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Preface

The Department of Defense (DoD) has spent hundreds of millions of dollars on commercial 
intratheater airlift (CITA) movements in the U.S. Central Command (USCENTCOM) area 
of responsibility. This is notable, beyond simply the magnitude of the expenditures, because 
intratheater airlift within a combat theater of operation is typically assumed to be a mission 
performed by military aircraft; indeed, the U.S. Air Force (USAF) has deployed a number of 
C-130s and C-17s to USCENTCOM in support of this specific mission.

Although some of the motivations provided for the use of CITA in this particular case 
(that is, within USCENTCOM) are inherently noneconomic, the analysis detailed in this 
report aims to answer the following question: Were these expenditures on CITA cost-effective, 
relative to the cost of performing these same movements on USAF-organic aircraft? That is, 
did DoD get a “good value” on these purchases? To answer that question, we first had to iden-
tify how to measure cost-effectiveness of CITA. We then examined whether the use of CITA 
should have been expanded or reduced, relative to the historical experience.

The research described in this report was conducted within the Resource Management 
Program of RAND Project AIR FORCE for a project titled “A Civil Reserve Air Fleet (CRAF)–
Like Concept for Intratheater Lift: Approaches and Effects on Requirements,” sponsored by 
Maj Gen Brooks Bash, former Director of Operations, Headquarters Air Mobility Command.

This report should be of interest to mobility planners, logisticians, and contracting per-
sonnel throughout DoD, in particular those associated with U.S. Transportation Command.

RAND Project AIR FORCE

RAND Project AIR FORCE (PAF), a division of the RAND Corporation, is the U.S. Air 
Force’s federally funded research and development center for studies and analyses. PAF pro-
vides the Air Force with independent analyses of policy alternatives affecting the development, 
employment, combat readiness, and support of current and future air, space, and cyber forces. 
Research is conducted in four programs: Force Modernization and Employment; Manpower, 
Personnel, and Training; Resource Management; and Strategy and Doctrine.

Additional information about PAF is available on our website:
http://www.rand.org/paf/

http://www.rand.org/paf/
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Summary

Intratheater airlift (ITA) is used to deliver critical and time-sensitive supplies, such as blood 
products for transfusions or repair parts for vehicles, to deployed forces. ITA within a combat 
theater of operation has traditionally been assumed to be provided by military aircraft. How-
ever, in recent years, a number of commercial providers have been providing a significant 
amount of ITA within U.S. Central Command (USCENTCOM). A number of motivations 
for the use of commercial intratheater airlift (CITA) within USCENTCOM have been identi-
fied, such as1

•	 concerns about structural fatigue to C-130 aircraft due to the heavy use of these aircraft 
in USCENTCOM

•	 lack of access to C-130 aircrews, particularly those in the Air Reserve Component, for 
deployments

•	 a desire to reduce the use of convoys over high-threat roadways.

The analysis detailed in this report aims to answer the following question: Were these 
expenditures on CITA cost-effective, relative to the cost of performing these same movements 
on organic U.S. Air Force (USAF) aircraft? That is, did the Department of Defense (DoD) get 
a “good value” on these purchases?

When multiple airlift options exist for any specific movement, it is first necessary to iden-
tify the cost to provide each movement via each airlift option. Identifying such a cost is compli-
cated by two primary factors: for commercial carriers, the extent of price elasticities of demand 
(to what extent do changes in the demand for CITA movements impact the price charged by 
commercial carriers for these movements?); for USAF-organic aircraft, the set of which fixed 
and marginal costs to include (is the procurement or retirement of aircraft under consideration, 
or is one only considering variations to the number of flying hours performed by aircraft that 
are already in the USAF inventory, and whose inventory levels are justified according to some 
requirement exogenous to their use in this specific scenario?).

Moreover, identifying the cost for each individual movement does not capture the poten-
tial for reducing costs by aggregating multiple movements across aircraft sorties and missions. 
Given a large collection of movement requirements and a set of airlift alternatives, it is nec-

1 Another potential motivation that has been suggested, beyond the three listed here, is a desire to foster the development 
of more-robust commercial logistic options in the region to support reconstruction and other local, nonmilitary develop-
ment activities. Given that the carriers providing CITA were not indigenous Iraqi or Afghan firms and that, by the nature 
of the cargo airlift industry, these aircraft will move around the globe in response to the demands for their services, we find 
this motivation to be somewhat lacking in validity.
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essary to solve a routing problem and an assignment problem: which movements to assign 
to which missions. We developed an optimization model to identify the most cost-effective 
movement-to-mission assignments for any set of movement requirements and available airlift 
alternatives.

Conclusions

Based on the demands for ITA and the costs paid to CITA providers in USCENTCOM in 
2009, we find:

C-17 and C-130 are both generally more cost-effective than CITA, but CITA options 
should be retained to supplement USAF aircraft. Across all our optimization model runs, 
the model demonstrated a clear preference for the increased use of USAF aircraft and the 
decreased use of CITA, although, for a relatively small fraction of the USCENTCOM ITA 
demands, the IL-76 charters and Theater Express Program (TEP) tenders were the most cost-
effective options.

As shown in Figure  S.1, for a level of USAF resources equal to that used in  
USCENTCOM (15 C-17s and 21 C-130s available each day for ITA movements), the opti-
mized allocation of cargo and passengers to airlift options reduced costs by $175 million from 
the historical performance. The model achieved these savings by replacing the TEP tenders 
with C-17s for long movements and by replacing TEP with IL-76 charters for short movements. 
The optimization model made these changes primarily because of the ability of the C-17 and 
IL-76 to aggregate cargo across multisortie missions, supporting a mix of high-demand and 
low-demand origin-destination pairs on a single mission. Using TEP to provide the same sets 

Figure S.1
Total Delivery Cost for Optimization Model Results and Experience

RAND TR1313-S.1

To
ta

l d
el

iv
er

y 
co

st
 (

$M
 2

00
9)

Actual experience Optimization model

0

200

400

600

1,200

1,000

800

1,400

15 C-17, 21 C-130 30 C-17, 21 C-13015 C-17, 42 C-13015 C-17, 21 C-130



Summary    xiii

of movements would require a separate tender for each origin-destination pair, with the low-
demand origin-destination pairs driving a comparatively high cost per amount moved.2

If the level of C-130s supporting USCENTCOM ITA could be doubled, the optimized 
allocation could reduce costs by slightly more than $210 million over the optimization result 
for 21 C-130s (for a total savings of approximately $390 million). These $210 million savings 
accrue because the increased number of C-130s allows significantly more passengers move-
ments to occur on C-130s, with a corresponding decrease in C-17 passenger movements, 
thereby freeing C-17s to replace IL-76s for long cargo movements (some of the additional 
C-130s are also used to replace IL-76s for short cargo movements). Doubling the level of C-17s 
supporting USCENTCOM ITA while holding C-130s at the historical level could allow the 
optimized allocation to reduce costs by slightly more than $330 million over the optimization 
result for 15 C-17s (for a total savings of approximately $510 million). These $330 million sav-
ings are accrued by significantly increasing both the passenger and cargo movements occurring 
on C-17s, with a corresponding decrease in C-130 passenger movements and cargo movements 
using TEP and IL-76 charters. In both cases, the increased usage of C-17s for cargo movements 
is due to the C-17’s relative cost advantage: On a cost-per-mile basis, the IL-76 costs three times 
as much as the C-17, for a comparable aircraft block speed and payload. These cost reductions 
do not account for the increased costs to the USAF associated with deploying additional air-
craft to USCENTCOM, but our preliminary analysis suggests that these deployment costs 
would be much smaller than the potential savings.

The minimum cost that was achieved with 30 C-17s was essentially equal to the global 
minimum cost achievable if we allowed the model access to an unlimited pool of C-130s and 
C-17s. Because the model’s solution with 30 C-17s utilized TEP and IL-76s to transport 4 and 
6 percent, respectively, of the total cargo tonnage, CITA appears to be the most cost-effective 
delivery option for these cargoes, suggesting that, even though USAF aircraft appear to be 
more cost-effective for most of the USCENTCOM ITA movements, CITA options should be 
retained for some small fraction of movements.3

We also performed sensitivity analyses, running the optimization model with lower per-
movement costs for TEP and higher costs for C-130s, C-17s, and IL-76s. In these sensitivity 
analyses, the amount of cargo transported via C-17 and C-130 did not significantly change, 
suggesting that our finding that USAF aircraft are more cost-effective than commercial alter-
natives for most ITA movements within USCENTCOM is fairly robust. However, as IL-76 
costs increased and TEP costs decreased, the amount of cargo transported via TEP increased, 
with most of this increase coming at the expense of cargo previously transported via IL-76. 
This suggests that, while IL-76s may be slightly more cost-effective than TEP for most of the 
ITA movements within USCENTCOM best suited for CITA, this preference is not robust to 
moderately sized changes to the relative IL-76 and TEP cost structures.

