDC) sponsored by the United States Army. Also an FFRDC, 
NDRI is sponsored by the Office of the Secretary of Defense, the Joint Staff, the Unified 
Combatant Commands, the Navy, the Marine Corps, the defense agencies, and the 
defense Intelligence Community. 
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Summary	  

American mathematician George Dantzig developed the simplex algorithm to solve 
linear programming problems, but he also pioneered solving such problems under 
uncertainty in 1955. To date, linear and nonlinear programming problems under 
uncertainty have been extensively studied. Those approaches that have found 
applications in businesses, whether in the public or private sector, have had to impose 
severe limitations on the numbers of decision variables, uncertain parameters, and 
uncertain scenarios that can be used. Otherwise, the combinatorial possible solutions 
would grow exponentially and prohibit even today’s most powerful computers (or those 
in the foreseeable future) from exhausting all the possibilities in finding the optimal 
solution.  
 
This paper introduces a new approach to allow these limitations to be greatly relaxed 
and describes a number of search algorithms or schemes that have been shown to 
have practical applications. This approach and its associated search algorithms have a 
key feature—they generate typically 10,000 uncertain scenarios or future states of the 
world according to their uncertainty distribution functions. While each of these scenarios 
is a point in the larger uncertainty space, the originally uncertain parameters are 
specified for the scenario and are, thereby, "determined" or "certain." Thus, the solvable 
mixed-integer linear programming model can be used "under certainty" (i.e., 
deterministically) to find the optimal solution for that scenario. Doing this for numerous 
scenarios provides a great deal of knowledge and facilitates the search for the optimal 
solution—or one close to it—for the larger problem under uncertainty. This approach 
allows one to decompose the problem under uncertainty into 10,000 solvable problems 
so that one can learn about the role each project plays in these 10,000 samples of the 
uncertainty space. Doing so allows one to avoid the impossible task of performing 
millions or trillions of searches to find the optimal solution for each scenario, yet enables 
one to gain just as much knowledge as if one were doing so. 
 
The approach is to use transparent reasoning, as opposed to mathematical formulas, to 
design search schemes or algorithms to find the global optimum and not get trapped at 
one of the local optima. This approach relies on arguments from devil’s advocates to 
uncover the shortcomings of an algorithm in terms of why under certain situations it will 
not lead to the global optimum. Once the weaknesses of a given algorithm are 
identified, hopefully the original algorithm can be modified to remove the shortcomings, 
or another algorithm can be designed to plug the reasoning hole of the original 
algorithm.  
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Experience with this approach has been good. However, if the shortcomings in these 
algorithms cannot be eliminated, this approach would have to rely on the simplicity of 
nonmathematical reasoning so that many analysts or even “crowd wisdom” can be used 
to devise completely different algorithms to do the job. Because all approaches, 
including this one, face the risk of potentially missing the global optimum, this approach 
based on reasoning can open a new way for drawing in talents from the 
nonmathematical world to devise search schemes to tackle this very difficult task of 
optimization under uncertainty. 
 
These reasonable search algorithms are easy to understand. Implementing them 
amounts to creating a flow chart and does not require the use of complicated 
mathematics or formulas; as a result, the approach allows for wider adoption by 
analysts and organizations that possess different skill sets. 
 
As described in two illustrative search schemes (SS-8 without replacement and SS-8 
with replacement) discussed in the paper, the approach draws on the common-sense 
and commonly practiced ideas used in business decisions and daily activities.  
 
The SS-8 without replacement search scheme is based on the idea of how to create a 
project team. Suppose a project sponsor has some “use-it-or-lose-it” money at the end 
of a fiscal year. While a project must be issued now within a broad study area, the 
sponsor will assign specific tasks over the course of the one-year project, but which 
tasks those will be is unclear. The company’s policy and the sponsor’s requirement, 
however, are such that the project leader must specify the team members at the 
project’s start, after which it will not be possible to change them. Under such 
circumstances, it makes sense to draw up a list of tasks that the sponsor may ask the 
project team to do and to start by then selecting the person (by analogy, the first project 
selected) suitable for the largest number of potential task combinations that can be 
anticipated. The next step would be to find the person (by analogy, the second project 
selected) to best complement the first in technical and managerial skills so that the pair 
is suitable for the largest number of possible task combinations. Similarly, the third 
person (by analogy, the third project selected) would be found to best complement the 
first two, and so on. 
 
The second search scheme (SS-8 with replacement)1 accounts for the possibility that if 
a different person were selected as the first person, the skill sets and personal 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1The terms without replacement and with replacement refer to whether search is conducted with a 

unique choice of the first team member (the first version) or whether the search is conducted with each 
of the possible people as the first team member.  
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chemistry to complement this different person might lead to a team composition 
different from the one based on SS-8 without replacement. 
 
Mathematically, these approaches are very convenient. Let there be N persons to 
choose from in forming the project team. Instead of looking at 2N—or easily millions or 
trillions of possible team compositions—the two search schemes together would 
generate only N possible project teams (by analogy, any project could be the first, but 
thereafter the choices would be determined by looking at results for the uncertain 
scenarios used), thus enormously reducing the complexity of the search.  
 
This type of reasoning in designing and using complementary algorithms can give 
analysts a way—which may either be more transparent than mathematics or at the least 
a supplement to it—to uncover and mitigate logical lapses. Also, analysts using this 
approach may feel more confident that, even if these algorithms do not find the global 
optimum, the local optima they find should be near the global one, because the logic of 
these algorithms are used often and work well in the analysts’ other daily activities. 
 
Applications of this approach were developed in a series of studies called Toward 
Affordable Systems (Toward Affordable Systems II and Toward Affordable Systems III) 
that were sponsored by the Deputy Assistant Secretary of the Army (Cost and 
Economic Analysis), Office of Assistant Secretary of the Army (Financial Management 
and Comptroller). This paper discusses two of these applications. Applications of this 
approach that have appeared in Toward Affordable Systems II involved 75 projects or 
decision variables and 75 independent uncertain parameters. Each parameter 
corresponds to a project that has a 90 percent chance of successful completion and a 
10 percent chance of failure. 
 
The applications that appeared in Toward Affordable Systems III involve 26 or 183 
projects; 26 uncertain costs in procuring a system derived from each project; and one 
more uncertain parameter corresponding to the budget for acquiring, operating, and 
maintaining the needed systems.  
 
The applications with 26 or 183 projects are compared to two typical approaches: 
benefit/cost ratios and mixed-integer linear programming. The comparison shows that 
this new approach will save money for any given confidence level for meeting 
requirements or will yield higher confidence for equal cost.  
 
Each of the algorithms developed in this paper takes minutes or hours to find the 
optimal solution, even for uncertainty problems involving substantially more decision 
variables (75 used here versus typically ten in other methods), uncertain parameters (75 



 

	   -‐	  viii	  -‐	  

used here versus typically a few in other methods), and uncertain scenarios (10,000 
used here versus a few in other methods—or, alternatively, more than 10,000 used but 
then restricting variables and/or parameters to around ten) than other methods would 
have allowed. Thus, the relatively shorter run time offers the possibility of performing 
several complementary algorithms for the same problem, enhancing the chance of 
finding the global optimum.  
 
The objective function is chosen to be the highest chance of meeting the requirements 
within a budget. This can be a way to introduce the idea of a confidence level in dealing 
with uncertainty. Then again, if analysts prefer using more conventional objective 
functions, such as minimizing expected cost or regret, this method can be modified to 
use such objective functions with other changes in the formulation and search 
algorithms, which may be akin to something as simple as moving from a simple average 
to weighted sums.  
 
This approach is also suitable for parallel computing, because the 10,000 runs for each 
data point, the runs of different data points, and the runs for different algorithms can all 
be performed independently and simultaneously. The current advances in parallel 
computing and the rapid decline in cost of on-demand computer power favor this 
multiple search approach.  
 
This paper proposes a common platform so that solutions derived from different 
approaches and search algorithms can be objectively compared to determine which 
gives the best solution. This implies that the platform is supported by a library of test 
problems with known solutions so that different algorithms can be tested and compared. 
As the platform and its database accumulate more and more comparisons, there will be 
better confidence about which algorithm works the best for which types of problems.  
 
This paper also proposes to extend the applications of the approach and associated 
algorithms in several dimensions: 

 Apply it to different types of problems beyond the current focus on project 
portfolio problems under uncertainty. One may start the expansion with other 
resource allocation problems, such as production planning. 

 Use other objective functions for the uncertainty problem, such as the 
minimization of expected total cost or regret. 

 Program the multiple search algorithms for parallel computing to shorten the run 
time. 
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Finally, this paper proposes a systematic examination of approaches and their search 
algorithms, with the goal of combining their individual strengths and mitigating their 
weaknesses to give users ways to better perform optimization under uncertainty. 
 
Because uncertainties are inherent in input data and the future, better ways to factor 
uncertainties into consideration are critically important for any type of decisionmaking.  
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Abbreviations	  	  

ASIC application-specific integrated circuit 

C number of constraints  

CIFS/SMB common Internet file system/server message block 

CPLEX IBM ILOG CPLEX Optimization Studio 

CPU central processing unit 

CRT cathode ray tube 

CSV comma-separated values  

EEPROM electrically erasable programmable read-only memory 

EPROM erasable programmable read-only memory 

FP feasible percentage  

FPGA field programmable gate array 

FSWs future states of the world 

GAMS General Algebraic Modeling System 

GPS global positioning system 

HTML HyperText Markup Language 

IMP implementation budget  

LAN local area network 

LCD liquid crystal display 

N number of projects 

OP optimal portfolio or global optimal portfolio 

PDA personal digital assistant 

Q number of uncertain input parameters  

R number of requirements 

R&D research and development 

RAM random access memory 

RHEL Red Hat Enterprise Linux  

RLC remaining life-cycle budget 

ROM read-only memory 

RP number of projects outside the working optimal portfolio 

RRD remaining research and development budget 
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scenario short for uncertain scenario 

SP number of projects in the working optimal portfolio 

SS search scheme 

SS8-NR Search Scheme 8 without Replacement 

SS8-SR Search Scheme 8 with Single Replacement 

SSH Secure Shell Protocol 

TIMP total implementation  

TRj minimum total value that all selected projects must provide to meet 
requirement j 

TRLC total remaining life-cycle 

TRRD total remaining research and development 

USB universal serial bus 

WAN wide area network 

WiMAX worldwide interoperability for microwave access 

WOP working optimal portfolios 
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Chapter	  One:	  Introduction	  

Background	  

Nikolaos Sahinidis classified the theory and methodology that have been developed to 
cope with the complexity of optimization problems under uncertainty into three main 
approaches.2 Stochastic programming covers the two-stage uncertainty programming 
paradigm in which the first-stage variables are those that have to be decided upon 
before the actual realization of the uncertain parameters at the second stage in the 
future. The second category is fuzzy mathematical programming. Unlike stochastic 
programming, fuzzy programming allows constraints to be violated within some lower 
and upper bounds. The third category is stochastic dynamic programming, which deals 
with multistage decision processes. The approach proposed in this paper belongs to the 
first approach—stochastic programming. 
 
Stochastic programming itself was pioneered by Dantzig and Beale. Both independently 
proposed a stochastic model formulation in 1955.3 Extensive studies have since 
followed.4 The most important formulation for practical applications remains one that 
expresses the uncertainty problem in a linear programming model5 in which both the 
objective function and constraints are linear with respect to the decision variables. Once 
the uncertainty problem is linearized, many developed methods, including Dantzig’s 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2Nikolaos Sahinidis, “Optimization Under Uncertainty: State-of-the-Art and Opportunities,” 

Computers and Chemical Engineering 28, Elsevier Ltd., 2004, pp. 971–983. He further classified 
stochastic programming into recourse models, robust stochastic programming, and probabilistic models, 
and he further classified fuzzy programming into flexible programming and possibilistic programming. 

3George Dantzig, “Linear Programming Under Uncertainty,” Management Science, Vol. 1, Nos. 3 
and 4, April–July 1955, pp. 197–206; and E. M. L. Beale, “On Minimizing a Convex Function Subject to 
Linear Inequalities,” Journal of the Royal Statistical Society, Vol. 17, No. 2, 1955, pp. 173–184. 

4As of February 27, 2013, a Google Scholar search indicated that Dantzig’s paper had been cited 
1,190 times, and Beale’s paper had been cited 537 times. Some recent articles are Teemu Pennanen, 
“Convex Duality in Stochastic Optimization and Mathematical Finance,” Mathematics of Operations 
Research, Vol. 36, No. 2, May 2011, pp. 340–362; Dimitris Bertsimas, Vineet Goyal, and Xu Andy Sun, 
“A Geometric Characterization of the Power of Finite Adaptability in Multistage Stochastic and Adaptive 
Optimization,” Mathematics of Operations Research, Vol. 36, No. 1, February 2011, pp. 24–54; Anthony 
Man-Cho So, Jiawei Zhang, and Yinyu Ye, “Stochastic Combinatorial Optimization with Controllable Risk 
Aversion Level,” Mathematics of Operations Research, Vol. 34, No. 3, August 2009, pp. 522–537; Xin 
Chen, Melvyn Sim, Peng Sun, and Jiawei Zhang, “A Linear Decision-Based Approximation Approach to 
Stochastic Programming,” Operations Research, Vol. 56, No. 2, March–April 2008, pp. 344–357; and 
John Birge and Francois Louveaux, Introduction to Stochastic Programming, Second Edition, Springer 
Series on Operations Research and Financial Engineering, 2010. 