Decision-support tools are needed to assist the Combined Air and Space Opera-
tions Center (CAOC) Air Mobility Division (AMD) and USCenTCOM Deployment 
and Distribution Operations Center with daily airlift cargo allocation decisions. Within 

2 Note that, in other applications, such as contract trucking movements in the United States, the use of combinatorial 
auctions allows competitors to submit bids on any desired combination of individual movement requirements; optimization 
routines can be used to select the set of bids that spans the requirements at minimum cost. Our analysis did not examine 
the potential benefits of such an application to the TEP; rather, we examined the TEP as it existed in 2009.
3 This assumes that CITA providers would still elect to participate at the reduced volumes.
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USCENTCOM, each day the CAOC AMD, based on guidance from the USCENTCOM 
Deployment and Distribution Operations Center, must assign movement requirements to air-
lift options. Given a large collection of movement requirements and a set of airlift alternatives, 
this entails solving a routing problem and an assignment problem: which movements to assign 
to which missions. At the time of this analysis, the CAOC AMD did not have access to sophis-
ticated decision-support tools to assist in its daily determination of cargo-aircraft allocation 
decisions. The extremely large number of potential assignments prohibits any individual from 
considering all feasible options and selecting the most effective solution without the aid of a 
computer model. We developed an optimization model to perform such movement-to-mission 
assignments and found that the model was able to identify significant improvements to the 
historical performance. As noted in Figure S.1, in contrast to USCENTCOM historical per-
formance of approximately $1,210 million in total ITA delivery cost, the model found a solu-
tion that could have reduced this cost by up to $175 million, without increasing the number of 
employed C-17 and C-130 flying each day in theater. This suggests that an investment in the 
development of such tools for AMD use could achieve large savings.



xv

Acknowledgments

Many people inside and outside the Air Force provided valuable assistance and support to our 
work.1 We thank Maj Gen Brooks Bash, Directorate of Operations, Headquarters Air Mobil-
ity Command (AMC/A3), and Maj Gen Mark Solo, Commander, 618 Tanker Airlift Control 
Center (618 TACC/CC), who were the original sponsors of this project, along with Maj Gen 
Frederick Martin, AMC/A3, who served as our sponsor when this project was completed, for 
their support. We also thank Maj Gen Robert McMahon, Commander, Warner Robins Air 
Logistics Center, AMC (WR-ALC/CC), for sharing his feedback on this work, drawing on 
his recent experiences as the Director of the USCENTCOM Deployment and Distribution 
Operations Center.

We extend a special thanks to Dave Merrill and Don Anderson in Directorate of Analy-
ses, Assessments and Lessons Learned, Headquarters Air Mobility Command (AMC/A9) for 
all their assistance throughout this study, from their help with data collection at the outset to 
their feedback and suggestions as we prepared the final conclusions. The first author adds a 
further, personal, thanks to Dave Merrill for hosting him in the AMC/A9 office space during 
his January 2008 to February 2010 assignment at Scott Air Force Base.

A number of other individuals at Scott Air Force Base also assisted our data collection 
efforts; in particular, we would like to thank Greg Hunt, USTC/AQ and 2nd Lt Chris Jones, 
AMC/A9, for their efforts to obtain TEP data for our study. Sam Newberry and Sandy Halama 
at USTC/AQ greatly aided our data collection efforts for the IL-76 and AN-124 aircraft char-
ters in USCENTCOM. Merle Lyman and Mark Caslen at AMC/A3B helped us to better 
understand the Civil Reserve Air Fleet program. Finally, we thank Bruce Busler, USTC/AC, 
for taking the general concepts developed in this report and beginning to implement the use 
of similar decision support tools within USTRANSCOM.

At RAND, we especially thank Mary Chenoweth for her assistance obtaining IL-76 and 
AN-124 charter aircraft movement data. Anthony Rosello was an extremely useful source of 
general knowledge about Air Force mobility operations. We also thank General (retired) John 
Handy, formerly of the RAND Board of Trustees; Michael Kennedy; David Orletsky; Sean 
Bednarz; Richard Moore; Laura Baldwin; James Masters; and Carl Rhodes for sharing their 
insights and suggestions during the development of our final project briefing. We would espe-
cially like to thank our RAND colleagues Marc Robbins and Christopher Mouton for their 
thorough reviews; their comments helped shape this monograph into its final, improved form.

1 All office symbols and military ranks are listed as of the time of this research.



xvi    Commercial Intratheater Airlift: Cost-Effectiveness Analysis of Use in U.S. Central Command

That we received help and insights from those acknowledged above should not be taken 
to imply that they concur with the findings presented in this report. As always, the analysis and 
conclusions are solely the responsibility of the authors.



xvii

Abbreviations

AFB Air Force base

AFCAIG Air Force Cost Analysis Improvement Group

AFDD Air Force doctrine document

AFI Air Force instruction

AFMC Air Force Materiel Command

AFPAM Air Force pamphlet

AFRC Air Force Reserve Command

AGR Active Guard Reserve

ALD available-to-load date

AMC Air Mobility Command

AMC/A3 Directorate of Operations, Headquarters Air Mobility Command

AMD Air Mobility Division

ANG Air National Guard

AOR area of responsibility

ARC Air Reserve Component

ART Air Reserve Technician

BOS base operating support

CAOC Combined Air and Space Operations Center

CITA commercial intratheater airlift

CORE Cost Oriented Resource Estimating

CPU central processing unit

CRAF Civil Reserve Air Fleet

DoD Department of Defense

EBH equivalent baseline hour(s)



xviii    Commercial Intratheater Airlift: Cost-Effectiveness Analysis of Use in U.S. Central Command

FH flying hour(s)

FY fiscal year

GATES Global Air Transportation Execution System

GDSS Global Decision Support System

ITA intratheater airlift

MAJCOM major command

MCRS-16 Mobility Capabilities and Requirements Study 2016

MDS mission design series

MILP mixed integer linear program

OMB Office of Management and Budget

PAA primary aircraft authorized

PACAF Pacific Air Forces

PAF Project AIR FORCE

PAX passengers

RC reserve component

RDD required delivery date

SAAM special assignment airlift mission

SF severity factor

STAR standard theater airlift routes

START Strategic Tool for the Analysis of Required Transportation

TAI total aircraft inventory

TCTO Time Compliance Technical Order

TEP Theater Express Program

TWCF Transportation Working Capital Fund

USAF U.S. Air Force

USAFE U.S. Air Forces in Europe

USC U.S. Code

USAFRICOM U.S. Africa Command

USCENTCOM U.S. Central Command

USTRANSCOM U.S. Transportation Command



1

ChAptEr OnE

Introduction

Since 2001, the Department of Defense (DoD) has sustained a large deployment of military 
personnel and equipment to the U.S. Central Command (USCENTCOM) area of responsi-
bility (AOR). Much of these deployed forces’ demands for critical and time-sensitive supplies, 
such as blood products for transfusions or repair parts for vehicles, are delivered using intra-
theater airlift (ITA). By ITA, we are referring to an aircraft sortie whose origin and destination 
are both in the same geographic region; in this case, the USCENTCOM AOR.

ITA within a combat theater of operation has traditionally been assumed to be provided 
by military aircraft. Air Force Doctrine Document (AFDD) 2-6, Air Mobility Operations, 
is the keystone reference for U.S. Air Force (USAF) airlift doctrine, presenting the tenets of 
air mobility for both inter- and intratheater operations. However, while AFDD 2-6 provides 
explicit guidance for the inclusion of Civil Reserve Air Fleet (CRAF) capabilities into global 
command structures for intertheater airlift, the sections addressing regional control of ITA do 
not mention commercial carriers.

Similarly, the Mobility Capabilities and Requirements Study 2016 (MCRS-16) analyzed 
ITA requirements, using a combination of C-130s, C-17s, and C-27s to provide all ITA move-
ments.1 MCRS-16 concluded that the

programmed fleet of 401 C-130s exceeds the peak demand in each of the three MCRS 
cases. . . . [H]owever, based on current total force planning objectives, the C-130 crew 
force structure cannot sustain steady state operations in combination with a long duration 
irregular warfare campaign.

Note this does not mention the use of commercial intratheater airlift (CITA) as a means of 
alleviating this potential shortfall for sustained support to long-duration deployments.

However, circa 2009, a number of commercial providers were providing a significant 
share of ITA within USCENTCOM, supporting both very specialized demands, such as deliv-
ering fresh fruit and vegetables, and more-standard cargo movements. A number of motiva-
tions for the use of CITA within USCENTCOM have been identified, such as2

1 MCRS-16 was intended to “provide an updated, comprehensive assessment of the Department’s mobility system, one 
which could be used to inform the 2010 Quadrennial Defense Review.” Although the final MCRS-16 report is classified, 
an unclassified executive summary was released in February 2010 (DoD, 2010). All references to MCRS-16 contained in 
this report were obtained from this unclassified executive summary.
2 Another potential motivation that has been suggested, beyond the three listed here, is a desire to foster the development 
of more-robust commercial logistic options in the region to support reconstruction and other local, nonmilitary develop-
ment activities. Given that the carriers providing CITA were not indigenous Iraqi or Afghan firms and that, by the nature 
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•	 concerns about the appearance of cracks in C-130 wing-boxes due to the heavy use of 
these aircraft in USCENTCOM (Anderson, undated)

•	 lack of access to C-130 aircrews due to “mobilization authority for the Air Reserve Com-
ponent (ARC) forces expiring” (Omdal, 2010)

•	 a desire to “reduce the need for convoys on highly trafficked Iraqi roads riddled with 
improvised explosive devices” (Huard, 2011).

The analysis detailed in this report aims to answer the following question: Were these 
expenditures on CITA cost-effective, relative to the cost of performing these same movements 
on USAF-organic aircraft? That is, did DoD get a “good value” on these purchases?

Answering this question requires determining how to measure the cost-effectiveness of 
providing ITA, and then using that measure to assess whether the use of CITA should have 
been expanded, or reduced, relative to the historical record.

Of the three motivations for use of CITA presented above, only the first (delay the onset 
of structural damage to C-130s) can be fully accommodated in a standard cost-effectiveness 
analysis, since a cost, in dollars, can be identified for the maintenance and replacement of 
aircraft. Such a cost-effectiveness analysis can address some aspects of the second motivation 
(access to ARC forces), by identifying the number of additional USAF aircraft that would have 
been needed in USCENTCOM to execute the movements performed by CITA. Our analysis 
did not examine the effectiveness of CITA movements at reducing the need for road convoys. 
However, to the extent that CITA movements were less costly than the USAF-organic alter-
native, CITA would provide a “win-win” in terms of (necessarily) fewer convoys and reduced 
costs; were CITA movements more costly, the difference in costs could be viewed as the pre-
mium DoD paid to achieve this objective without deploying more USAF aircraft.

The remainder of this report is organized as follows. Chapter Two describes the primary 
means by which CITA was provided in USCENTCOM, circa 2009, and presents data dem-
onstrating the level of ITA utilization in this theater during this time frame. Chapter Three 
discusses some of the difficulties associated with determining cost-effectiveness of providing 
ITA, details the approaches that we developed to generate cost-estimating relationships for ITA 
movements, and presents the optimization model we developed to identify the minimum cost 
achievable with a given set of airlift resources. Chapter Four then describes the application of 
this cost-effectiveness determination procedure to the set of USCENTCOM ITA movements 
in 2009. Chapter Five concludes the report proper with our findings and recommendations. 
Appendix A describes the data merging we did, and Appendix B describes our evaluation of the 
Theater Express Program (TEP). Appendix C shows how we estimated the full marginal costs 
of using C-130s. Finally, Appendix D describes our CITA optimization model.

of the cargo airlift industry, these aircraft will move around the globe in response to the demands for their services, we find 
this motivation to be somewhat lacking in validity. 



3

ChAptEr twO

ITA in USCENTCOM

Excluding the specialized movements mentioned in the previous chapter (e.g., deliveries of 
fresh fruit and vegetables), there are two broad categories of ITA in support of combat opera-
tions. General support refers to ongoing sustainment of military units, in which requests for 
airlift are approved and prioritized by a joint force commander. USAF C-130s typically pro-
vide such ITA, although C-17s have also provided a significant amount of general support air-
lift to USCENTCOM, through the Theater Direct Delivery program. Direct support refers to 
immediate support for U.S. Army units, which circumvents the delays associated with the joint 
approval and prioritization process by allowing the Army to direct the movements of associated 
aircraft; these movements have historically been performed by Army C-23s, although this mis-
sion is being transferred to USAF C-27s as they enter the USAF inventory.1

Each day, the Air Mobility Division (AMD) of USCENTCOM’s Combined Air and 
Space Operations Center (CAOC) reviews the set of approved airlift requests and determines 
whether the movements will occur via commercial or military aircraft, basing the decisions 
on guidance it receives from the USCENTCOM Deployment and Distribution Operations 
Center. Because general support accounts for most of the ITA in USCENTCOM, we limit 
our focus for this analysis to two USAF aircraft, the C-130 and C-17, and to the two means 
that provided the preponderance of general support CITA: the chartering of large fixed-wing 
aircraft (IL-76s and AN-124s) and TEP.2 Thus, we concentrated on the set of movements for 
which the AMD makes the determination between military or commercial airlift.

Under an aircraft charter, DoD leases the use of an entire aircraft for a specified duration. 
The U.S. Transportation Command (USTRANSCOM) Acquisition Directorate provided us 
with copies of the contract language for the IL-76 and AN-124 charter arrangements within 
USCENTCOM; these contracts specify the rates charged for aircraft missions between vari-
ous origin-destination pairs and are valid for durations ranging from 30 days to one year. An 
important characteristic of these contracts is the cancellation fee structure. These contracts 
guarantee a minimum level of activity to the carriers, generally stated in terms of a minimum 
number of aircraft missions to be flown on each day. If DoD uses fewer than this minimum 
number of aircraft missions on a day, it incurs a cancellation penalty; as a result, DoD pays the 
carrier a fee even though the carrier is not providing any airlift on that day.

1 After we completed this analysis, the FY 2013 Budget Overview stated that the Air Force plans to “divest the C-27J fleet 
by retiring 21 aircraft and canceling procurement of 17 additional aircraft” (USAF, 2012).
2 Although other types of commercial aircraft made ITA deliveries, including rotary-wing aircraft and very small fixed-
wing aircraft, such as the CASA C-212, their movements were generally of a nature that would not allow a direct compari-
son with delivery via USAF C-130s and C-17s (such as deliveries to very short, unimproved airfields).
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The IL-76 and AN-124 aircraft that perform the majority of charter movements within 
USCENTCOM are operated by foreign-flagged carriers working as subcontractors to CRAF 
members (all of which are U.S.-flagged). Although the Fly America Act (49 U.S. Code [USC] 
40118) and Fly CRAF Act (49 USC 41106) require all DoD agencies to use CRAF carriers to 
transport personnel and cargo if service is reasonably available between two locations outside 
the United States, U.S.-flagged carriers (and by extension, CRAF members) were not able to fly 
into many DoD destinations in USCENTCOM because of this theater’s threat environment 
circa 2009, providing an exception-based rationale for the use of these foreign-flagged carriers 
to perform cargo movements. However, because of the 10 USC 2640 restrictions requiring 
DoD safety oversight for charter air transportation of members of the armed forces, the IL-76s 
and AN-124s generally did not move personnel in USCENTCOM, the primary exception 
being the pallet riders who are required to travel with classified cargo to ensure its control.

TEP is a DoD program that uses commercial carriers to move cargo within  
USCENTCOM.3 Each day, the AMD identifies a set of tender movements and offers them to 
a set of approved carriers. Because TEP is a tendering arrangement, as opposed to a contracted 
carriage arrangement, these carriers can offer a bid to transport each individual movement, but 
the carriers are not required to bid on any specific movement, and DoD is not required to offer 
any specified minimum level of cargo.4 Each bid received is evaluated based on a combination 
of the cost offered and the carrier’s past performance in delivering awarded cargo within the 
specified timelines. TEP cannot transport explosives; cargo requiring ventilation (e.g., liquid 
oxygen carts); wet or dry ice shipments; registered mail; cargo requiring an escort, courier, or 
signature and tally record; or personnel. A primary distinction between TEP and the whole 
aircraft charters is that TEP affords DoD much more flexible terms, since no guaranteed mini-
mum level of airlift activity needs to be specified in advance for each day’s operations.

Level of ITA Utilization in USCENTCOM

To determine the historical level of CITA use within USCENTCOM, it was necessary to 
merge cargo and passenger movement data from multiple data systems. The Global Air Trans-
portation Execution System (GATES) collects data on the cargo and passengers that pass 
through Air Force aerial ports. The Global Decision Support System (GDSS) is a command 
and control system for the dissemination of airlift and tanker mission plans for all mobility 
air force operations. GATES and GDSS accumulate data for both USAF-organic aircraft and 
chartered commercial cargo aircraft controlled by Air Mobility Command (AMC). By linking 
the cargo and passenger data from GATES with the sortie data from GDSS, we were able to 
determine the set of all cargo and passengers that moved on at least one intra-USCENTCOM 

3 Circa 2009, TEP also served one location outside of USCENTCOM, Djibouti-Ambouli International Airport, which is 
in the U.S. Africa Command (USAFRICOM) AOR.
4 Note that in other applications, such as contract trucking in the United States, the use of combinatorial auctions allows 
competitors to bid on any desired combination of individual movement requirements; optimization routines can be used to 
select the set of bids that spans the requirements at minimum cost. Our analysis did not examine the potential benefits of 
such an application to the TEP; rather, we examined the TEP as it existed in 2009.
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sortie.5 Appendix A provides further detail on the process we developed to merge these data 
sets. The USTRANSCOM Acquisition Directorate provided us with a separate data set that 
detailed the movements performed by TEP. Combining these data sources, we identified the 
total cargo tonnage and passenger count for USCENTCOM ITA (for the subset of AMD-
assigned movements described above).6 Although TEP was established in 2006 and although 
charter aircraft were providing ITA in USCENTCOM prior to that date, we had a complete 
data set only for calendar year 2009; thus, our analysis is limited to ITA movements during 
2009.