5In this paper, a linear programming model—whether with or without mentioning “deterministic” or 
“certainty”—means the same thing. The seemingly superfluous descriptor is used to help better 
distinguish from models used under uncertainty. 
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simplex, can be applied to find the optimal solution.6 However, the dimensionality (i.e., 
the number of variables, parameters, and scenarios) continues to be a limitation to the 
size of the uncertainty problem that can be dealt with. 
 
A study by Zhang, Prajapati, and Peden is a good illustration of this dimensionality 
issue, and it is the focus of this paper, which aims to relax the dimensionality limitation. 
In studying production planning under uncertainty, they observed: “To perform an all-
inclusive study of production planning with all the uncertainties, however, is impossible, 
and a more viable approach is to address one or a few uncertainties in a stochastic 
model to derive optimal solutions.”7 Consequently, they allowed only the demand to be 
uncertain. Moreover, they restricted the uncertain demand to only three uncertain 
scenarios, or future states of the world (FSWs).8 They studied the other uncertain 
parameters through sensitivity analyses using one-by-one sensitivities around their 
solution. Unfortunately, sensitivity analysis can only tell one that the identified solution 
remains optimal with respect to uncertainties around it; using sensitivity analysis does 
not make the variables and parameters used in the sensitivity analysis a part of the 
optimization process itself. This paper aims for a new approach that allows optimization 
to be performed for a problem that has more decision variables, uncertain parameters, 
and uncertain scenarios treated than analysts have been able to deal with until now. 
 
Since the mixed-integer linear programming used in this paper is non-convex, it is 
important to review the key methods that are being used to find the optimal solution for 
non-convex problems, for which there may be many local optima solutions. Trying to get 
beyond these local solutions is the focus of various non-convex programming methods. 
Bellman developed dynamic programming,9 which provides an efficient algorithm for the 
knapsack problem.10 However, dynamic programming does not deal with the uncertain 
aspects of the problem. Another method is simulated annealing,11 which initially 
searches broadly but, as the search goes on, focuses the search in a more 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6A good standard text on linear programming is David Luenberger and Yinyu Ye, Linear and 

Nonlinear Programming, Third Edition, International Series in Operations Research and Management 
Science, Springer, 2008. 

7Xinhui Zhang, Meenakshi Prajapati, and Eugene Peden, “A Stochastic Production Planning 
Model Under Uncertain Seasonal Demand and Market Growth,” International Journal of Production 
Research, Vol. 49, No. 7, April 1, 2011, pp. 1957–1975. 

8An FSW in a given run is defined as an outcome determined by the specific value for each 
uncertain parameter. In this paper, typically 10,000 FSWs are generated to form samples or to constitute 
a subset of the uncertainty space. In some literature, a FSW is called a scenario. 

9Richard Bellman, Dynamic Programming, Princeton University Press, 1957.  
10The “Knapsack problem” attempts to maximize the value of items chosen to include in the pack 

while satisfying a weight constraint and sometimes a cost constraint. In its general formulation, this is in 
the class of problems for which there is no known algorithm that can solve the general problem in 
polynomial (fast) time or verify that a solution is within a certain distance of optimality in polynomial time. 

11S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science, 
Vol. 220, No. 4598, 1983, pp. 671–680. 
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concentrated area. Genetic algorithms12 attempt to break away from local solutions 
through a process of mutation and evolution. Cutting plane algorithms13 seek to exclude 
more and more of the feasible region by inserting “cuts” to eliminate parts of the region 
not expected to contain the overall optimal answer. 
 
Typically, these approaches work well on some classes of problems and not so well on 
others. None of these algorithms can be guaranteed to converge in polynomial time14 
for the general non-convex problem or for the project portfolio problem addressed here. 
Moreover, the author is unable to find anything in the literature that indicates that these 
methods are particularly suited to solving the project portfolio problem under uncertainty 
that this paper addresses. 
 
Analysts at RAND have a long and strong presence in the research and development 
(R&D) of methods and tools for planning under uncertainty. From the start, Dantzig and 
Bellman performed the groundbreaking work mentioned above at RAND. Davis has 
provided highlights of RAND’s treatment of uncertainty in national security analysis over 
the last two decades.15 Early RAND work developed optimal portfolios using 
DynaRANK16 but assumed a good deal of linearity. More recent work, such as with the 
Portfolio Analysis Tool (PAT), has not sought optimization;17 rather, it has sought to 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12David E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Addison 

Wesley, 1989, p. 41. 
13There are quite a few articles on the use of cutting planes to solve non-convex or non-smooth 

problems. 
14According to the National Institute of Standards and Technology, polynomial time is the 

execution time of a computation, m(n), that is no more than a polynomial function of the problem size, n. 
More formally m(n) = O(nk) where k is a constant (Paul E. Black, "Polynomial Time," in Dictionary of 
Algorithms and Data Structures [online], Paul E. Black, ed., U.S. National Institute of Standards and 
Technology. August 13, 2004). Polynomial time is fast. However, it is not fast enough for solving the 
types of problems this paper addresses with brute force. That is to say, it is too slow to find the optimal 
solution by exhaustive search of all the possible solutions, when these possible solutions grow 
exponentially.  

15Paul Davis, Lessons from RAND’s Work on Planning Under Uncertainty for National Security, 
Santa Monica, Calif.: RAND Corporation, TR-1249-OSD, 2012. 

16Richard Hillestad and Paul Davis, Resource Allocation for the New Defense Strategy: The 
Dynarank Decision Support System, Santa Monica, Calif.: RAND Corporation, MR-996-OSD, 1998. 

17This paper, of course, discusses instances in which optimization is feasible and useful, 
instances in which relevant uncertainties and constraints can be expressed mathematically with 
uncertain parameters, and instances in which those parameters can be characterized with known 
distribution functions. Not all problems of uncertainty meet these criteria. In strategic planning, for 
example, policymakers frequently do not have well-defined and stable multi-attribute objective functions 
and may not yet recognize all the considerations at work and how they interact. Further, some of those 
considerations will change. In other cases, successful optimization requires understanding complex joint 
probability distributions because variables of the problem are correlated. Such interactions are frequently 
not understood even qualitatively, much less with the accuracy that would allow meaningful joint 
distributions to be specified. Much of RAND's work on exploratory analysis under uncertainty and on 
robust decisionmaking under deep uncertainty relates to cases for which optimization is not feasible, 
although optimization tools can be a very useful part of the toolbox for analysis. For details, see Davis, 
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emphasize iterative discussions with policymakers in a search for “balance” that reflects 
values and constraints that are not understood ahead of time but that can emerge as 
policymakers see consequences of different allocations in the right framework.18 Other 
RAND work has also emphasized planning for flexibility, adaptiveness, and robustness. 
While this paper’s measure of a portfolio’s probability of success in the experimental 
space is a particular kind of robustness measure, others at RAND and elsewhere have 
used “regret.”19 Other relevant RAND work deals with dimensionality problems by 
characterizing the scenario space, looking for ways to segment that space, finding and 
parameterizing illustrative cases for each segment to use in a “spanning set of test 
cases,” and screening the mathematically permissible portfolios to find those worthy of 
more detailed study by virtue of being attractive (near the efficient frontier) by at least 
one of the possible assumption sets used for testing.20 
 
The approach presented here builds off the previous work, both inside RAND and out. 
But it takes a different approach. Instead of using mathematical equations and 
techniques for developing search algorithms, the approach discussed in this paper 
relies on using reasoning to determine why an algorithm so designed would have a 
reasonable chance of reaching the global optimal solution, as opposed to being trapped 
in one of the local optima solutions. Moreover, past applications of this approach 
indicate that algorithms based on reasoning can skip many intermediate search steps 
and, thus, find the global optimal solution quickly. Consequently, multiple search 
algorithms can be performed for the same problem within the same run time that would 
be required to perform a single algorithm used in other methods, thus enhancing the 
chance of finding the global optimal solution. This is especially so when these search 
algorithms are designed to cover each other’s shortcomings in possibly missing the 
global optimal solution. 

Objectives	  

As noted, the approaches that have been most practical and that have found 
applications in the public or private sector often must severely limit the numbers of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2012; and Robert Lempert, David Groves, Steven Popper, and Steven Bankes, “A General, Analytic 
Method for Generating Robust Strategies and Narrative Scenarios,” Management Science, Vol. 52, No. 
4, April 2006, pp. 514–552. 

18Paul Davis and Paul Dreyer, RAND’s Portfolio Analysis Tool (PAT): Theory, Methods, and 
Reference Manual, Santa Monica, Calif.: RAND Corporation, TR-756-OSD, 2009. 

19Robert Lempert, Steven Popper, and Steven Bankes, Shaping the Next One Hundred Years: 
New Methods for Quantitative Long-Term Policy Analysis, Santa Monica, Calif.: RAND Corporation, MR-
1626-RPC, 2003. 

20Paul Davis, Russell Shaver, Gaga Gvineria, and Justin Beck, Finding Candidate Options for 
Investment Analysis: A Tool for Moving from Building Blocks to Composite Options (BCOT), Santa 
Monica, Calif.: RAND Corporation, TR-501-OSD, 2008. 
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decision variables, uncertain parameters, and scenarios treated.21 Otherwise, the 
combinatorial possibilities would grow exponentially and prohibit even the most powerful 
computers (now or in the foreseeable future) from exhausting all the possibilities in 
finding the optimal solution. This paper introduces a new approach that greatly relaxes 
the restrictions and describes a number of search algorithms that have been 
demonstrated with practical applications. Also, this paper proposes establishing a 
common platform22 so that solutions derived from different approaches and search 
algorithms can be objectively compared to determine which give the best solution. 
 
Being able to consider many more facets of uncertainty is especially important because 
real-world decisions in business and government are rife with uncertainties, as in cases 
in which decisionmakers allocate resources without knowing confidently the 
consequences of the various options. 
 
The approach and associated algorithms in this paper can be applicable to a number of 
resource allocation situations: 

 Which internal R&D projects should a company select to fund to best meet an 
uncertain future, when it cannot afford to fund them all? 

 Which new products should a company promote to produce the highest 
expected profit under an uncertain future, when its marketing budget and 
personnel are limited? 

 What mix of products should a factory produce to generate the highest 
expected profits in the future, when its capacity and manpower are limited 
and the factors of production for products that the factory can produce are 
different? 

 What mix of oil and gas wells and at what locations (drilling holes near 
producing wells or in new fields) should an exploration company invest in for 
highest expected profit? 

 What numbers and types of trucks and aircraft should a transportation 
company acquire for long-term planning? 

 How much operating and investment funding should be allocated to each 
department within a company, especially when it is facing a budget cut? 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
21For this context, an uncertain scenario or, simply, a scenario corresponds to a particular choice 

of settings for all the uncertain parameters of the problem. That is, it is a computational case. The 
choices of settings may be based on random draws from the parameters’ probability distributions. 

22In such a common platform, a number of problems with various types of decision variables, 
uncertain parameters, and scenarios will be designed as standard problems for testing. Better yet, these 
standard problems would have their solutions already known. Those who wish to test their approaches 
and search algorithms will apply them to the standard problems to find the optimal solutions or portfolio 
of selected projects. The platform is equipped to run these optimal solutions and compare, for example, 
which one has the highest probability of meeting all requirements within budget. 



 

	   -‐	  6	  -‐	  

Magnitude	  of	  the	  Dimensionality	  Problem	  

It is worthwhile to briefly review just how serious dimensionality problems are. For 
example, let there be 75 projects to choose from. Because one can choose to include or 
reject each of the projects, there are 275 (3.8x1022) possible portfolios.23 Assume that 
there are 10,000 scenarios to study and that studying each possible portfolio under 
each scenario with a linear programming model24 takes 0.1 seconds. Using this 
approach to exhaustively study all possible combinations to find the optimal portfolio 
would take 1.2 x1018 years. Even if one allowed for continued growth in computational 
power, this would not reduce this number meaningfully. With a smaller challenge, say 
only ten projects but with 10,000 scenarios, finding the solution by exhausting all 
combinations would still take 119 days. 
 
To cope with such dimensionality, analysts use a variety of simplifying techniques. For 
example, they may consider only a small subset of the possible portfolios (perhaps ten), 
basing their choice on their insights about the varied challenges raised by different 
classes of scenarios and varied ways to cope with them. Alternatively, they might 
construct the ten portfolios to represent the range of opinions being expressed by 
stakeholders. Yet another approach is to use a screening approach to eliminate all but a 
relatively small number of portfolios.25 If the purpose is to find the optimal portfolio, such 
an approach is severely limited, and it is highly unlikely that the optimal portfolio will be 
among the ten chosen for analysis in the first place. Even if the number of portfolios 
chosen for analysis were greatly expanded (for example, to 100), the number of 
possible projects considered would still be small. Thus, a new search strategy that 
examines many more possible portfolios would be of great interest.26 
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

23If partial-funding options are included, then the number of cases is even greater, say 475 if the 
choices are to fully fund, to fund at the 2/3 level, to fund at the 1/3 level, or not to fund. 