As discussed above, USAF C-17s and C-130s move both cargo and passengers in 
USCENTCOM. Figure 2.1 presents the daily intra-USCENTCOM movements for these air-
craft, with the solid lines presenting the tons of cargo moved per day, and the dotted lines pre-
senting the passengers moved per day. The levels of cargo movement were relatively consistent 
across the year, with the C-17s carrying significantly more cargo than the C-130s; summing 
across 2009, C-17s transported over three times as many tons of intra-USCENTCOM cargo 
as did C-130s. However, for passengers, the two aircraft types appear to provide a compa-
rable amount of movement; in fact, summing the passenger movements across the entire year, 
C-130s performed 52 percent of the total passenger movements.

5 Our data set potentially includes some cargo and passengers that were simply transiting USCENTCOM while moving 
between two other theaters. As a practical matter, this was likely a very rare occurrence and should thus account for very 
little in the way of cargo or passengers.
6 The data treatment did not track individual pallets across multiple aircraft; thus, any pallet that was cross-loaded (e.g., 
flying initially on a C-130, then moving to a C-17 to complete the journey) would appear under the movement totals for 
both C-130s and C-17s. Such cross-loading, while fairly common for cargo moving between theaters, is much less common 
for ITA movements.

Figure 2.1
C-17 and C-130 Intra-USCENTCOM Daily Airlift Cargo and Passengers, 2009
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To determine the level of USAF aircraft activity associated with this airlift, we identified 
the number of daily C-17 and C-130 sorties that were associated with the ITA movements pre-
sented in Figure 2.1. Figure 2.2 presents these sortie counts. Across 2009, a relatively consistent 
number of sorties took place each day for each of these aircraft types, with the C-130 typically 
performing approximately twice as many daily sorties as the C-17.

We also determined the number of USAF aircraft that were utilized to perform these sor-
ties. Figure 2.3 presents the number of unique C-130 and C-17 tail numbers that flew at least 
one intra-USCENTCOM sortie each day across the year. While there was some variation, on 
average, between 14 and 16 unique C-17s flew an intra-USCENTCOM sortie per day. For the 
C-130s, the average was between 20 and 22 unique aircraft flying such sorties each day. It is 
important to note here that this number of “employed” aircraft is different from the number 
of aircraft that were deployed to USCENTCOM during this time frame. Over this interval, 
an average of 13 C-17s and 29 C-130s were deployed to USCENTCOM locations at any one 
time (Anderson, 2011). The number of deployed C-17s is less than the number of employed 
C-17s because C-17s often perform ITA sorties in the course of intertheater missions that do 
not require aircraft deployment. However, C-130s do not typically provide such intertheater 
movements. For a C-130 to perform an ITA movement within USCENTCOM, the C-130 
would need to be deployed to USCENTCOM. Thus, more deployed C-130s are needed than 
the daily average of 20 to 22 employed, to account for non–mission capable C-130s and for 
aircraft that are not tasked to fly on a given day for other reasons.

Although CITA did not move passengers in USCENTCOM, it did move a significant 
amount of ITA cargo, as shown in Figure 2.4.7 Observe that over 40 percent of the total 2009 

7 Because our TEP data set did not include movements for the last two weeks of 2009, we based our data set’s tender 
movements for December 18–31, 2009, on the TEP movements performed during December 18–31, 2008 (for which we 
had data).

Figure 2.2
C-17 and C-130 Intra-USCENTCOM Daily Airlift Sorties, 2009
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intra-USCENTCOM tonnage was transported via CITA, with TEP providing 34 percent 
of the movements and charters of IL-76s and AN-124s providing an additional 9 percent.8 
Figure 2.5 presents the temporal dimension of this same cargo tonnage data and demonstrates 
that, while TEP was utilized fairly extensively across the entire year, there was some variation 

8 Our data analysis identified 6,700 tons of intra-USCENTCOM cargo moved via other aircraft, primarily USAF C-5s, 
during 2009 (equal to 1.7 percent of the cargo total); these 6,700 tons do not appear in Figures 2.4 or 2.5.

Figure 2.3
Numbers of C-17 and C-130 Aircraft Flying at Least One Intra-USCENTCOM Sortie per Day, 2009
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Figure 2.4
Intra-USCENTCOM Airlift Tons, by Mode, 2009
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in the amount of charter movements, with peaks in April and October and troughs in July and 
January.

We also examined the characteristics of this set of cargoes. In addition to the motivations 
for using CITA that were discussed in Chapter One (extending the service life of the C-130 
fleet, overcoming lack of access to ARC C-130 aircrews, reducing use of road convoys), both 
the IL-76 and AN-124 aircraft can transport large and heavy items that the C-130 cannot. 
The AN-124 is also able to accommodate some cargoes that cannot fit onto a C-17. Figure 2.6 
is a scatter plot that presents the set of items transported intra-USCENTCOM via IL-76 and 
AN-124 charter in terms of distance transported (on the horizontal axis) and item weight (on 
the vertical axis). Each black dot on the plot represents an item moved via IL-76, and each red 
dot an item moved via AN-124. Note that any single dot may represent multiple items that 
have equal value along both dimensions. We have overlaid onto this plot the range-payload 
capabilities of the C-130 and C-17 (assuming no aerial refueling of the C-17),9 with the region 
lying to the left of and below the dark blue line indicating the capability envelope of a C-130 
and the light blue line similarly indicating the C-17’s capability with no aerial refueling.10

Observe that many of the dots in Figure 2.6 appear to lie in vertical bands. This is because 
each vertical band here is associated with a specific distance, which generally corresponds to 
a specific origin-destination pair. Items that exceeded the C-130 capability curve were moved 

9 Lt Col David Cutter, Directorate of Analyses, Assessments and Lessons Learned, Headquarters Air Mobility Com-
mand, identified these range-payload capability curves using the Advanced Computer Flight Plan software. Note that these 
calculations assume no wind, a standard day, a step climb, and a requirement of one hour’s worth of holding fuel at the 
destination. 
10 We present these range-payload curves to examine the size of individual items moved via charter versus C-130 and C-17 
capabilities. The remainder of this analysis models airlift operations using planning factors to account for the frequency with 
which cargo consumes all available space on the aircraft before it reaches the maximum payload.

Figure 2.5
Intra-USCENTCOM Weekly Airlift Tons, by Mode, 2009
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across five origin-destination pairs (in either direction, listed in order of increasing distance): 
Manas, Kyrgyzstan, to Kandahar, Afghanistan; Al Udeid, Qatar, to Kandahar, Afghanistan; 
Kuwait International to Kandahar, Afghanistan; Kuwait International to Bagram, Afghan-
istan; Kuwait International to Almaty, Kazakhstan. Only 5 percent of the total items in 
Figure 2.6 exceeded C-130 capabilities, and none came close to exceeding the range payload 
capabilities of C-17. Further, although an item can exceed an aircraft’s volumetric constraints 
without violating the aircraft’s weight limitations, all the items presented here consumed 7.3 
pallet positions or less; thus, none exceeded the 18 pallet positions available on a C-17, and very 
few of them exceeded the six pallet positions of the C-130. The tallest item had a height of 170 
inches, so none of these items would have exceeded the C-17’s height restrictions. Therefore, in 
2009, the IL-76 and AN-124 charters were not used to move intra-USCENTCOM items that 
exceeded C-17 capabilities.

We also examined the list of pallets and rolling stock transported via TEP and found that 
these items were relatively small, with 99 percent weighing 8 tons or less. As Figure 2.6 shows, 
8 tons corresponds to a range of approximately 2,850 nmi on the C-130 curve, which is greater 
than the distance between Cairo, Egypt, and the easternmost point in Kazakhstan. Thus, TEP 
was also not used to move many items that exceeded the USAF-organic aircraft’s capabilities.

In summary, the use of CITA in USCENTCOM in 2009 allowed USAF to maintain a 
relatively small mobility footprint of 13 C-17s and 29 C-130s deployed in theater, while reduc-
ing the amount of cargo requiring surface transportation. In the next chapter, we will examine 
whether this strategy was cost-effective. 

Figure 2.6
Items Moved Intra-USCENTCOM During 2009 via IL-76 and AN-124 Charters, Contrasted with C-130 
and C-17 Range-Payload Capabilities
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ChAptEr thrEE

Determining Cost-Effectiveness of CITA Movements

CITA cost-effectiveness can be evaluated by contrasting the cost to perform a set of ITA move-
ments via commercial airlift with the cost to move the same cargo using USAF aircraft.1 This 
requires the determination of appropriate “cost” metrics for each option. However, it is not 
readily apparent how one should construct such metrics, both in the selection of which data 
elements to include and in the form of the model that transforms these data elements into a 
cost.

For CITA, one can obtain the costs paid by the government to the commercial provider 
for a set of historical movements.2 The data analysis we described in Chapter Two computed 
that TEP transported a total of 133,000 tons of cargo in 2009. We obtained the associated 
actual expenditures on TEP from the USTRANSCOM Acquisition Directorate; these costs 
totaled $382 million in 2009.