24The linear programming models considered in this paper are mixed-integer linear programming 
models—models in which the objective function is linear, the constraints are linear, and some of the 
variables must be integers.  

25As an example, Davis et al., 2008, describes an approach that generates all the composite 
options (portfolios) and then eliminates all except those that are relatively close to the efficient frontier in 
at least one perspective about the relative importance of objectives and at least one set of assumptions 
about the values of a few key parameters. The surviving options are then assessed in more detail using 
both objective and subjective considerations. With modest numbers of building-block programs (what 
would be called projects here)—say, 15—it is possible to do the screening with a desktop program. With 
larger but still relatively small numbers, the authors used a genetic algorithm method developed by Paul 
Dreyer at RAND. 

26Because projects can be funded at different levels, the limitation is actually much more severe. 
Considering three different levels of funding, each project has four, not two, choices: not selected, 
selected at the first level, selected at the second level, and selected at the third level. Thus, the number 
of possible portfolios is 475 rather than 275. In the case in which 100 possible portfolios can be analyzed, 
the limit of six (funded or not funded) projects will be further reduced to merely three projects, each of 
which has four possible choices. 
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The specific purpose of this paper is to describe a new approach to optimization under 
uncertainty that is aimed at finding the optimal solution to a problem by designing a 
number of search algorithms in a way that relaxes the limitations analysts have had to 
rely on in the past.27 

Organization	  of	  This	  Document	  

The technical approach is discussed in Chapter Two. Chapter Three discusses two 
illustrative examples of the approach. These examples are drawn from the applications 
of the approach in the Toward Affordable Systems series of studies28 sponsored by the 
Deputy Assistant Secretary of the Army (Cost and Economic Analysis), Office of 
Assistant Secretary of the Army (Financial Management and Comptroller). Chapter Four 
provides an overview of the approach and some suggestions for its further use. This 
paper also includes an appendix that illustrates how computer and network resources 
can be configured to execute the approach and its algorithms in alternative ways. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
27Another purpose of this paper is to convert a provisional patent application for the approach and 

associated algorithms into an open publication for public use. The ideas and techniques presented in 
this paper may be used by anyone for any purpose with citation. The provisional patent application is 
entitled Portfolio Optimization by Means of a Ranking and Competing Search. The provisional patent 
application was filed with the United States Patent and Trademark Office on July 30, 2012, under the 
following description: Methods and products in accordance with various embodiments find and use an 
optimal portfolio under uncertainty. 

28Brian Chow, Richard Silberglitt, and Scott Hiromoto, Toward Affordable Systems: Portfolio 
Analysis and Management for Army Science and Technology Programs, Santa Monica, Calif.: RAND 
Corporation, MG-761-A, 2009; Brian Chow, Richard Silberglitt, Scott Hiromoto, Caroline Reilly, and 
Christina Panis, Toward Affordable Systems II: Portfolio Management for Army Science and Technology 
Programs Under Uncertainties, Santa Monica, Calif.: RAND Corporation, MG-979-A, 2011; and Brian G. 
Chow, Richard Silberglitt, Caroline Reilly, Scott Hiromoto, and Christina Panis, Toward Affordable 
Systems III: Portfolio Management for Army Engineering and Manufacturing Development Programs, 
Santa Monica, Calif.: RAND Corporation, MG-1187-A, 2012. 
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Chapter	  Two:	  Technical	  Description	  
This chapter describes the approach. It starts by discussing the basic ideas that 
underlie it. It next provides a mathematical formulation of the portfolio optimization 
process. It then discusses the two specific ideas that underlie the approach: (1) the use 
of multiple algorithms to search for the optimal portfolio (OP) and (2) a new process to 
design algorithms. It then describes the steps for any given search scheme (SS), the 
specific steps for eight SSs, and flow charts illustrating the common SS approach and 
two variants. Next, it discusses OPs and products to produce them. Finally, it describes 
two methods for identifying requirements for new projects. The appendix describes how 
computer and network resources can be configured to implement the method. 

Basic	  Ideas	  Underlying	  the	  New	  Approach	  

While the approach described here can be applied to many different types of problems, 
this paper uses investments in R&D projects to describe the ideas and the problem 
formulation as a way to make the approach more specific and understandable.29 Let 
there be N proposed projects, not all of which can be funded. The user must decide 
which combination of projects to fund. If each project must be either fully funded or not 
funded, there are 2N combinations or possible portfolios. The OP is defined in what 
follows as the portfolio of projects with the highest probability of meeting all constraints 
(C) for the scenarios of the search space. More properly, it is the portfolio that meets all 
the constraints in the largest fraction of the scenarios used to evaluate the portfolios.30 
Both N and C are integers, which are 1 or greater. The objective function for this 
uncertainty problem is to maximize the probability of meeting all constraints. 
 
When there are uncertainties, the future can end up in many different states or 
scenarios. If a given portfolio of selected projects can meet all constraints for a state, 
that state is called a feasible state. If not, it is called an infeasible state. The probability 
is called the feasible percentage (FP), which is the number of feasible states over the 
sum of the feasible and infeasible states. Thus, the probability is the chance that a given 
portfolio can meet all constraints under uncertainties. When a portfolio has the highest 
FP, it is called the OP or optimal solution. A feasible state can also be called an 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
29Here, a project is defined as an endeavor that requires money to develop. If the project is 

successfully developed, it can be used to meet requirements, which include earning a good return on 
investment. Thus, a project can be, for example, an R&D program, a measure to reduce vehicular 
injuries, a product to market, or a product to be made by a machine, because the corresponding 
decision variable is whether to fund a program or measure, to promote a product, or to produce a 
product. 

30If there are U uncertain input parameters or variables, the uncertainty space will have U 
dimensions, and the space of cases treated is formed by the combined random draws on the U 
uncertain input parameters; thus, it is a subset of the overall space. 
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acceptable state, because one would consider the state acceptable, given that it meets 
all the thresholds in the constraints. 
 
The constraints here include requirements and budgets available. Requirements are the 
goals that the user wants the funded projects and their systems to fulfill. It can be a 
single requirement, such as a certain required rate of return on investment, or multiple 
requirements, such as the amount of renewable energies produced by the selected 
projects to reach a certain percent of the total energy consumption by 2025 and the 
amount of greenhouse gases reduced by a certain percent by 2020. 
 
As for budget constraints, there is typically a constraint on the total remaining R&D 
(TRRD) budget31 available to fund the selected projects.32 There is also a total 
implementation (TIMP) budget to pay for the acquisition, operation, and maintenance of 
systems derived from those R&D projects that are funded and successfully completed. 
Once the projects are completed, one often does not need to acquire a number of 
systems developed under every successful project, because doing so may overspend 
and excessively meet all the requirements and would not be the lowest cost to meet all 
requirements. Rather, one can choose systems from some successful projects: 
implement (i.e., acquire, operate, and maintain) a number of copies for each of these 
systems so as to meet all requirements within budget constraints. 
 
The goal, then, is to select any combination of any number of projects to form the OP 
for a given TRRD budget and a given TIMP budget. The OP will have the highest 
probability of meeting all given requirements and other constraints under a given set of 
uncertainties on some input parameters.33 
 
As discussed above, the combinatorial possibilities are daunting. What follows 
describes two basic ideas for dealing with this issue. The first is the use of multiple 
algorithms to search for the OP or optimal solution. The second is to design individual 
search algorithms based on a new process to avoid some of the severe limitations that 
analysts have been forced to rely on in the current approaches. Both ideas are 
discussed below after first formulating the problem mathematically. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
31A project can be already ongoing, in which case the spent R&D cost is sunk and excluded, and 

the future R&D budget is called the remaining R&D budget. 
32While the approach and associated algorithms can be applied to uncertainty problems other 

than R&D projects, this paper uses R&D projects to more clearly describe the ideas. 
33In a generalized version, the OP could be defined so as to give more or less weight to portfolios 

in terms of various other criteria, such as minimizing cost or maximum regret.  
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A	  Mathematical	  Formulation	  of	  the	  Portfolio	  Optimization	  Process	  

This section expresses the technique and its processing steps in a mathematical 
formulation. There are N projects for a user to choose from: no project, any one project, 
any two projects . . . or all projects. This is to say that one can choose any combination 
of any number of projects. The OP is defined as the particular combination of projects 
that has the highest probability or FP to meet all constraints under uncertainties as 
represented by a set of probability distribution functions.34 Thus, the objective function is 
to maximize FP. 
 
Let there be N binary decision variables (or simply variables), x1, x2... xi… xN, each of 
which can be either 0 or 1. The 0 means that the project is not selected for the OP, 
while the 1 means the project is selected. The string of N variables is represented by [x; 
N].  
 
Each x variable has M attributes or coefficients. They are represented by [C; N, M], or 
Cij, where i runs from 1 to N and j runs from 1 to M. Each project is characterized by two 
key attributes: the remaining R&D budget required for completion (RRDi) (which 
corresponds to the TRRD budget above)35 and the implementation budget required for 
acquiring the systems developed and for operating and maintaining them throughout 
their service life (IMPi) (which corresponds to the TIMP budget above).36 The attributes 
also include the contribution or value of a project to each of R requirements, Vij, where i 
runs from 1 to N and j runs from 1 to R.37 Moreover, among the M coefficients, there are 
Q coefficients or parameters with uncertainties, which are represented by [CU; N, Q], or 
CUij where i runs from 1 to N, and j runs from 1 to Q. Thus, [CU; N, Q] is a subset of [C; 
N, M]. The uncertainties for each CUij are governed by a probability distribution, P(CUij). 
There are Q × N such distributions, which are represented by [P(CU); N, Q]. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
34Currently, only binary or triplet distributions are used. However, it would be easy to generalize to 

accept other distributions. Thus, this paper assumes that all relevant uncertainties can be expressed 
mathematically via parameters characterized by uncertainty probability distributions. It also assumes that 
interactions among variables are properly accounted for by constraints. For example, a constraint can be 
used to disallow the non-sensible solution in which both mutual-exclusive cases (e.g., funding a full 
program and funding the same problem that is sized down) appear. 

35This approach currently assumes that both the RRDj and the TRRD budget are known without 
any uncertainty. On the other hand, the IMPi and the TIMP budget are allowed to be uncertain. 

36For some applications, RRDi and IMPi can be combined and simplified into a single term, 
remaining life-cycle budget (RLCi) (which corresponds to the TRLC budget discussed later in the text). 

37Vij are independent of each other. However, if dependency exists among a small number of 
projects, new projects can be created by combining these dependent projects to make the revised Vij 
independent. In those cases, the third type of constraints described later in the text would also have to 
be used to make the Vij independent. 
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An OP must meet three types of constraints.38 The first type consists of budget 
constraints—for example, 
  
     TRRD,  
 

where TRRD budget is the total remaining R&D budget available, and 
 
     TIMP,  
 

where TIMP budget is the total implementation budget available. 
 

The second type consists of requirement constraints—for example, 
	  

     TRj ;     j= 1…..R,  
 

where TRj is the minimum total value that all selected projects must 
provide to meet requirement j. 

 
The third type consists of other constraints, such as those among the projects. For 
example, let one assume that there are two projects, A and B, to develop the same 
system, except that project B will require a higher R&D budget but can result in a better 
performance and/or a cheaper system. Then, one may consider only funding at most 
one of the two projects—that is, 
 

xa + xb ≤ 1. 
 

Mathematically, the objective is to maximize the FP, FP([x; N]; [CU; N, Q]), where [x; N] 
are the variables, and the maximization is to have the highest probability of meeting all 
constraints over the [CU; N, Q] uncertainty space. 
 
Currently, there is no theoretical solution to this optimization problem. The idea is to find 
a solution or to identify a portfolio of projects for funding that will produce either the 
highest FP or one so close to it that it makes no practical difference in terms of the 
benefit or return on investment. Because there is no guarantee that any algorithm will 
lead to the optimal solution, establishing a common platform for checking the algorithms 
developed here in test problems with known solutions and comparing algorithms from 
different methods for the same problem is highly recommended. This implies that the 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

38Embodiments of the present invention also apply to a different formulation in which the model 
counts the penalty points and insists that the total does not exceed a certain number. The number of 
penalty points for violating each constraint can depend on the degree of violation. 
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platform needs to be supported by a library of test problems with known solutions so 
that different algorithms can be tested and compared. As the platform and its database 
accumulate more and more comparisons, there will be a better and better confidence 
about which algorithm works best in which types of problems.39 
 
The approach is to randomly generate what the FSWs may turn out to be, according to 
the Q × N probability distributions. A typical number of FSWs is 10,000 and, sometimes, 
100,000. Then, each generated FSW is represented by a set of randomly drawn values 
over the Q × N probability distributions. Each generated state now becomes a 
deterministic or certainty state, because all uncertain parameters are fixed at specific 
values. By examining one certainty state at a time, the uncertainties are first 
sidestepped. Without uncertainties, the OP for each certainty state can be found using 
other methods. A mixed-integer linear programming model is used for all certainty 
cases.40 The idea is to deal with uncertainties by generating a large number of certainty 
states or cases. If all constraints can be met, the case is called a feasible case. For 
each feasible case, a mixed-integer linear programing model is used to examine which 
of the N projects are selected to constitute the feasible portfolio. In sum, projects that 
appear frequently in these feasible cases are the most desirable ones to form the OP. 

Use	  of	  Multiple	  Algorithms	  to	  Search	  for	  the	  OP	  

As part of the approach, a number of search schemes (SSs)—described below—have 
been designed. By itself, each SS has its own logic in having a reasonable chance of 
reaching the OP or a near-optimal portfolio whose FP is very close to the optimal FP. In 
the problems to which this new approach and associated algorithms have been applied, 
the statistical fluctuation around a solution is typically 1 percentage point or less. Thus, 
this paper assumes that it makes little difference to the user whether this method 
recommends a portfolio of selected projects that has a 95-percent FP of meeting all 
requirements under given budgets or a different portfolio that yields 94 percent. The 
user can use either portfolio and have practically the same confidence level in meeting 
all the requirements or goals. 
 
To better understand the multiple algorithms approach, one can use a mountain-
climbing analogy. Mathematically speaking, a linear programming problem under 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
39The types of problems have multiple dimensions here. First, they refer to different kinds of 

problems in resource allocations, such as R&D projects and production planning issues. Second, even 
within a problem, such as R&D projects, the nature of uncertainties and the numbers of decision 
variables and constraints may affect how well a particular algorithm performs. Third, ultimately, as the 
future is full of uncertainties, an algorithm may have applications far beyond resource allocations. The 
common platform should be aimed to test and compare algorithms over many types of problems. 

40Other methods or models, such as nonlinear programming, can also be used for the certainty 
states. 
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certainty is a convex problem, which, as discussed in Chapter One, was solved by 
Dantzig with the simplex algorithm and, later, by others with different methods. By 
analogy, this convex problem is like a mountain with a single peak. However, many of 
the problems this paper is interested in addressing would require some of the decision 
variables to be integers (for example, the decision to either fully fund a project or not 
fund it at all). Such a mixed-integer linear programming model would make the problem 
non-convex. Compared to a convex problem, a non-convex problem is like a mountain 
with multiple peaks, with the highest peak being the global optimum or optimal solution. 
 
A simple example about how to reach the mountaintop can illustrate the basic idea of 
using multiple search algorithms to find the OP. A real mountain, like a real-world non-
convex problem, has multiple peaks. Let one call all of them local peaks or local optima, 
except for the top of the mountain, which is called the global peak or global optimum. A 
mountain climber would not want to mistake a local peak for a global peak and stop 
climbing once he or she got there, but this may be the case because the visibility is too 
poor for the climber to tell whether there is a higher peak far away. The same is true in 
searching for the solution of a non-convex problem. 
 
For a mountain that has not yet been explored (an analogy for a new problem), the idea 
is to have a group of several expert climbers with different climbing styles and different 
routes chosen (good routes based on different logics about why the routes can reach 
the global peak rather than the local ones) to start climbing from one place at the base 
of the mountain. Although all the climbers start from the same place, each of them uses 
a different set of important climbing instructions to help them get beyond a local peak 
and continue climbing to reach the global peak. Moreover, several other groups start 
from different places of the mountain. Some of these expert climbers can have the 
same climbing style or instructions as those starting from the same place, while some 
have styles and instructions that are not used by the other climbers. 
 
Once all the climbers have reached their own highest points, the locations and heights 
of their highest points are compared. Like the above mountain-climbing example, the 
basic idea proposed here is to use multiple SSs41 (to be described below) to deal with a 
resource allocation problem under uncertainty (a non-convex problem) as ways to find 
their respective working optimal portfolios (WOPs) and corresponding FPs.42 Then, the 
portfolio with the highest FP is the OP. Thus, all WOPs found by different search 
schemes are local OPs, except the one with highest FP, which is called the global OP 
or simply the OP. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

41The use of multiple SSs is defined very broadly. In the extreme case, one can treat all the 
genetic programming algorithms as one SS to be used with other existing algorithms or those here in 
forming multiple SSs as recommended here. 

42WOPs are used to reserve the term OP for the one WOP that yields the highest FP. 
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In designing these SSs or algorithms, it is important that every SS have a transparent 
reason behind it so that one can argue why it has a reasonable chance of reaching the 
global OP instead of stopping at a local OP. It is also important to create counter-
arguments about why the global OP could have been missed. Only then can other 
algorithms be designed to include the missing factors left behind by the original 
algorithm. This approach relies on this type of reasoning and devil’s advocates to 
ultimately develop a set of complementary SSs that are most likely to include at least 
one SS capable of finding the global OP or one close to it. 
 
The experience in using the SSs reported in this paper has been that the WOPs or local 
OPs that they individually reach are often similar in both project composition and FP. In 
one case with 26 possible projects and three different SSs, the local OPs are composed 
of either 18 or 19 projects, of which the 18 projects are common among all three; thus, 
the difference lies in whether there is a 19th project and which project it is. Moreover, 
their FPs are 93.33 percent, 93.63 percent, and 93.64 percent, with these small 
differences most likely the result of statistical fluctuations arising from the use of 10,000 
scenarios to represent the much larger number of possible uncertain scenarios. 
 
The similarity in project composition and FP in the local OPs does not mean that these 
three local OPs are actually at the global OP or very near it. It is possible that all 
different climbing strategies could have missed a critical factor or process, and that, 
thus, the global peak has not been reached. This is true for the approach presented 
here, as well as for all existing approaches for problems under uncertainty. However, 
the approach presented here also relies on another strategy—using transparent 
arguments in developing SSs—which is discussed later in Figures 2.3 and 2.4. For now, 
it is sufficient to say that these arguments can lead to a new SS that is complementary, 
just as the one in Figure 2.3 leads to the one in Figure 2.4. Using the two algorithms 
together would make it more likely to reach the global peak or optimal solution, because 
each one covers the weakness of the other in missing the global peak. 
 
An SS is specified by four elements: 
 

1. The rules that guide the search. 
2. A second set of rules either to confirm that the first set of rules under Element 1 

has resulted in the OP or to allow one to find a portfolio with a higher FP, which is 
now the OP unless the search continues. 

3. The objective function used in the mixed-integer linear programming model 
(under certainty) for determining the frequency of appearance of each of the N 
projects in the feasible cases. Recall that the objective function for the 
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uncertainty problem is to maximize the probability in meeting all constraints. As 
discussed in the next section, this approach decomposes an uncertainty problem 
into typically 10,000 certainty problems. For these certainty problems, another 
objective function would be needed to define and find the optimal solution for 
each certainty problem. 

4. The objective function used in the mixed-integer linear programming model 
(under certainty) for determining the FP of the OP. The objective function is 
typically the same as that used in Element 3. Other objective functions can also 
be used instead without affecting the FP, because the feasibility is determined by 
meeting all the constraints and is independent of whichever objective function 
that is mentioned in this paper is used. 

 
As for determining which and how many SSs to use in a new problem, one can consider 
several factors. First, is the new problem similar to the problems in which SSs have 
been applied? If so, one can select those SSs that have worked the best in the past for 
the new problem. 
 
Second, for the new problem, the user can run a larger number of SSs relative to those 
combinations of TRRD budget and TIMP budget the user is most interested in selecting. 
Based on these results, the user can then choose a smaller number of SSs to 
determine the OP and FP at other combinations of the two budgets. Even after the 
choice is narrowed to a particular budget combination, the user can still check the FP at 
that budget combination again by using a larger number of SSs. 
 
Third, if the user has been using another method in the past to determine the OP, it is 
both revealing and important to compare the FP from that OP with the FP from using 
the SSs in this document. The establishment of a common platform for objectively 
determining which algorithm or algorithms is best for a given type of problems is highly 
recommended. 
 
Fourth, whenever certain local OPs are close in their FPs, the user can increase the 
number of runs from 10,000 to, say, 100,000 to gain higher confidence in deciding 
which one indeed has the highest FP and, thus, should be selected as the global OP.43 
 
Fifth, it is often difficult to know which algorithm best suits the problem at hand. An 
approach with multiple SSs—especially mutually reinforcing ones that plug each other’s 
logical holes in possibly missing the global optimum under various situations—offers a 
much better chance that at least one SS will find the OP. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
43Another way is to run multiple sets of 10,000 or 100,000 runs with different seeds for the 

random draws. 
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Sixth, because the many runs for a given budget, different budgets, and different search 
algorithms can all be run independently and simultaneously, this approach can take 
advantage of the current advances in parallel computing and the rapid decline of cost of 
on-demand computer power. 

A	  New	  Process	  to	  Design	  Algorithms	  

In addition to multiple searches (described in the previous section), the second basic 
idea of this approach is to relax the dimensionality constraints analysts have had to 
contend with until now. Figure 2.1 shows the schematic approach. It starts with a given 
set of projects to choose from (on the far left). The goal is to find the OP or optimal 
solution, which is a portfolio composed of a group of selected projects. Such a selection 
is optimal because the OP will give the highest likelihood or FP to meet all requirements 
within a given budget for project development (the TRRD budget) and another budget 
for acquiring, operating, and maintaining the systems from those projects to meet 
requirements (the TIMP budget). 

Figure 2.1. Schematic Approach for Optimization 
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During the Monte Carlo stage (see Figure 2.1), a number of possible FSWs (typically 
10,000) are generated. For any given FSW, every uncertain parameter becomes 
certain. One can immediately take advantage of the linear programming model or other 
linear or nonlinear models to find the OP for each FSW. 
 
During the certainty stage (see Figure 2.1), one can see the different selections or 
compositions of projects in these (10,000) certainty OPs under various (10,000) FSWs. 
This is a critical step because it involves using the solvable deterministic or certainty 
linear programming model to find an OP for each of the 10,000 (certainty) FSWs, 
avoiding the impossible job of singling out the OP by running through trillions of possible 
portfolios by brute force. By taking advantage of the solvable mixed-integer linear 
programming model, one can learn a lot about the uncertainty space and its impact on 
the global OP than one can by using current approaches. 
 
The last stage—the aggregate stage (see Figure 2.1)—is to find the global OP or simply 
the OP for the original problem under uncertainty. All the SSs described in the rest of 
this paper are designed to take advantage of the knowledge gained from these (10,000) 
certainty OPs to identify the global OP. Some algorithms can find the global OP from 
these certainty OPs in one step. Others would go through some WOP and repeat and 
refine the process to arrive at the global OP. 
 
The certainty search at the certainty stage and the uncertainty search at the aggregate 
stage constitute the foundation of this tandem certainty–uncertainty search approach. 
When multiple such searches join forces, this is called portfolio optimization by means 
of multiple tandem certainty-uncertainty searches.  
 
It should be noted that the three limitations in the optimization process have been 
greatly relaxed. First, this method and algorithms have been successfully applied to 75 
and 183 projects instead of ten projects or packages of projects, and even larger 
numbers of projects are possible. Second, instead of as few as three FSWs, 10,000 
FSWs have been routinely used in the applications of this paper’s approach and 
associated algorithms. Third, instead of a few uncertain parameters, 75 uncertain 
parameters have also been used in prior demonstrations. Two applications of this 
approach are discussed in Chapter Three. 

Steps	  for	  a	  Given	  Search	  Scheme	  

While every SS has its own logic in how it can reach the global OP, some steps are 
similar. Many SSs go through various WOPs before reaching the final WOPs for these 
SSs. Among the final WOPs from the selected SSs, the final WOP that has the highest 
FP is the global OP. These steps are based on two ideas: ranking for project inclusion 
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in the WOPs and having final WOPs corresponding to multiple searches to compete for 
being selected as the final OP, which has the highest FP. 
 
The general structure of an SS consists of four steps: 
 

 Step 1 is to develop a core group of projects for a given TRRD budget. These 
core projects are to be included in the WOP for any given TIMP budget. The 
objective function can be any one mentioned in this section for core group 
determination, project frequency listing, replacements, or FP calculation. 

 Step 2 is to fill the WOP, either by adding to the core projects from Step 1 or by 
starting from zero and completely ignoring Step 1. The additions are based on 
including the highest frequency projects appearing in a number of runs (typically 
10,000). The objective function can be any one mentioned below. Moreover, it 
can be the same as, or different from, the one used in the other steps, such as 
Step 1. 

 Step 3 is to perform single, double, triple, etc., replacements on the WOP 
obtained under Step 2. Moreover, Step 3 can also be skipped in an SS, 
especially when the user is convinced that this step does not result in an OP that 
yields an appreciably higher FP. 

 Step 4 is to make a final determination of the model-recommended OP’s FP. One 
may want to have a higher number of runs (for example, 100,000 runs) for this 
determination. As explained before, the choice of the objective function is 
irrelevant for the purpose of determining the FP. 

 
Eight different SSs that have been developed are described below; they follow the four 
steps described above. 
 
Search Scheme 1 (SS-1) 
In various embodiments, this SS is run for a given TRRD budget and a given TIMP 
budget at a time. The purpose is to find the OP, which is a selection of projects from the 
original pool of N possible projects for inclusion, and the corresponding FP at this given 
combination of budgets. The steps are as follows: 
 

1. Let Q be the number of uncertain input parameters. An example of an uncertain 
input parameter is that the unit cost of a (future) system derived from a project is 
uncertain. Randomly select a value for each uncertain input parameter according 
to its statistics or probability distribution. Once the values are selected, the 
problem becomes a certainty case on which a mixed-integer linear programming 
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model44 with the objective function of minimizing the TRRD budget is run to see 
whether all constraints are met. If all constraints are met, the selected projects in 
the successful portfolio are recorded. 