The metric dollars per pound is commonly used when discussing TEP as a measure of the 
cost-effectiveness of the program. From this perspective, TEP provided airlift movements at 
an average rate of $1.44 per pound. However, one criticism of this metric is that it does not 
account for the distance over which cargo is transported. Another commonly used metric for 
airlift cost-effectiveness is dollars per ton-mile moved. This set of TEP movements accounted for 
103 million ton-miles,3 equating to a cost of $3.69 per ton-mile moved.

One could compare this cost per ton-mile with what USAF-organic aircraft could 
achieve. Consider, for example, the fiscal year (FY) 2010 Transportation Working Capital 
Fund (TWCF) special assignment airlift mission (SAAM) rate of $12,317 per deployed C-17 
flying hour (USTRANSCOM, 2010).4 Assuming block flying speeds of 410 nmi per hour for 
the C-17 (Air Force Pamphlet [AFPAM] 10-1403, 2003), we obtained a ratio of $30.04 per 

1 Alternatively, if access to aircrews or aircraft were viewed as the most important constraint driving the use of CITA, 
cost-effectiveness could be evaluated in terms of the CITA cost per USAF aircraft not needed to be deployed. Our analytic 
formulation allows the examination of either approach. Note also the assumption that air transport was necessary for this 
set of cargoes and that surface transport was not an option; were this assumption relaxed, the ensuing multimodal analysis 
would require some basis for determining which cargoes “must” be airlifted and which could be moved by either mode.
2 These direct expenditures do not account for all the government’s costs associated with CITA; the establishment and 
oversight of the contractual relationships also levies a requirement on DoD personnel. Because we will not attempt to 
estimate such transaction costs in this analysis, our approach can be viewed as understating the total costs of commercial 
movements.
3 We determined cargo ton-miles by computing the flying distance between each cargo’s origin and destination, assuming 
that overflight of Iran was not permitted, measured in nautical miles.
4 A midyear revision to SAAM rates reduced the C-17 cost to $10,280 per flying hour for missions occurring between 
July 1 and September 30, 2010. The letter announcing the rate reductions stated that rates would return to standard levels 
starting October 1, 2010.
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mile. Using this logic, a C-17 sortie carrying 30 tons would do so at a rate of $1.00 per ton-
mile.5 A C-17 sortie payload of 8.14 tons would generate the same $3.69 per ton-mile rate that 
TEP obtained, on average; at higher payloads the C-17 would be more cost-effective, while 
at lower payloads the C-17 would be less cost-effective. Such a payload is comparable to the 
8.66 ton average weight for a TEP tender during 2009; however, we observed that 15 percent of 
total tender awards shared a common origin, destination, and award date with another tender, 
rather than these multiple tenders being combined into a single large tender. As we will discuss 
later in this chapter, it is difficult to ascertain what C-17 payloads could have been achieved 
across this set of TEP movements without using an optimization model, because it is not 
apparent how these movements could have been connected into a series of C-17 sorties (includ-
ing the potentially empty retrograde sorties that might be necessary following a movement). 
Nevertheless, it is within the capability of USAF-organic aircraft to perform at least some TEP 
movements at less cost than TEP.6

Moreover, determining how cost structures derived from these data would apply to a dif-
ferent set of movements requires careful analysis. In particular, it is necessary to identify the 
extent of price elasticities of demand: To what extent do changes in the demand for CITA move-
ments affect the prices commercial carriers charge for these movements? This is the primary 
shortcoming with an attempt to draw conclusions about overall, systemwide cost-effectiveness by 
simply calculating the amount historically spent on each airlift option (even when normalized 
per ton-mile of cargo moved) and making a direct comparison across the alternatives. Such 
calculations can offer insight only into the relative cost-effectiveness of each alternative subject 
to the set of cargo allocation decisions that were actually implemented. Such an approach does not 
provide a means of determining whether a different decision that would change the allocation 
of some cargo would have reduced systemwide costs.

Furthermore, for USAF aircraft, the generation of cost metrics entails a different set of 
considerations. If the procurement (or retirement) of aircraft is under consideration, a set of 
fixed costs, such as maintenance manpower and aircrew training requirements, needs to be fac-
tored into the cost models. We, however, assumed that the decision to expand or reduce the use 
of CITA would not influence the USAF’s fleet size requirement for C-17s and C-130s. Instead, 
we focused on the marginal cost associated with varying the number of FH performed by air-
craft that are already in the USAF inventory.

A Cost Model for TEP Movements

We first turn to the development of a cost model for TEP tender movements. Because TEP 
does not operate under predetermined costs to move cargo between specific origin-destination 
pairs, it was necessary to develop a model that could generate TEP costs for any potential ITA 
movement.

5 In Figure 2.6, 30 tons is significantly less than the maximum C-17 payload for a sortie of 3,500 miles, which is farther 
than the distance across the USCENTCOM AOR.
6 For example, consider three TEP tenders that were awarded on June 2, 2009: (a) Kuwait International to Bagram, 
21.64 tons, $43,272; (b) Kuwait International to Bagram, 16.47 tons, $32,948; and (c) Bagram to Kuwait International, 
17.91 tons, $35,816. The total cost for these tenders is $112,036. Assuming overflight of Iran is not permitted; the distance 
between these sites is 1,533 nmi. Assuming one C-17 sortie in each direction, at 410 nmi per hour, these movements would 
require 7.48 C-17 flying hours (FH) at a TWCF SAAM cost of $92,131.
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The USTRANSCOM Acquisition Directorate provided us with a TEP data set covering 
the interval from October 1, 2008, to December 17, 2009. This data set contained informa-
tion on all tenders that were offered to commercial carriers; the bids that were received from 
each of the seven carriers that participated in TEP at that time, along with an identification of 
the winning bid; and pallet-level details on the movement history of all items moved through 
TEP. Across this entire data set, over 16,000 tenders were awarded, at a total cost of $400 mil-
lion; over 88,000 pallets and 154,000 tons were moved on this set of tenders. These tender 
movements took place over a set of 284 routes, covering 34 locations across 11 countries. All 
locations TEP served were within the USCENTCOM AOR, with one exception, Djibouti-
Ambouli International Airport, which is in the USAFRICOM AOR.

We observed significant variation across the tender bids and across the award amounts, 
even for similar movements across a common route. Consider the example in Table 3.1, which 
compares three tenders that each moved between Kuwait City and Djibouti. All three move-
ments occurred within four days of one another in May 2009, and all were comparably sized, 
ranging between 19 and 27 tons. The bids that were received for these movements varied sig-
nificantly, even for a single carrier. For example, carrier A offered a bid of $177,000 on the first 
movement; $89,000 on the next movement; and $77,000 on the third movement. Moreover, 
for the May 16, 2009, movement, carrier A’s bid of $77,000 was selected, even though it was 
the second highest of the bids received. Across 2009, the lowest bid was selected approxi-
mately 60 percent of the time. As we discussed in Chapter Two, bids are evaluated not only 
on the basis of cost but on a combination of cost and some consideration of the carrier’s past 
performance.

We conducted a regression analysis to identify the factors that influenced the cost of 
awarded TEP tenders in 2009, examining such factors as the number of bidders, the cargo 

Table 3.1
TEP Example of Three Similar Tender Movements Between 
Kuwait City and Djibouti Ambouli

Tender 1 Tender 2 Tender 3

tender date May 13, 2009 May 13, 2009 May 16, 2009

tons to move 26.6 26.0 19.0

Bids ($)

Carrier A 177,354 89,406 76,561

Carrier B 119,475 93,564 85,703

Carrier C 99,828 100,321 75,037

Carrier D nA nA nA

Carrier E 88,146 88,366 62,849

Carrier F 81,774 80,049 65,896

Carrier G nA nA 69,705

Carrier selected F F A
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weight, flight time, and the cargo origin and destination pairs. The following were the primary 
findings from the regression analysis:

•	 Competition is important for reducing tender cost. A 10-percent increase in the number of 
bidders on a tender causes tender costs to decline between 3.8 and 5.5 percent.

•	 Carriers prefer to bid on more active routes. Routes with 10 percent more tenders had, on 
average, between 1.4 and 1.9 percent more carriers bidding on cargo movements.

•	 Cargo bundling can reduce costs. As the weight of a given tender increases 10 percent, the 
costs per pound transported decline by between 2.7 and 3.0 percent.

•	 Differences in flight time explain some of the cost variation between routes. As flight times 
increase 10 percent, tender costs increase by between 3.0 and 4.2 percent.

•	 The specific location of the cargo origin and destination are also important predictors of tender 
cost. The influence extends beyond just the flight time between the origin and destination 
pair.