2. Repeat Step 1 a number of times, which is typically equal to 10,000 runs. Any 
run in which all constraints are met is called a feasible run. The number of 
feasible runs over the total number of runs multiplied times 100 provides an FP. 
All these runs result in a table that lists the frequency of appearance of each of 
the N possible projects in all these feasible runs. 

3. All N projects are ranked based on their frequencies of appearance, with the one 
with the highest frequency ranked at the top.45 SS-1 includes a number of 
projects (SP) from the top down and tallies their corresponding remaining R&D 
budgets until the total remaining R&D budget is fully committed.46 Then, the FP 
for this WOP is determined, typically by another 10,000 runs.47 

4. Since SP out of N possible projects are now in the WOP, the number of projects 
excluded from the WOP is N-SP, which is called RP. Each RP project is 
substituted for each SP project, and 10,000 runs are made for each 
substitution.48 The SS-1 keeps the WOP with the highest FP. This process is 
repeated with any pair of replacements at a time among the RP projects, with 
any three replacements, etc., until there is no improvement in the FP or the 
improvement is less than a predetermined threshold amount. The end of this 
process yields a WOP with the highest FP for SS-1. 
 

Search Scheme 2 (SS-2) 
The SS-2 has the following steps, many of which are the same as SS-1: 
 

1. This step is the same as in SS-1, except the mixed-integer linear 
programming model is run with an objective function to minimize the TRRD 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
44While all demonstrations are performed with a linear programming model, the same SS works in 

nonlinear programming models or user-designed models for the purpose of finding the OP. 
45For example, let there be 26 possible projects to choose from, and 8,000 out of the 10,000 runs 

are feasible runs. Among these feasible runs, let one assume that Project 5 appears most often, or 
7,559 times, for a highest frequency of 7,559; Project 24, a frequency of 7,112; Project 2, a frequency of 
6,543, etc. 

46If there is insufficient budget to include the next highest frequency project in the portfolio, the 
method will add a lower-ranked project where the budget can still accommodate it. The user can also 
modify this search scheme for use in the SSs that involve replacements as follows: Whenever a project 
already in the WOP is replaced by a project outside the WOP that has a smaller R&D cost, the leftover 
R&D cost will be used to include the highest frequency project or projects outside the WOP that fit the 
leftover R&D budget. 

47Because the purpose of these runs is to count the feasible runs, it makes no difference in the 
FP if the objective function is to minimize the TRRD budget, the TIMP budget, or the sum of the two (that 
is, the TRLC) budget. 

48Therefore, there are SP times RP sets of runs, and each set is to have 10,000 runs. However, in 
some applications, some of the RP can be ruled out without making runs, because they can be 
determined to have no chance of making the FP higher.  
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budget but with no constraint on the TIMP budget. Further, with an 
unconstrained TIMP budget, the uncertainty in implementation cost is irrelevant 
in determining the OP. At this point, all other uncertainties, such as the possibility 
of project failure, are ignored. The idea behind this SS is to first ask, if all 
uncertainties turn out to be most favorable to each possible project, what projects 
would be selected for the OP? Such selected projects will form the core of the 
OP. Then, other projects are added to this core to deal with situations in which 
some of the core projects fail or contribute less favorably because of bad 
outcomes from uncertainties. 

2. Same as SS-1, except the objective function is to minimize the TIMP 
budget, and each of the 10,000 runs is made with the same given TRRD 
budget and TIMP budget. The difference with SS-1 lies in always keeping the 
core projects in SS-2. The TRRD budget not committed to the core projects will 
be used to add highest frequency projects not already in the core until the TRRD 
budget is fully committed. 

3. Same as SS-1. 
4. Same as SS-1. 

 
Search Scheme 3 (SS-3) 
SS-3 is the same as SS-2, except the project frequencies in Step 2 are determined 
with an objective function of maximizing the total value contributions from the 
selected projects to the requirements. 
 
Search Scheme 4 (SS-4) 
SS-4 is the same as SS-2, except in both Steps 1 and 2, the OP is determined with 
an objective function of minimizing total remaining life-cycle (TRLC) budget.49 
 
Search Scheme 5 (SS-5) 
SS-5 is the same as SS-2, except in both Steps 1 and 2, the OP is determined with 
an objective function of maximizing the number of projects selected in the OP. 
 
Search Scheme 6 (SS-6) 
SS-6 is the same as SS-2, except in both Steps 1 and 2, the OP is determined with 
an objective function of minimizing the TRRD budget. 
 
Search Scheme 7 (SS-7) 
SS-7 is the same as SS-2, except in Step 1, all the projects in the nearest 
neighboring OP with a lower TRRD budget are used as the core projects for this 
OP, and in Step 2, the objective function is to also minimize the TRRD budget. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

49The TRLC budget is the sum of the TRRD budget and the TIMP budget. 
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Search Scheme 8 (SS-8) 
The SS-8 is a scheme that has been used often in the applications of this new 
approach: 
 

1. Same as SS-1. 
2. Same as SS-1. 
3. This SS relies on a logic that is similar to what a manager often uses to sensibly 

select and form a team to perform a task without using a model and 
mathematics. The manager would select the most key person first, then the next 
person best complementing the first person’s skills and temperament, and then 
the third to complement the first two, and so on until budget runs out. In applying 
this SS, only the highest frequency or ranked project (P1) in the first set of 
10,000 runs is kept in the WOP. For each mixed-integer linear programming run 
in the second set of 10,000 runs, P1 has already been included from the start. 
Then, the highest ranked project (other than P1) is added to the WOP. For the 
third set of 10,000 runs, P1 and P2 are always selected in the first place, and the 
highest ranked project (P3) is added to WOP. The process is repeated until the 
total remaining R&D budget is fully committed. 

4. Same as SS-1, except that the first project in the above WOP is to be 
replaced by another project in the new WOP, and Step 3 is repeated. 
Moreover, whenever the list of projects included in the new WOP under this step 
is the same as any of the WOPs obtained thus far in Step 3, the process will 
stop, because further project additions will not yield a different WOP—they will 
simply repeat and yield one of the previous WOPs in Step 3. In essence, this 
process picks one project at a time from the project list as the first project. In 
theory, there can be as many WOPs as there are projects to choose from, but in 
practice the numbers can be less because some WOPs may be the same. 

 
Other Search Schemes 
There are two ways to generate additional SSs. The first way is to derive them from the 
many different combinations of objective functions for Steps 1–3 used in the above eight 
SSs. The second way is that the user can use objective functions different from those 
discussed here. 

Using	  Flow	  Charts	  to	  Show	  the	  SS	  Process	  

In this section, the SS process discussed above is represented by a series of flow 
charts, starting with a flow chart showing the common steps applicable to all SSs before 
turning to flow charts showing the specific steps for SS-8. 
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Flow Chart Showing Common Steps Applicable to All SSs 
As noted above, there are different SSs to find these feasible portfolios and select 
projects to form the OP. Figure 2.2 shows the common steps applicable to all SSs. 

Figure 2.2. Flow Chart for Searching for the OP 

 
 
The flow chart steps are ordered as shown by the numbers, running here from 101 to 
107. Below, what happens in each of the boxes of the flow chart is discussed. 
 

 Box 101: All three types of constraints are expressed mathematically, as shown 
above in this section. 

 Box 102: The project attributes or coefficients, [C; N, M], are inputs to the model. 
 Box 103: The Q × N probability distributions for the uncertain coefficients, 

[P(CU); N, Q], are also inputs. 
 Box 104: An SS is chosen from among the eight discussed earlier. 
 Box 105: A given SS will result in a WOP. The project composition in WOP and 

the FP are recorded for the SS used. The details of how an SS identifies the 
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WOP are illustrated with two examples in the next section, whose flow charts are 
shown in Figures 2.3 and 2.4. 

 Box 106: One can search the OP with multiple SSs. 
 Box 107: Each SS results in one WOP. Once the user no longer wants to try 

another SS, the OP is the WOP with the highest FP. 
 
Flow Charts Showing the Full Process for Finding the OP for Two Variants of  
SS-8 
The above figure (Figure 2.2) and discussion are for a generic SS. Two SSs are now 
discussed to show the full process in finding the OP. Both are based on SS-8 and were 
discussed earlier. The first uses the first three steps in the discussion above and is 
called SS-8 without replacement (SS8-NR). The second uses all four steps discussed 
earlier and is called SS-8 with single replacement (SS8-SR). 
 
SS-8 Without Replacement (SS8-NR) 
Figure 2.3 shows the details of Box 105 in Figure 2.2. SS8-NR is first specified in all 
four of the aforementioned elements discussed earlier. Once it is selected for Box 104 
in Figure 2.2, the next step is Box 201. 
 

 Box 201: The number of runs is selected here. To be specific, 10,000 runs are 
used. 

 Box 202: For each run, random draws are performed on Q × N probability 
distributions for the uncertain coefficients, [P(CU); N, Q]. Thus, each set of 
random draws has Q × N values corresponding to Q × N uncertain coefficients or 
parameters.50 After the draws, the case becomes a certainty case. 

 Box 203: For the certainty case in Box 202, a mixed-integer linear programming 
model is run to see whether all constraints can be met. If it does, it is called a 
feasible case. 

 Box 204: A record is kept about which of N original projects are selected in each 
feasible case. 

 Box 205: There are 10,000 runs based on 10,000 sets of random draws. 
 Box 206: Based on the accounting done in Box 204, the frequency of 

appearances of each of N projects in all the feasible cases is tallied. 
 Box 207: For the first time arriving at this box, the project with the highest 

frequency is selected as the first member of the final WOP for this SS. For a 
subsequent arrival at this box, some project(s) will have already been selected 
for the final WOP. After summing up the RRDs for these selected projects and 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
50Embodiments of the method and algorithms in this paper have been applied to a case in which, 

in addition to Q × N uncertain coefficients, the TIMP budget is uncertain. In such a case, the set of 
random draws merely needs to add one more random draw to cover the TIMP budget. 
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subtracting these committed RRDs from the TRRD budget, one gets the 
remaining budget for additional projects. One then determines whether the new 
project with the highest frequency (not compared with the frequencies of the 
projects already in the WOP before entering Box 207) has an RRD budget less 
than the remaining TRRD budget. If the remaining budget allows, add this 
highest-frequency project to the WOP. If this project has a budget that is too 
high, try the project with the second-highest frequency of appearance, etc.	  

 Box 208: Add the new project to the portfolio. The idea is to first select the 
highest-frequency project from the N projects for the final WOP. Then, ask the 
question: What is the next project that is best to go with the first chosen project to 
meet all constraints? Once the first two members of the WOP are selected, one 
asks a similar question: What is the next project that is best to go with the first 
two chosen projects to meet all constraints? One continues to do this until the 
total RRD budget is fully committed. 

 Box 209: Once no more projects can be added to the portfolio, the portfolio 
becomes the WOP or the portfolio that is identified through SS8-NR to have the 
highest FP. One records which projects are selected for this WOP and their FPs. 
This box completes the description of details for Box 105. 

 Box 210: Since the process with Box 105 is now complete, the next step is to go 
to Box 106 in Figure 2.2. 
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Figure 2.3. Flow Chart for SS-8 Without Replacement (SS8-NR) 

 
	  

 
SS-8 with Single Replacement (SS8-SR) 
This SS complements SS8-NR. SS8-NR starts by including the project that is most 
frequently selected in the feasible cases, while SS8-SR explores the possibility of the 
existence of a “second-best” project for a number of scenarios. While such a project is 
not the first choice for many feasible states and, thus, does not shows up as the 
highest-frequency project, it could well be the second choice for many feasible states. A 
possibility, though not high, could exist that this second-choice project might team up 
with other projects to form a WOP that has a higher FP than the one from SS8-NR. 
Clearly, the WOPs from both SS8-NR and SS8-SR should go to Box 107 in Figure 2.2 
to see which has a higher FP and, thus, whose WOP will become the OP. 
 
Figure 2.4 shows the details in Box 105 in Figure 2.2 with SS8-SR. 
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• Box 301: SS8-SR can only be performed after SS8-NR is performed. SS8-SR 

was described in Step 4 under the subsection on Search Scheme 8. The process 
is to replace the first project selected by SS8-NR with other projects on the list. If 
there are N projects and SS8-NR has already selected one to be the first project, 
SS8-SR selects each of the other projects to be the first project and will provide 
as many as (N–1) WOPs to compare with the WOP from SS8-NR. The WOP with 
the highest FP will be the optimal solution. 

• Boxes 201–209: Once the first member of the WOP is chosen, one will run 
through the same process as that for SSR-NR to find the best project to go with 
the first project or member. Then, one will run through the same process again to 
find the best project to go with the first two members, etc., until the total RRD 
budget is fully committed. 