We used the statistical relationship between cost and origin-destination pair serviced, 
tender size (measured by the weight of the cargo tendered), and the number of past tenders 
on the route to estimate TEP costs. We assumed that these factors interact multiplicatively to 
determine tender costs.7

We also examined the timeliness of delivery of TEP movements. Figure 3.1 presents the 
probability distribution of TEP tenders by the delivery time achieved. The green and blue bars 
indicate differences in the tender delivery time requirements. Initially, tenders had a 72-hour 
delivery requirement, but between June and November 2009, two tender priorities were used: 

7 See Appendix B for the formal details of the regression analysis and the interpretation of the coefficients.

Figure 3.1
TEP Delivery Performance
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A more urgent 72-hour requirement was applied to 85 percent of the tenders, with a less-urgent 
168-hour requirement applied to the remaining tenders. After November 2009, the different 
priorities were eliminated, and all tenders again faced a 72-hour delivery time requirement.

Focusing on the leftmost green bar, approximately 19 percent of all deliveries with a 
72-hour delivery requirement were delivered within one day. Summing across days one through 
three, approximately 60 percent of the deliveries with a 72-hour delivery requirement satisfied 
that requirement. Of the 40 percent that were delivered later than the requirement, 21 percent 
were granted “exemptions” for a variety of reasons, including weather, runway closures, airport 
construction, or loading and unloading issues.

The general shape of the distribution represented by the green and blue bars is very simi-
lar. Regression analysis conducted to isolate the effect on cost of varying the delivery time 
requirement suggests that, as opposed to the 72-hour requirement, the 168-hour delivery time 
requirement did not reduce tender costs in any statistically measurable way and delayed aver-
age delivery times by less than 24 hours. These findings support the decision to eliminate the 
two delivery time requirements and return to a single 72-hour requirement, since the use of a 
longer requirement did not achieve a cost reduction.

Cost of Charter Movements

Rather than develop a cost model for aircraft charters in this analysis, we instead applied the 
contract language appearing in USTRANSCOM’s FY 2010 IL-76 contract with Silk Way 
Airlines to all potential ITA charters. This contract gave specific prices for IL-76 movements 
between certain origin-destination pairs (e.g., $134,000 for a sortie between Kuwait Interna-
tional and Bagram, Afghanistan); an $89-per-mile rate for movements between other locations 
within USCENTCOM; and a $17,000 cancellation charge per mission not utilized below the 
contract’s guaranteed level (which, for this contract, was defined as two daily missions between 
Kuwait and Afghanistan, four daily missions between Kuwait and Iraq, or one daily Kuwait-
Afghanistan mission and two daily Kuwait-Iraq missions).

Cost Model for USAF Aircraft

The fairest possible comparison between the commercial cost to move ITA cargo and the cost 
to move the same cargo on USAF aircraft needs to consider the total marginal cost of per-
forming the movement via a C-130 or C-17. This total cost should include direct costs, such as 
fuel and consumables, as well as the costs (and potential benefits) associated with speeding up 
major maintenance and aircraft replacement decisions.

We generated such marginal cost estimates for C-130 FH by using a discounted cash flow 
model.8 This model computes the present discounted cost of maintaining C-130 capabilities 
indefinitely, with aircraft being maintained and replaced over time to maintain a constant fleet 
size. This analysis looks at the fleet of C-130E and C-130H aircraft and assumes that, in the 
future, they will be replaced by C-130Js. The model was based on a June 2009 snapshot of the 
C-130E and C-130H fleet and uses data on each aircraft’s equivalent baseline hours (EBH, a 

8 Appendix C details this analysis.
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metric that tracks an aircraft’s remaining operating life), historical home-station and deployed 
flying activity (including for each both the hours flown and the associated severity factor [SF]), 
and projected future aircraft utilization.9

We identified operating costs based on the Cost Oriented Resource Estimating (CORE) 
model, which uses standard USAF planning factors, published in appendixes to Air Force 
Instruction (AFI) 65-503, to estimate the marginal cost of adding a squadron to (or remov-
ing one from) an existing active-duty base. Cost categories in the CORE model are classified 
as either variable or fixed. Variable costs are those associated with additional flying (i.e., those 
that would change if a cargo mission were added to a deployed force), such as fuel consump-
tion, consumables, and some engine overhaul costs. The variable costs differed significantly for 
each mission design series (MDS), ranging from $5,900 per C-130H FH to $3,300 per C-130J 
FH. C-130Js have a significantly lower variable cost than do the older models. To the extent 
that additional deployed flying accelerates replacement dates for older aircraft, increasing their 
deployed FH allows the USAF to enjoy the lower costs associated with C-130J at an earlier 
point in time.

The fixed costs in the CORE model account for the costs of maintaining the aircraft at 
either home station or a deployed location. When an ARC aircraft is deployed, some deployed 
personnel must move to activated status, which increases fixed costs. These fixed costs varied 
by major command (MAJCOM) and MDS. The C-130J also has lower fixed costs per aircraft 
than does the C-130E or C-130H.

In addition to the operating costs obtained from CORE, we included costs associated 
with major maintenance activities that are triggered at certain EBH points for each aircraft, 
namely rainbow fittings maintenance costing $700,000 at 24,000 EBH and Time Compli-
ance Technical Order (TCTO) 1908 center-wing inspection at 38,000 EBH (Orletsky et al., 
2011). Finally, aircraft replacement requires procuring new C-130J aircraft; we assumed that 
this occurs for any aircraft at 45,000 EBH and costs $63.9 million (based on C-130J flyaway 
cost estimates from Orletsky et al., 2011).

We estimated the marginal cost for additional deployed C-130 FH, taking into account 
how the additional flying affected the timing of major maintenance costs, aircraft replacement 
costs, and the differential fixed and operating costs of the C-130E and C-130H versus their 
replacement—the C-130J. Thus, to the extent that an additional FH hastens the replacement 
of an older aircraft with a C-130J, we identified the change in total present value that is due 
to the change of replacement date. Time-discounted aircraft procurement and major main-
tenance costs would increase as a result, but future fixed and variable costs would decrease 
because the USAF can enjoy the C-130J’s operating cost advantages earlier.

When computing these discounted cash flows, we discounted future costs to FY 2010 
dollars using the long-term real discount rate of 2.7 percent per year prescribed by the Office 
of Management and Budget (OMB, 2009) and assumed no real cost inflation.

Table 3.2 presents our marginal cost estimates for an additional deployed flying hour, 
computed in FY 2010 dollars and differentiated by MAJCOM (based on differences in the 
composition of each MAJCOM’s fleet of C-130E and C-130H aircraft and on differences in 
deployment costs for active-duty and ARC units). An additional deployed C-130 flying hour 

9 We based these cost calculations on the C-130E and C-130H fleet because of the lack of data for the newer-model 
C-130J. Because C-130Js are less expensive to operate per hour than the older C-130E and C-130H, our cost estimates can 
be viewed as somewhat higher than USAF fleetwide average cost to perform a deployed C-130 flying hour.
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costs, on average, $6,800 on a discounted cash flow basis. Of this total, $5,900 was associated 
with one-time direct costs (the variable costs in the CORE model); the remaining $900 was 
associated with the present discount value of speeding up major maintenance activities and 
aircraft replacement, offset by any savings that may occur due to accelerating the date at which 
the operating costs for older C-130 variants are replaced with those for the lower-operating-
cost C-130J.

As a point of comparison, our estimated cost of $6,800 per FH is very similar to the $6,967 
per C-130E/H FH charged to DoD users via the FY 2010 TWCF SAAM rate (USTRANS-
COM, 2010).10 We did not generate marginal cost estimates for C-17 FH because of uncertain-
ties about future major maintenance actions for this aircraft and a lack of information about 
its fleet age. Instead, because the TWCF DoD SAAM rate was so similar to our discounted 
cash flow calculations for the C-130, we directly used the FY 2010 TWCF DoD SAAM rate 
of $12,317 per deployed C-17 FH.

Optimization Model

Thus far, this chapter has described our development of cost models for the use of CITA and 
USAF aircraft. However, to make cost-effectiveness determinations, it is also necessary to iden-
tify how ITA movements translate into requirements for aircraft sorties for IL-76 charters,11 
C-130s, and C-17s. Such a translation into sorties is not necessary for TEP movements because 
our TEP model simply allows cost to vary as a function of the origin-destination pair, the 
amount of cargo moved on a tender, and the number of tenders made on the route in the past.

As a cost-effectiveness check, the TEP uses TWCF FH rates to estimate the cost for a 
C-17 or C-130 to perform each tendered movement, assuming that each tendered movement 

10 A midyear revision to SAAM rates reduced the C-130E/H cost to $5,815 per FH for missions occurring between July 1 
and September 30, 2010. The letter announcing the rate reductions stated that rates would return to standard levels starting 
October 1, 2010.
11 Our optimization model does not include the chartering of AN-124 as a delivery option but instead assumes that all 
charter movements would be performed on an IL-76. This reduced the dimensionality of the optimization model but did 
not introduce limitations on the feasibility of airlift as a delivery option for any cargo because, as discussed in Chapter Two, 
every item moved via AN-124 within USCENTCOM during calendar year 2009 could have been flown on a C-17.