• Box 302: This box ensures that all (N–1) single replacements are run. 
• Box 303: If there are still more single replacements to run, this box routes to box 

301 for another run. 
• Box 304: Out of (N–1) WOPs, this box selects the one with the largest FP and 

sends the project composition for that WOP and its FP to Box 210. 
• Box 210: This sends the content to Box 106 in Figure 2.2. 
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Figure 2.4. Flow Chart for SS-8 with Single Replacement (SS8-SR) 

 
 
If both SS8-NR and SS8-SR are used, one can then simply select the WOP with the 
larger FP, as indicated in Box 107 of Figure 2.2. Typically, SS8-NR would produce the 
larger FP. However, by using SS8-SR, one can see whether a different first project can 
be combined with certain projects to produce a larger FP. 
 
Further, if one goes through single replacement, double replacements,51 triple 
replacements, etc., it becomes more and more likely that the true OP or a portfolio with 
a very similar FP will be found. Again, typically, SS8-NR gives the highest FP. Further, 
even if SS8-SR gives a higher FP than that of SS8-NR, it is typically not higher by any 
appreciable amount. Thus, one can consider only using SS8-NR for initial runs to draw 
tentative conclusions. However, one should perform SS8-SR or even SS8 with double 
replacements to confirm that the WOP from the SS8-NR has the highest FP or to 
replace the WOP with a higher one. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
51For a double-replacement scheme, one starts a WOP by choosing any other pair of N projects 

to replace its first two members. 
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A	  Computer	  Program	  Product	  to	  Determine	  the	  Optimal	  Portfolio	  

Using multiple search schemes is encouraged to generate multiple SS-specific OPs. 
The OP for the problem is the one with the highest FP. Any combination of SSs can be 
used to determine the OP, which consists of projects selected for investment for a given 
TRRD budget and a given TIMP budget. The FP of the OP can also be calculated. A 
computer program product for use on a computer system has been developed by the 
author. It consists of a mixed-integer linear programming model and a simulation to 
perform the steps described above and is discussed in the appendix. 

Method	  for	  New	  Projects	  and	  Method	  for	  Existing	  Projects	  

In addition to introducing a new approach and its associated search algorithms (as 
described above), two new methods have been developed. These two methods are 
intended to be useful for those planners who are interested in not only finding the 
optimization solution to meet a set of given requirements but also in evaluating whether 
it is more cost-effective to use the projects in the current pool to meet some 
requirements or to design new projects to do so. One method is to identify those 
requirements that are potentially more cost-effective for new projects, rather than 
existing projects, to meet. The other is to find a sweet spot among existing projects 
where one finds the biggest bang for the buck. From a different perspective, this method 
suggests that a planner may not want to spend too much money on the existing 
projects—that the money saved may be better spent on designing and funding new 
projects. Each method is described below. 
 
A Method to Identify Requirements for New Projects 
A simple example is used to help explain the purpose of the method. Let one assume, 
for example, that the Army (in this particular case) has a requirement that is easier and 
cheaper to meet by striking enemy positions from the air, but that the existing projects 
for the Army to choose from in meeting this requirement all pertain to developing 
ground-based systems. If the Army were to use these ground-based weapon systems to 
do the job, the job could still be done, but doing so would cost much more than using 
the airborne systems that are not in the existing pool but that are much more suitable for 
the job. This paper describes a method to help identify this ill-matched requirement and 
other such requirements that are much less obvious, so the user (the Army in this case) 
would seek the development of new weapons, such as helicopter, to do the job at a 
much lower cost. This method is described below. 
 
The user has a pool of existing projects and is asked to select a subset of these projects 
that has the highest probability of meeting multiple requirements with a given budget. 
The user also wonders whether some of these requirements are more cost-effectively 
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met with new projects instead of existing projects. This method is to first see how well 
the existing projects, if they could all be successfully completed, would be able to meet 
the multiple requirements. 
 
The first step is to tally the values (i.e., project contributions of individual requirements) 
of the existing projects for each requirement. One would want the total value to well 
exceed the requirement level; a safety margin is needed because, in reality, some 
funded projects will not be completed successfully. 
 
Building on this fact, the method asks the following for each requirement: If the highest-
value project contributing to that requirement were to fail, could the rest of the projects 
still meet that requirement? If not, the requirement level is lowered to match the total 
value of the rest of the projects. Clearly, this lower level is easier to meet because it 
allows for the failure of any one project, even the highest-value project. 
 
The user can use a single SS or a combination of SSs as described above to find the 
OPs that meet the above set of lower requirements and their FPs. If the FPs for the 
ranges of TRRD budget and TIMP budget the user is considering are still too low, the 
user can further reduce the requirement levels by taking away the two highest-value 
projects for each requirement. If the requirement levels are lower, there would be a 
better chance of meeting them, leading to a higher FP. If the FPs are still too low to 
satisfy the user, the user can take away the three highest-value projects, and so on to 
make the FP higher. 
 
By learning of the trade-off between requirement levels and the FPs and identifying the 
types and levels of requirements that the existing projects find hard and expensive to 
meet, the user can tailor new projects more cost-effectively to meet these specific 
requirements. 
 
Once these new projects are designed, they can be added to the pool of existing 
projects for an analysis, following the process as described in the steps above. From 
this analysis, the user can confirm whether funding new projects instead of additional 
already existing projects will indeed save money or increase FP. 
 
Sweet Spot for the Highest Return on Investment 
A sweet spot is defined as a combination of the TRRD budget and the TRLC budget 
where it strikes a balance between performance (FP) and affordability (budget). This 
paper describes a method that calculates the ratio of FP over TRLC budget at various 
combinations of TRRD and TRLC budgets. This ratio is highest at the sweet spot. The 
sweet spot suggests that the TRRD budget and the TRLC budget there will produce the 
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highest return on the investment. It also suggests that if the user wishes to pay more 
money to attain an FP higher than that at the sweet spot, the user should consider 
designing new projects to meet requirements that the current pool of existing projects 
finds hard or expensive to meet. The sweet spot also identifies those requirements that 
are potentially cheaper and easier for new projects, as opposed to those in the current 
pool, to meet. Once the new projects are designed, they can be added to the existing 
projects for portfolio analysis and selection, following the steps suggested above. 
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Chapter	  Three:	  Applications	  of	  the	  Approach	  in	  Past	  Studies	  

As noted above, applications of this approach were developed in the Toward Affordable 
Systems series of studies that were sponsored by the Deputy Assistant Secretary of the 
Army (Cost and Economic Analysis), Office of Assistant Secretary of the Army 
(Financial Management and Comptroller).52 In this chapter, how the approach was 
applied in two of those cases from the past studies is discussed. 

First	  Case	  Selected	  from	  Past	  Studies	  

The first case is an application that appeared in Toward Affordable Systems II.53 The 
purpose of this application is to decide how much money should be spent on the 
science and technology (S&T) projects that are already existing or ongoing. The Army 
would want to spend the money cost-effectively to meet its capability gaps in 11 
categories. The Army also wants to consider an alternative in meeting some of the 
capability gaps. The alternative is to design and fund new projects to meet some of 
these requirements if this option turns out to be more cost-effective than using existing 
or ongoing projects. The model first suggests how much money to spend or how large a 
budget should be. Then, for this budget or any other budget that the Army considers, 
the model recommends which projects to select to have the highest chance of meeting 
all requirements within that chosen budget. 
 
In this case, any solution or portfolio must meet 13 constraints. In addition to a 
constraint on the total remaining science and technology (S&T) budget and another on 
the total remaining life-cycle (TRLC) budget,54 there are 11 requirement constraints 
corresponding to the categories of force operating capability gaps that the S&T projects 
are to develop weapon systems to fulfill. There are 75 Army Technology Objective 
(ATO) projects, which are the Army’s highest-priority S&T efforts. Thus, there are 75 
binary decision variables corresponding to whether these individual 75 projects are 
selected or rejected for the OP. There are 75 independent uncertain parameters, each 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
52Brian Chow, Richard Silberglitt, and Scott Hiromoto, Toward Affordable Systems: Portfolio 

Analysis and Management for Army Science and Technology Programs, Santa Monica, Calif.: RAND 
Corporation, MG-761-A, 2009; Brian Chow, Richard Silberglitt, Scott Hiromoto, Caroline Reilly, and 
Christina Panis, Toward Affordable Systems II: Portfolio Management for Army Science and Technology 
Programs Under Uncertainties, Santa Monica, Calif.: RAND Corporation, MG-979-A, 2011; and Brian G. 
Chow, Richard Silberglitt, Caroline Reilly, Scott Hiromoto, and Christina Panis, Toward Affordable 
Systems III: Portfolio Management for Army Engineering and Manufacturing Development Programs, 
Santa Monica, Calif.: RAND Corporation, MG-1187-A, 2012. 

53Chow et al., 2011; and Brian Chow, Richard Silberglitt, Caroline Reilly, Scott Hiromoto, and 
Christina Panis, Choosing Defense Project Portfolios: A New Tool for Making Optimal Choices in a 
World of Constraint and Uncertainty, Santa Monica, Calif.: RAND Corporation, RB-9678-A, 2012. 

54The total remaining S&T budget plus the total implementation budget equals the total remaining 
life-cycle budget. 
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of which signifies that each project has a binary uncertainty: a 90 percent chance of 
successful completion of their S&T efforts and a 10 percent chance of failure. For those 
projects that are selected for S&T funding and successfully complete their S&T phase, 
the planner can then select some of these successful projects to have the needed 
copies of weapon systems built and fielded to meet Army’s mission requirements. 
 
The first step is to study whether the projects in the current pool are really suitable to be 
used to meet all the capability gaps and whether some of the gaps could be more cost-
effectively met with new projects whose designs are tailored to meet those gaps that are 
hard to meet with current projects. The method described in the section “A Method to 
Identify Requirements for New Projects” in the previous chapter is used. In using that 
method, it was found that there is only a 16-percent chance of meeting all constraints 
under the given uncertainties of project success or failure, even if all 75 projects are 
selected for funding. It was further found that the chance would be drastically increased 
to close to 100 percent if the levels in 4 of the 11 categories were reduced.55 For the 
analysis below, the requirements have been reduced to such levels, considering that 
requirements above these levels are more cost-effectively filled by new, as opposed to 
existing and ongoing, projects. 
 
SS-1, as described in Chapter Two, is used to find the optimal solution. The uncertain 
parameters are the above 75 success/failure uncertain parameters. For example, to find 
the FP at the sweet spot in Figure 3.1,56 one sets the total remaining S&T budget at $2 
billion and the TRLC budget at $35 billion.57 SS-1 yields an FP of 91 percent and 
provides a list of selected projects among the 75 projects that constitute the OP. 
Similarly, the FPs for all other budget data points can be determined. 
 
The approach and associated algorithms are written in	  in General Algebraic Modeling 
System (GAMS), a tool for solving mixed-integer linear programming optimization 
problems. The IBM ILOG CPLEX Optimization Studio (often informally referred to 
simply as CPLEX) was used. In the simulation to find the OP for a given budget, the 
CPLEX Solver was typically used tens of thousands of times according to SS-1.58 For 
each data point, typically 10,000 runs are made, and each run takes about 0.1 second 
to find the optimal solution for that FSW. Another 10,000 runs are made to find the FP 
for that data point. In sum, it takes about half an hour for each data point (for example, 
the sweet spot is a data point). Further, when the number of runs is increased to 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
55The capability gaps that need to be met in category 4 are reduced by 25 percent. That means 

that only 75 percent of the gaps now need to be met. Similarly, gaps in category 6 are reduced by 42 
percent; category 10, by 60 percent; and category 11, by 50 percent. (Chow et al., 2011, p. 49.) 

56Chow et al., 2011, p. 52. 
57This also means that the total implementation budget is $33 billion. 
58See the appendix for further details. 
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100,000, the FPs from the 10,000 runs would be typically within 1 percent deviation 
from those of the 100,000 runs. 

Figure 3.1. The Sweet Spot Between Performance and Affordability in the TRLC 
Budget and S&T Budget 

 
One can draw several observations from Figure 3.1: 
 

 It is most cost-effective to spend $2 billion in total remaining S&T budget and $35 
billion in TRLC budget (the starred point on the chart). This would allow the 
feasible percentage to reach 91 percent. 

 The model specifically selects 53 projects to form the OP, which has the highest 
probability (of 91 percent) in meeting all requirements within budgets. 

 There is a “knee” at around $1.5 billion in the total remaining S&T budget. Its 
location is insensitive to the TRLC budget. Below the knee, the confidence of 
meeting requirements drops drastically. Planners should make this result known 
to Army senior leadership so the Army can try hard to keep budget above that 
level. However, if the budget cannot be raised, the Army, Congress, and the 
public should know the consequence of that. 
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 If the budget has to be cut, the Army can find the least impactful places to cut by 
studying Figure 3.1 vertically and horizontally. At the sweet spot (and looking 
vertically), each billion dollars in TRLC budget yields 2.6 percentage points in 
feasibility. If the Army wants to spend $32 billion more—a TRLC budget of $67 
billion—the extra money only buys 0.6 percentage points per billion dollars, far 
less than the 2.6. Thus, the extra money would not be well spent. If the Army 
originally planned to spend $67 billion and now thought of cutting, the model 
would say that a cut to $35 billion would only reduce the FP from 99 percent to 
91 percent and would be a cost-effective cut. Further, if the Army were to plan to 
further cut the budget from $35 billion to $32 billion, the model would say that the 
$3 billion additional cut would drop the percentage points in feasibility by 3.5 per 
billion dollars, higher than 2.6. Any further drop below $32 billion would make the 
decline in FP even less cost-effective. 

 If the Army were contemplating spending $2.5 billion in total remaining S&T 
budget, the model would suggest (now looking at Figure 3.1 horizontally) 
postponing $0.5 billion until implementation, whether there is a budget crunch or 
not, because the FP would not decrease.59 The Army could delay $300 million in 
spending from the S&T budget to the implementation budget without affecting the 
likelihood requirements much (less than 2 percentage points). 

 
The selected projects in the OP are compared to a selection based on the typical ratio 
of total expected value60 over the remaining S&T cost of the project. A selection method 
based on this ratio would have started the selection of projects from the right of Figure 
3.2 until the total remaining S&T budget is used up.61 In contrast, this approach rejects 
projects that have a similar ratio to many other selected projects because, as good as 
these rejected projects are in filling capability gaps, there are already even better 
projects selected to do the job. Similarly, this approach selects projects for the OP when 
many other projects with this low ratio have been rejected, because, as poor as they 
are, others are even worse, and they are the best of the worse to fill the gaps. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
59The model actually indicates a slight increase from 90.5 percent to 90.9 percent, but clearly the 

increase cannot be counted on because it is within statistical fluctuation for a problem under uncertainty. 
60The total expected value of a project is the sum of its contributions for filling the capability gaps 

in the 11 categories. 
61Chow et al., 2011, p. 58. 
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Figure 3.2. Project Ordering According to the Ratio of Total Expected Value Over 
the Remaining S&T Cost 

 

Second	  Case	  Selected	  from	  Past	  Studies	  

The second case is an application that appeared in Toward Affordable Systems III.62 
Instead of studying S&T projects, this study focuses on projects that are already in the 
engineering and manufacturing development phase or close to it. There are 26 such 
R&D projects. In addition, there are 157 projects, whose R&D efforts have been 
completed and which are ready to have weapon systems built and fielded to help meet 
capability gaps. The Army can choose among these 183 projects to meet requirements. 
 
In this case, any solution or portfolio must meet 24 constraints. In addition to a 
constraint on the TRRD budget and another on the TRLC budget,63 there are 22 
requirement constraints corresponding to the categories of capability gaps in force 
protection that the R&D projects are to develop weapon systems to fulfill. There are 183 
projects or decision variables for the Army to choose from to form the OP. There are 27 
uncertain parameters. The cost in procuring a system derived from each project may 
end up higher than expected and is represented by a binary distribution of equal 
probability: 50 percent for no cost overrun and 50 percent for the cost to be doubled. 
Since there are 26 projects, the number of such uncertain cost parameters is also 26. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

62 Chow et al., 2012. 
63The total remaining S&T budget plus the TIMP budget equals the TRLC budget. 
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There is one more uncertain parameter corresponding to the TRLC budget, which has 
an equal probability of being $20 billion, $22.5 billion, or $25 billion. 
 
SS8-NR, as described in Figure 2.3 in the previous chapter, is used to find the optimal 
solution (Figure 3.3).64 The search scheme calls for running 10,000 runs 26 times 
instead of once, making the time for determining the FP and OP at each data point 
about two hours, when higher efficiency in making multiple sets of runs is taken into 
account. As shown in Figure 3.3, this approach recommends spending $1 billion on the 
existing pool of projects to yield a feasible percentage of 83 percent in meeting all the 
requirements whenever there are uncertainties in both the costs of the weapons 
systems and the future budget of acquiring and fielding the weapon systems. 

 
Figure 3.3. Likelihood of Meeting Threshold Requirements, with TRLC Budget 

Equally Likely to Be $20 Billion, $22.5 Billion, or $25 Billion  

 
 
In Toward Affordable Systems III, the results from this approach are compared to those 
of two typical models: the benefit/cost ratio model and the certainty model.65 The 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

64Chow et al., 2012, p. 30. 
65Chow et al., 2012, p. 32 and p. 42. 
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benefit/cost ratio model is the same as what was described in Case 1 earlier in this 
chapter, where the ratio is the total expected value over the remaining R&D cost of the 
project. The certainty model is the deterministic mixed-integer linear programming 
model used here but without the uncertainty algorithm to refine the search for optimality. 
 
Table 3.1 shows the results of the comparison between the model described here and 
the other two models. In comparing the model described here with the benefit/cost ratio 
model at equal budgets, this model yields the same FP in one case, a moderately 
higher FP in one case, and substantially higher FPs in seven cases. In comparing this 
model with the certainty model at equal budgets, this model yields the same feasible 
percentage in one case, moderately higher FPs in five cases, and substantially higher in 
three cases. Further, this model can be used to indicate where the other two models 
can be used without significantly lower chance to meet requirements with the same 
budget. 

Table 3.1. Comparison of This Model with Other Models 

 
 
 

	   	  

0.7 25 100% 100% 28%
1.0 20 68% 56% 0%
1.2 20 40% 0% 0%

1.4 7 100% 74% 0%
1.3 6 95% 25% 0%
1.4 6 93% 25% 0%
1.6 6 86% 77% 0%
1.8 6 68% 60% 61%
1.9 6 63% 56% 63%

R&D=Research & Development
TRRD=Total Remaining R&D
TRLC=Total Remaining Lifecycle, which includes TRRD
RTBF=Ready-To-Be-Fielded

With Approximate Consideration of RTBF Systems

With Full Consideration of RTBF Systems

Budget Feasible Percentage
This 

Model
Certainty 

Model
TRRD 

$Billion
TRLC 

$Billion
Benefit/Cost 
Ratio Model
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Chapter	  Four:	  Overview	  of	  the	  Approach	  and	  Suggestions	  for	  Expanding	  
Its	  Use	  

The combinatorial possible solutions of problems under uncertainty grow exponentially 
with the number of decision variables, uncertain parameters, and uncertain scenarios. 
Even the most powerful computers cannot perform exhaustive searches in a reasonable 
amount of time when they are faced with an exponential growth of possible solutions. 
Yet the popular stochastic programming approaches use exhaustive searches to take 
advantage of pioneered works of Dantzig and Beale in decomposing the uncertainty 
problem into solvable, deterministic (certainty) linear programming problems. 
 
The approach described here proposes to sample the uncertainty space with typically 
10,000 FSWs. It takes advantage of the fact that once the FSW is specified, the 
problem becomes solvable. The approach is to use transparent reasoning, as opposed 
to mathematical formulas, to design search schemes or algorithms to find the global 
optimum and not get trapped at one of the local optima. This approach relies on 
arguments from devil’s advocates to uncover the shortcomings of an algorithm in terms 
of why under certain situations it will not lead to the global optimum. Once the 
weaknesses of a given algorithm are identified, the original algorithm hopefully can be 
modified to remove the shortcomings or another algorithm can be designed to plug the 
reasoning hole of the original algorithm. 
 
Experience with this approach has been good. However, if the shortcomings in these 
algorithms cannot be eliminated, this approach would have to rely on the simplicity of 
nonmathematical reasoning so that many analysts or even “crowd wisdom” can be used 
to devise completely different algorithms to do the job. Because all approaches, 
including this one, face the risk of potentially missing the global optimum, this approach 
based on reasoning can open a new way for drawing in talents from the 
nonmathematical world to devise search schemes to tackle this very difficult task of 
optimization under uncertainty. 
 
These logically derived search algorithms are easy to understand, and the 
implementation amounts to creating a flow chart and using no complicating 
mathematics or formulas; as such, the approach allows for a wider adoption by analysts 
and organizations that possess different skill sets. The two illustrative search schemes 
(SS8-NR and SS8-SR) draw on common sense and commonly practiced ideas. SS8-
NR is based on the idea of how to create a project team. Suppose a project sponsor 
has some “use-it-or-lose-it” money at the end of a fiscal year. While a project must be 
issued now within a broad study area, the sponsor will assign specific tasks over the 
course of the one-year project, but which tasks those will be is unclear. The company’s 
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policy and the sponsor’s requirement, however, are such that the project leader must 
specify the team members at the project’s start, after which it will not be possible to 
change them. Under such circumstances, it makes sense to draw up a list of tasks that 
the sponsor may ask the project team to do and to start by then selecting the person (by 
analogy, the first project selected) suitable for the largest number of potential task 
combinations that can be anticipated. The next step would be to find the person (by 
analogy, the second project selected) to best complement the first in technical and 
managerial skills so that the pair is suitable for the largest number of possible task 
combinations. Similarly, the third person (by analogy, the third project selected) would 
be found to best complement the first two, and so on. 
 
The second search scheme (SS8-SR)66 accounts for the possibility that if a different 
person were selected as the first person, the skill sets and personal chemistry to 
complement this different person might lead to a team composition different from the 
one based on SS8-NR.  
 
Mathematically, these approaches are very convenient. Let there be N persons to 
choose from in forming the project team. Instead of looking at 2N—or easily millions or 
trillions of possible team compositions—the two search schemes together would 
generate only N possible project teams (by analogy, any project could be the first, but 
thereafter the choices would be determined by looking at results for the uncertain 
scenarios used), thus enormously reducing the complexity of the search.  
 
This type of reasoning in designing and using complementary algorithms can give 
analysts a way—which may be more transparent than mathematics or which can at the 
least supplement it—to uncover and mitigate logical lapses. Also, analysts using this 
approach may feel more confident that, even if these algorithms do not find the global 
optimum, the local optimum they find should be near the global one, because the logic 
of these algorithms is used often and has worked well in the analysts’ other daily 
activities.  
 
Each of the algorithms developed in this paper takes minutes or hours to find the 
optimal solution, even for uncertainty problems involving substantially more decision 
variables (75 used versus typically ten in other methods), uncertain parameters (75 
used versus typically a few in other methods), and uncertain scenarios (10,000 used 
versus a few—or, alternatively, more than 10,000 but then restricting variables and/or 
parameters to around ten in other methods) than other methods would have allowed. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
 66The terms without replacement and with replacement refer to whether search is conducted 
with a unique choice of the first team member (the first version) or whether the search is conducted with 
each of the possible people as the first team member.  
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Thus, the relatively shorter run time offers the possibility to perform several 
complementary algorithms for the same problem, thus enhancing the chance of finding 
the global optimum. 
 
The objective function is chosen to be the highest chance of meeting the requirements 
within a budget. This can be a way to introduce confidence levels in dealing with 
uncertainty. Then again, if analysts prefer to use the more conventional objective 
functions—such as minimization of expected cost or regret—this method can be 
modified to use those objective functions with other changes in the formulation and 
search algorithms, which may be akin to something as simple as moving from a simple 
average to weighted sums. 
 
This method is also suitable for parallel computing, because these 10,000 runs for each 
data point, the runs of different data points, and the runs for different algorithms can all 
be performed independently and simultaneously. The current advances in parallel 
computing and the rapid decline in cost of on-demand computer power favor this 
multiple search approach. 
 
This paper proposes a common platform so that solutions derived from different 
approaches and search algorithms can be objectively compared to determine which 
gives the best solution. This implies that the platform is supported by a library of test 
problems with known solutions so that different algorithms can be tested and compared. 
As the platform and its database accumulate more and more comparisons, there will be 
better confidence about which algorithm works the best for which types of problems. 
 
This paper also proposes to extend the applications of the approach and associated 
algorithms in several dimensions: 
 

 Apply it to different types of problems beyond the current focus on project 
portfolio problems under uncertainty. One may start the expansion with other 
resource allocation problems, such as production planning. 

 Use other objective functions for the uncertainty problem, such as the 
minimization of expected total cost or regret. 

 Program the multiple search algorithms for parallel computing to shorten the run 
time. 

 
Finally, the paper proposes a systematic examination of approaches and their search 
algorithms, with the goal of combining their individual strengths and mitigating their 
weaknesses to give users ways to better perform optimization under uncertainty. 
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Because uncertainties are inherent in input data and the future, better ways to factor 
uncertainties into consideration are critically important for any type of decisionmaking.  
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Appendix:	  Embodiments	  of	  Computer	  Resources	  Used	  in	  Portfolio	  
Optimization	  by	  Means	  of	  Multiple	  Certainty-‐Uncertainty	  Searches	  

How would one perform the certainty-uncertainty search methods for the portfolio 
optimization approach described in the main text and highlighted in Figure 2.1 and in 
the flows charts shown in Figures 2.2–2.4? This appendix describes illustrative and 
alternative configurations of computer and network resources to implement the 
approach and its associated algorithms. 

A	  System	  in	  Accordance	  with	  an	  Embodiment	  for	  Performing	  the	  Methods	  

Figure A.1 shows the computer resources needed to perform the methods in the 
portfolio optimization approach described in the main text. As with the flow charts shown 
in Figures 2.2–2.4 in the main text, the components are numbered for ease of 
discussion. 