Table 3.2
Marginal Cost Estimates for a One-Time 
Deployed Flying Hour

Command
Cost  

($ FY 2010)

Air Force reserve Command (AFrC) 6,600

Air Mobility Command (AMC) 5,800

Air national Guard (AnG) 7,300

pacific Air Forces (pACAF) 7,000

U.S. Air Forces in Europe (USAFE) 6,900

Overall average 6,800
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would require a separate sortie. Using this process, TEP estimates that it would have cost $610 
million to perform the set of 2009 movements via the less expensive of the C-17 or C-130, 
based on the characteristics of the movement. That it cost $380 million for TEP to provide 
these movements suggests that TEP achieved a cost avoidance of $230 million. However, the 
assumption that each tender movement would require a separate sortie may not be reasonable. 
Most of these tenders were for relatively small movements, with 48 percent for movements of 
5 tons or less and 79 percent for movements of 15 tons or less. Note that such weights are sig-
nificantly less than the capabilities of a C-17 or C-130.12 Moreover, as discussed previously, it 
may be possible to combine multiple tender movements along a common origin-destination 
pair because 15 percent of total tender awards shared a common origin, destination, and award 
date with another movement (similar to tenders 1 and 2 in Table 3.1). Alternatively, it might 
be possible to string multiple origin-destination pairs together into a single mission, based on 
such factors as the required delivery dates and the distances and flight times between specific 
locations. This suggests that TEP’s cost avoidance values are likely an inaccurate portrayal of 
the program’s performance.

Making the most accurate comparisons between the cost to perform a set of ITA move-
ments via commercial airlift and the cost to move the same cargo using USAF aircraft requires 
solving an integrated routing and assignment problem: Which aircraft should fly which mis-
sions, and how should movements be assigned to those missions? We developed an optimiza-
tion model to solve this problem.

Our optimization model is a large-scale mixed integer linear program (MILP) that uses 
integer assignments for such factors as the assignment of aircraft to routes and the choice of 
whether to tender via a TEP movement. The model’s objective is to minimize the total cost of 
airlift over the modeled time horizon, including the operating costs for military assets, funds 
spent to acquire leased aircraft, and the cost to purchase TEP movements. The model was 
coded using the General Algebraic Modeling System, running the commercial optimization 
solver Cplex.13 This optimization model was based on the framework that was developed in the 
Naval Postgraduate School–RAND Mobility Optimizer (Baker et al., 2002).

Appendix D details the model’s formulation. There are two significant differences between 
the modeling formulation we employed here and the optimization models typically used for 
such problems. First, based on the findings of our regression analyses of TEP costs, our model 
allows TEP costs to vary dynamically according to three parameters: the distance between the 
cargo’s origin and its destination, the cargo’s weight, and the frequency of past tender usage 
across the origin-destination pair. Second, our model does not optimize across the entire time 
frame under consideration at one time, which is unrealistic given the limited horizon over 
which planners have knowledge of future cargo requirements. Instead, the model determines 
the most cost-effective allocation of cargo to aircraft and aircraft to routes within a two-day 
window. Given a solution for the two-day window, t1 to t2, the model then executes the move-
ments scheduled for day t1, records the optimal movements for day t2, and advances the time 

12 AMC planning factors published in AFPAM 10-1403 state that the allowable cabin load for a C-17 is 65 tons (assuming 
a 3,200-nmi flight leg) and that the load for a C-130 is 17 tons (assuming a 2,000-nmi flight leg).
13 All model runs were performed on an eight-core workstation (to capitalize on Cplex’s ability to multithread a computer’s 
individual cores and expedite solution times). In the most computationally challenging scenarios we examined, the model 
required approximately one week of clock time (or 50 days of central processing unit [CPU] time) to run to completion.



Determining Cost-Effectiveness of CItA Movements    19

horizon by one day. The MILP now has access to a near-feasible starting point for period t2 and 
uses it to initiate the next model run, which now extends from t2 to t3.

Thus, for a fixed number of deployed USAF aircraft, the model identifies an optimal 
utilization of the aircraft that achieves the minimum-attainable total ITA delivery cost. Para-
metrically varying the deployed USAF fleet sizes reveals how additional or fewer C-17s or 
C-130s affect cost. This gives an alternative perspective on CITA cost-effectiveness to be evalu-
ated using our optimization model: the cost spent on CITA per USAF aircraft not needing to 
be deployed. Such a metric could address aspects of the second motivation offered in Chapter 
One for the use of CITA (lack of access to ARC aircrews or aircraft) by identifying the number 
of additional USAF aircraft that would have been needed in USCENTCOM to execute the 
CITA movements.
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Results

We applied the optimization models described in Chapter Three to the set of 2009  
USCENTCOM ITA cargo and passenger movements to determine whether the expenditures 
on commercial movements were cost-effective, relative to the cost of having USAF-organic 
aircraft perform these movement.1 In the model, we allowed for four different airlift options: 
C-130s, C-17s, TEP tenders, and IL-76 charters.

Table 4.1 presents the total amount of intra-USCENTCOM cargo and passengers that 
each of these airlift options moved in 2009, computed as described in Chapter Two. This table 
also presents the ton-miles and passenger-miles associated with each airlift option, which we 
determined by computing the flying distance in nautical miles between the origin and des-
tination of either each tender (for TEP) or each sortie (for all other airlift options), assum-
ing that overflight of Iran was not permitted.2 The 38,000 tons and 52,000,000 ton-miles of 
IL-76 cargo presented here actually represent the total ITA cargo that both IL-76 and AN-124 
charters carried. Other aircraft, primarily USAF C-5s, moved another 6,700 tons and 7 mil-
lion ton-miles of intra-USCENTCOM cargo in 2009 (equal to 1.7 percent of the total cargo 
tonnage, 2.0 percent of the total cargo ton-miles). While Table 4.1 does not include the data 
for these other aircraft, the ITA movement requirements inputs to the optimization model did 
include this cargo. Thus, the movement totals associated with each optimization model solu-
tion include this additional 6,700 tons of cargo.

1 Because our TEP data set did not include movements for the last two weeks of 2009, we based our data set’s tender 
movements for December 18–31, 2009, on the TEP movements performed during December 18–31, 2008 (for which we 
had data).
2 The ton-miles associated with TEP thus reflect a requirement, while the ton-miles associated with all other airlift options 
reflect the set of actual sorties performed to satisfy a requirement.

Table 4.1
Total Intra-USCENTCOM ITA Movements in 2009, by Airlift Type

Airlift  
Type

Cargo Tons 
(000s)

Passengers 
(000s)

Cargo  
Ton-Miles  

(000s)

Passenger-
Miles 
(M)

C-17 173 542 167 346

C-130 54 592 18 219

tEp 133 — 103 —

IL-76 38 — 52 —
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We based the cost structure for each airlift option on the analyses in Chapter Three. 
USAF-organic aircraft were assumed to cost $6,800 per C-130 FH and $12,300 per C-17 FH. 
We used the regression-based estimates of TEP tender costs, with the cost varying depending 
on the origin-destination pair; the amount of prior TEP activity over that origin-destination 
pair; and the size of the shipment, with one cost for shipments between 0 and 5 tons, another 
cost for shipments between 5 and 15 tons, and another cost for shipments between 15 and 
25 tons. The IL-76 charter costs were based on the FY 2010 contract with Silk Way Airlines.

While the number of C-130s and C-17s available for ITA movements is fixed at a user-
input level, the number of chartered IL-76 is not similarly constrained. Instead, the model 
can elect to charter as many IL-76 as it deems necessary on any given day, but it will then be 
assumed that this many aircraft are on contract and must be utilized on all subsequent days. If 
fewer IL-76s are tasked on a later date, the $17,000 cancellation charge per aircraft not utilized 
is applied. As discussed previously, we did not include a cost associated with the deployment 
of C-17s or C-130s to the theater (but we will discuss these costs briefly later in this chapter).

We assumed that all passenger movements must occur on either a C-130 or a C-17. We 
assumed that each C-17 sortie had a maximum payload of 45 tons or 188 passengers or of 
some linear combination of cargo and passengers between these two endpoints. We assumed 
that each C-130 sortie had a maximum payload of 12 tons or 92 passengers or of some linear 
combination of cargo and passengers between these two endpoints.3 We assumed that each 
IL-76 had a maximum capacity of 44 tons, with no passenger capacity. We assumed block 
flying speeds of 410 nmi per hour for both the C-17 and IL-76 and of 270 nmi per hour for 
the C-130.4 Because of the nature of TEP tenders, for which DoD is contracting only on the 
movement of an item and is not monitoring how the item gets from its origin to its destination, 
we did not build a fleet of TEP aircraft into the model or track each TEP aircraft’s movement 
through the system. Instead, we assumed that each TEP movement would arrive at its aerial 
port of debarkation one day after being tendered and picked up by the delivery provider.