Figure A.1. A System in Accordance with 
an Embodiment for Performing the Methods 
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The system (10) includes a computer (11), another computer (12), a server (13), a 
network (14), and another network (15). Computer 11 is shown as a portable computer, 
but it could be any type of computer, such as a desktop computer, a server, or the like. 
Computer 12 is shown as a desktop computer, but it too could be any type of computer, 
such as a portable computer, a server, or the like. Server 13 is shown as a server 
computer, but it could be any type of computer, such as a desktop computer, a portable 
computer, or the like. 
 
As shown in the Figure A.1, computer 11 communicates with computer 12 through 
network 14. Computer 12 communicates with server 13 through network 15. Network 14 
may include a local area network (LAN), a wide area network (WAN), and/or 
combinations of LANs and/or WANs. Network 15 may include a local area network 
(LAN), a wide area network (WAN), and/or combinations of LANs and/or WANs. 
Networks 14 and 15 may be the same network and may be the Internet. 
 
In various embodiments for this system (10), all the input data are recorded in an Excel 
file. Sometimes, this file may be prepared by the office of a project sponsor at computer 
11 and then sent through email from computer 11 to computer 12 over network 14. 
Sometimes, this file is internally generated by a study team at computer 12. In either 
case, this input file is first stored on computer 12. Because the software used prefers 
comma-separated values (CSV) files in a specific layout, the data are formatted before 
they are uploaded from computer 12 over network 15 to server 13, which may be, for 
example, a server that has eight CPU cores at 2.3GHz with 32 gigabytes of memory. 
Server 13 may also have, for example, four terabytes of hard disk storage. While the 
applications often involve integer programming problems, which are memory-intensive, 
server 13 provides more than adequate capacity for the past and current applications. 
 
Users and developers use the Secure Shell Protocol (SSH) of computer 12 to navigate 
on server 13 over network 15 and to run programs on server 13, typically using a 
software package called PuTTY. Moreover, the Common Internet File System/Server 
Message Block (CIFS/SMB) may be used to read files on server 13 and to write files to 
it. 
 
The program to run the certainty-uncertainty searches for the optimal portfolio, such as 
executing the flocharts shown in Figures 2.2–2.4, may be written in General Algebraic 
Modeling System (GAMS), a tool for solving mixed-integer linear programming 
optimization problems. At its core, GAMS can use many “solvers”; each may have many 
different ways of evaluating the problem. Thus far, the IBM ILOG CPLEX Optimization 
Studio (often informally referred to simply as CPLEX) has been used. In a simulation to 



 

	   -‐	  47	  -‐	  

find the optimal portfolio (OP) for a given budget, the CPLEX Solver was typically used 
tens of thousands of times to see which projects were selected under each of numerous 
sets of possible outcomes randomly drawing from the uncertain input parameters. Both 
GAMS 23.3 and the CPLEX Solver may be run on Red Hat Enterprise Linux (RHEL) 5 
or higher on server 13. GAMS provides several output files, but an output file has been 
scripted to fit the specific needs. 
 
Thus, the input file, GAMS, CPLEX, the program, and the output files all reside on 
server 13. Further, server 13 and computer 12 may be inside a corporate firewall. 
 
The output files, which may also be in the form of an Excel-compatible format, such as 
CSV, can be downloaded to a computer, such as computer 12 and/or computer 11 for 
post-run processing on the computer, including the preparation of graphs, tables, and 
texts and their placement into briefings and reports. 

An	  Example	  of	  a	  Computer	  System	  Connected	  to	  a	  Network	  

Figure A.2 is an example of a computer system (140) connected to a network (149). 
The computing system (140) can be used, for example, for implementing the methods 
described in the approach discussed in the main text and shown in Figures 2.2–2.4. 
With reference to Figures A.1 and A.2, computer 11, computer 12, and server 13 in 
Figure A.1 could be implemented, for example, by respective individual embodiments of 
computing system 140. Computing system 140 includes a bus (143) or other 
communication component for communicating information and a processor (141) 
coupled to the bus (143) for processing information. Computing system 140 also 
includes main memory (144), such as a random access memory (RAM) or other 
dynamic storage device, coupled to bus 143 for storing information and instructions to 
be executed by processor 141. Main memory 144 can also be used for storing position 
information, temporary variables, or other intermediate information during execution of 
instructions by processor 141. Computing system 140 may further include a read-only 
memory (ROM) (145) or other static storage device coupled to bus 143 for storing static 
information and instructions for processor 141. A storage device (146)—such as a 
nontransitory, solid-state device, magnetic disk, or optical disk—is coupled to bus 143 
for persistently storing information and instructions. 
 
Computing system 140 may be coupled through bus 143 to display 147, such as a liquid 
crystal display or active matrix display, for displaying information to a user. Input device 
148, such as a keyboard, including alphanumeric and other keys, may be coupled to 
bus 143 for communicating information and command selections to processor 141. In 
another implementation, input device 148 includes a touch-screen display. Input device 
148 can also include a cursor control, such as a mouse, a trackball, or cursor direction 
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keys, for communicating direction information and command selections to processor 
141 and for controlling cursor movement on display 147. 
 

Figure A.2. An Example of a Computer System Connected to a Network 

 

	  
In some implementations, computing system 140 may include a communications 
adapter (142), such as a networking adapter. Communications adapter 142 may be 
coupled to bus 143 and may be configured to enable communications with computing or 
communications network 149 and/or other computing systems. In various illustrative 
implementations, any type of networking configuration may be achieved using 
communications adapter 142, such as wired (for example, through an Ethernet 
connection), wireless (for example, through Wi-Fi, Bluetooth, worldwide interoperability 
for microwave access [WiMAX], etc.), preconfigured, ad hoc, LAN, WAN, etc. 
 
According to various implementations, various processes that bring about illustrative 
implementations can be achieved using computing systems, such as computing system 
140. Processor 141 can execute an arrangement of instructions contained in main 
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memory 144. Such instructions can be read into main memory 144 from another 
computer-readable medium, such as storage device 146. Execution of the arrangement 
of instructions contained in main memory 144 causes computing system 140 to perform 
processes. One or more processors in a multi-processing arrangement may also be 
used to execute the instructions contained in main memory 144. In alternative 
implementations, hard-wired circuitry may be used in place of, or in combination with, 
software instructions to implement illustrative implementations.  
 
Although an example processing system has been described in Figure 2.2, 
implementations of the subject matter and the functional operations described in this 
specification can be carried out using other types of digital electronic circuitry; in 
computer software, firmware, or hardware, including the structures disclosed in this 
specification and their structural equivalents; or in combinations of one or more of them. 
 
Various implementations can be implemented as one or more computer programs—that 
is, one or more modules of computer program instructions, encoded on one or more 
nontransitory computer readable storage mediums for execution by, or to control the 
operation of, data processing apparatuses. A computer-readable storage medium can 
be, or can be included in, a computer-readable storage device, a computer-readable 
storage substrate, a random or serial access memory array or device, or a combination 
of one or more of them. Moreover, while a computer-readable storage medium is not a 
propagated signal, a computer-readable storage medium can be a source or destination 
of computer program instructions encoded in an artificially generated propagated signal. 
The computer-readable storage medium can also be, or be included in, one or more 
separate components or media (for example, multiple CDs, disks, or other storage 
devices). Accordingly, a computer-readable storage medium is tangible. 
 
Various operations described in this specification can be implemented as operations 
performed by a data processing apparatus on data stored on one or more computer-
readable storage devices or received from other sources. The term “data processing 
apparatus” or “computing device” encompasses all kinds of apparatuses, devices, and 
machines for processing data, including by way of example a programmable processor, 
a computer, a system on a chip, or multiples or combinations of the foregoing. An 
apparatus can include special-purpose logic circuitry—for example, a field 
programmable gate array (FPGA ) or an application-specific integrated circuit (ASIC). 
An apparatus can also include, in addition to hardware, code that creates an execution 
environment for a computer program—for example, code that constitutes processor 
firmware, a protocol stack, a database management system, an operating system, a 
cross-platform runtime environment, a virtual machine, or a combination of one or more 
of them. The apparatus and execution environment can realize various different 
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computing model infrastructures, such as web services, distributed computing, and grid 
computing infrastructures. 
 
A computer program (also known as a program, software, software application, script, 
or code) can be written in any form of programming language—including compiled or 
interpreted languages and declarative or procedural languages—and can be deployed 
in any form, including as a stand-alone program or as a module, component, 
subroutine, object, or other unit suitable for use in a computing environment. A 
computer program may, but need not, correspond to a file in a file system. A program 
can be stored in a portion of a file that holds other programs or data (for example, one 
or more scripts stored in a markup language document), in a single file dedicated to the 
program in question, or in multiple coordinated files (for example, files that store one or 
more modules, sub-programs, or portions of code). A computer program can be 
deployed to be executed on one computer or on multiple computers that are located at 
one site or distributed across multiple sites and interconnected by a communication 
network. 
 
The processes and logic flows described in this specification can be performed by 
programmable processors executing one or more computer programs to perform 
actions by operating on input data and generating output. The processes and logic flows 
can also be performed by, and apparatuses can also be implemented as, special-
purpose logic circuitry—for example, an FPGA or an ASIC. 
 
Processors suitable for executing a computer program include, by way of example, both 
general and special-purpose microprocessors and any one or more processors of any 
kind of digital computer. Generally, a processor will receive instructions and data from a 
read-only memory, a random-access memory, or both. Generally, a computer will also 
include, or be operatively coupled to receive data from or transfer data to, or both, one 
or more mass storage devices for storing data (for example, magnetic, magneto-optical 
disks, or optical disks). However, a computer need not have such devices. Moreover, a 
computer can be embedded in another device—for example, a mobile telephone, a 
personal digital assistant (PDA), a mobile audio or video player, a game console, a 
Global Positioning System (GPS) receiver, or a portable storage device (for example, a 
universal serial bus [USB] flash drive), to name just a few. Devices suitable for storing 
computer program instructions and data include all forms of nonvolatile memory, media, 
and memory devices, including, by way of example, semiconductor memory devices (for 
example, erasable programmable read-only memory [EPROM], electrically erasable 
programmable read-only memory [EEPROM], and flash memory devices); magnetic 
disks (for example, internal hard disks or removable disks); magneto-optical disks; and 
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CD-ROMs and DVD-ROMs. A processor and a memory can be supplemented by, or 
incorporated in, special-purpose logic circuitry. 
 
To provide for interaction with a user, various implementations can be carried out using 
a computer having a display device—for example, a cathode ray tube (CRT) or liquid 
crystal display (LCD) monitor—for displaying information to the user and a keyboard 
and a pointing device—such as a mouse or a trackball—by which the user can provide 
input to the computer. Other kinds of devices can be used to provide for interaction with 
a user as well; for example, feedback provided to the user can be any form of sensory 
feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from 
the user can be received in any form, including acoustic, speech, or tactile input. In 
addition, a computer can interact with a user by sending documents to, and receiving 
documents from, a device that is used by the user, for example, by sending web pages 
to a web browser on a user’s client device in response to requests received from the 
web browser. 
 
Various implementations can be carried out using computing systems that include a 
back-end component (for example, as a data server), that include a middleware 
component (for example, an application server), that include a front-end component (for 
example, a client computer having a graphical user interface or a web browser), or any 
combination of one or more such back-end, middleware, or front-end components. The 
components of the system can be interconnected by any form or medium of digital data 
communication, such as a communication network. Examples of communication 
networks include a local LAN and a WAN, an inter-network (such as the Internet), and 
peer-to-peer networks (such as ad hoc peer-to-peer networks). 
 
Computing systems can include clients and servers. A client and server are generally 
remote from each other and typically interact through a communication network. The 
relationship of client and server arises by virtue of computer programs running on the 
respective computers and having a client-server relationship to each other. In some 
implementations, a server transmits data (for example, an HTML page) to a client 
device (for example, to display data to and receive user input from a user interacting 
with the client device). Data generated at the client device (for example, a result of the 
user interaction) can be received from the client device at the server. 
 
While this specification contains many specific implementation details, these should not 
be construed as limitations on the scope of any inventions or of what may be claimed, 
but rather as descriptions of features specific to particular implementations of particular 
inventions. Certain features that are described in this specification in the context of 
separate implementations can also be carried out in combination in a single 
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implementation. Conversely, various features that are described in the context of a 
single implementation can also be carried out in multiple implementations separately or 
in any suitable subcombination. Moreover, although features may be described above 
as acting in certain combinations and even initially claimed as such, one or more 
features from a combination can in some cases be excised from the combination, and 
the combination may be directed to a subcombination or variation of a subcombination. 
 
Similarly, while operations are depicted in the drawings in a particular order, this should 
not be understood as requiring that such operations be performed in the particular order 
shown or in sequential order, or that all illustrated operations be performed, to achieve 
desirable results. In certain circumstances, multitasking and parallel processing may be 
advantageous. Moreover, the separation of various system components in the 
implementations described above should not be understood as requiring such 
separation in all implementations, and it should be understood that various described 
program components and systems can generally be integrated together in a single 
software product or packaged into multiple software products. 
 
Particular implementations of the subject matter have been described. Other 
implementations are within the scope of the invention. In some cases, the actions 
recited can be performed in a different order and still achieve desirable results. In 
addition, the processes depicted in the accompanying figures do not necessarily require 
the particular order shown, or sequential order, to achieve desirable results. In certain 
implementations, multitasking and parallel processing may be advantageous. 
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