The optimization model requires as an input a set of allowable aircraft routes for the 
C-130, C-17, and IL-76. We assumed that all C-130, C-17, and IL-76 aircraft must begin and 
end their flying day at one of the following eight locations: Bagram, Afghanistan; Kandahar, 
Afghanistan; Al Sahra, Iraq; Balad, Iraq; Ali Al Salem, Kuwait; Manas, Kyrgyzstan; Thumrait, 
Oman; and Al Udeid, Qatar. An aircraft could start and end its day at two different locations. 
In a practical sense, this is a set of midsize to large regional bases that possess sufficient security 
and maintenance to protect and service a significant subset of the mobility fleet. We limited 
the set of allowable sortie origin-destination pairs for all three aircraft types to those that a 
C-130 or C-17 actually flew in 2009. We generated missions from this set of allowable sorties 
by stringing together sets of up to three sorties, provided that the total mission time (including 
quick-turn ground times) did not exceed a 16-hour duty day. Thus, even if we could identify 
four relatively short sorties that would fit within a mission duty day constraint, we did not 
allow the model to conduct such a mission. For all aircraft, any positioning or depositioning 
flights needed would have to fit within this route structure, and such movements incurred costs 
at the same rate as “live” cargo-hauling movements and consumed part of the aircraft’s allow-

3 The maximum cargo capacities for the C-17 and C-130 correspond to the cargo planning payloads in AFPAM 10-1403. 
The passenger capacities assumed palletized seating.
4 The block speeds for USAF-organic aircraft came from AFPAM 10-1403. The IL-76’s block speed is from Skyline Avia-
tion Ltd., “Ilyushin IL-76,” online, undated. 
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able duty day. TEP movements were not similarly constrained by a route structure and were 
simply allowed to occur between any origin-destination pair within USCENTCOM.

To determine the costs associated with the historical movements in Table 4.1, we ran 
this set of ITA movements through our optimization model, forcing all cargoes to move on 
the airlift type actually used in 2009.5 Table 4.2 presents the optimization model’s estimates 
of the costs associated with each airlift option. The table also contrasts these cost estimates 
with the actual expenditures on TEP and IL-76 charters, obtained from data provided by the 
USTRANSCOM Acquisition Directorate.6 For both CITA options, our model overestimated 
the cost of the actual movements, by 20 percent for TEP and by 5 percent for aircraft charters. 
The difference associated with TEP movements is primarily due to our model’s discretized cost 
structure, which assumes, for example, that all tender movements between 0 and 5 tons incur 
the cost of a 5-ton shipment. By multiplying the USAF-organic cost per FH values computed 
previously by the actual FH reported in GDSS for this set of missions, we obtained a compara-
ble “actual 2009 expenditures” value for the C-17 and C-130.7 For USAF-organic aircraft, our 
model underestimated the total cost of the actual movements by 10 percent. This difference 
was primarily due to the fact that the actual FH, as reported in GDSS, frequently are larger 
than the FH that the aircraft block speeds used in our model imply.8

Optimization Using Assets Available in USCENTCOM in 2009

We first determined the minimum level of C-17s and C-130s necessary to support the USAF-
organic-only passenger movements. Setting the number of employable C-17s equal to 15, the 
2009 daily average in USCENTCOM, we found that it took a minimum of 21 C-130s to 
support the peak day passenger movement requirements. Running the model with 15 C-17s 
and 20 C-130s returned an infeasible solution because the model was unable to satisfy the set 
of passenger movement requirements. Note that this minimum necessary number of C-130s, 
given 15 C-17s, happened to be equal to the average number of C-130s that were performing 
intra-USCENTCOM sorties across each day in 2009.

5 For this model run, we forced all cargo that actually moved via C-5s onto C-17s and all cargo that actually moved via 
AN-124s onto IL-76s.
6 The $214 million for IL-76 Actual 2009 expenditures includes costs associated with historical use of AN-124 charters.
7 The FH associated with the 6,300 tons transported intra-USCENTCOM by C-5s were included in the C-17 costs and 
were assumed to incur costs at the C-5 TWCF DoD SAAM rate of $26,988 per flying hour; these C-5 FH costs accounted 
for a total of $16 million.
8 Later in this chapter, we discuss our sensitivity analyses, which scaled the TEP cost structure by 4/5 and the other modes’ 
cost structures by 5/4 to see how these variations affected our findings. 

Table 4.2
Total Cost for Historical Intra-USCENTCOM ITA Movements in 2009, by Airlift Type

Cost Type
Total Cost 

($M)
C-17 
($M)

C-130 
($M)

IL-76 
($M)

TEP 
($M)

Optimization model estimate of 
2009 experience 1,234 348 202 224 460

Actual 2009 expenditures 1,209 378 234 214 382
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However, running the optimization model with 21 C-130s and 15 C-17s produced a 
peculiar result in the model solution. While the objective function value was considerably less 
than the $1.2 billion of actual 2009 expenditures, there was an exceedingly large expense asso-
ciated with IL-76 cancellation fees. On the peak day’s demand (which occurred on day 225), 
42 IL-76s were chartered in this model run. Because the model had now placed 42 aircraft on 
contract, it was required either to use this many IL-76s on each subsequent day or to pay a can-
cellation fee. However, because the demand was much lower than this peak level on almost all 
subsequent days, an average of over 27 chartered IL-76 aircraft were idle from day 226 onward. 
This result was due to the model’s cost structure, which attempts to minimize costs over a two-
day window (the current day, plus the demands for delivery by tomorrow that are currently 
known). In the event of a peak day’s demand, the model has a myopic perspective that attempts 
to satisfy this peak demand at minimum cost. Such a perspective can lead to the chartering 
of a large number of aircraft that may be underutilized in the future. The model structure has 
no incentive to avoid the potential for future penalties associated with underutilized charters 
by paying more in the near term to move this atypically large demand via a tender program. 
Were this model to be developed further, it could be improved by adding an ability to gauge 
the extent to which a day’s demands are “unusually” large and to consider the long-term effects 
of entering into less-flexible chartering arrangements, even if such chartering arrangements 
would minimize costs over the near term, all the while recognizing the uncertainty associated 
with future levels of demand.

Because this solution generated such seemingly large IL-76 cancellation costs, we exam-
ined an alternative model, in which we imposed an upper bound of 24 IL-76 charters. In this 
model’s solution, the days that had previously utilized more than 24 charters (there were five 
such days) instead used TEP to move the excess cargo that could no longer be shipped via 
IL-76. Because the entire fleet of C-130s and C-17s was already in use on these peak days, the 
USAF-organic aircraft were not available to provide these movements. When we compared 
the objective function values, the “unconstrained IL-76” solution cost $1,109 million, while 
the “upper bound on IL-76 charters” solution cost $1,034 million. The imposition of an upper 
bound of 24 chartered aircraft reduced the objective function value by $75 million, primarily 
by reducing IL-76 cancellation fees.9

Figure  4.1 presents the total delivery cost for both the historical experience and the 
“upper bound on IL-76 charters” optimization model’s solution, allowing the model to employ 
15 C-17s and 21 C-130s per day, which is equal to the average number of these aircraft that 
were performing ITA missions per day in USCENTCOM in 2009. Table 4.3 presents further 
details on the cost, cargo, and passengers each airlift option moves under each solution.10

Comparing the actual experience, with a total delivery cost of $1,209 million, against the 
best possible performance that can be achieved using a similar number of C-17s and C-130s 
reveals that the optimization model was able to reduce the total delivery cost by $175 million. 

9 We did not enforce an upper bound on the number of IL-76 charters on any of the other optimization model runs dis-
cussed in this report because we did not observe these peculiarities in any other solution.
10 As discussed previously, the optimization solution column shows a total of 404,000 tons being transported, as opposed 
to the 398,000 tons in the 2009 experience column, because the optimization solution required the combination of these 
four airlift types to transport the 6,300 ITA tons that C-5s moved in the historical data. These 6,300 tons accounted for 7 
million ton-miles of airlift movements in the 2009 experience. As in Table 4.2, the $16 million cost of these C-5 movements 
is included here in the 2009 experience column C-17 cost.
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In the aggregate, the model solution slightly modified the total amount of cargo moved on 
C-17s and C-130s and significantly decreased cargo movement on TEP while greatly increas-
ing the use of IL-76 charters. However, an examination of the movements at the level of origin 
and destination countries reveals clearer patterns that explain how the model was able to gen-
erate such large savings.

Table 4.4 presents the difference between the optimization model solution and the histor-
ical experience, differentiated by airlift type, for three origin-destination country pairs, com-
puted as the total tonnage transported in the optimization model’s solution minus the total 
tonnage actually transported in 2009. In this table, a positive value thus indicates that the 
optimization model increased the use of a particular airlift type across an origin-destination 
country pair, and a negative value indicates that the optimization model reduced the amount 
of cargo transported by that airlift type over the country pair. The optimization model solution 
made two large-scale substitutions, greatly decreasing TEP and increasing C-17 use across long 
movements, such as between Kuwait and Afghanistan (TEP decreased by 15,000 tons, and 
C-17s increased by 20,000 tons), and greatly decreasing TEP and increasing IL-76 use across 
short movements, such as intra-Iraq movements (TEP decreased by 20,000 tons, and IL-76s 
increased by 26,000 tons) or movements between Kuwait and Iraq (TEP decreased by 25,000 
tons, and IL-76s increased by 18,000 tons).

As an illustration of the model’s motivation for replacing TEP with C-17s for long move-
ments, consider the following route: Bagram, Afghanistan, to Kuwait International to Camp 
Bastion, Afghanistan, to Bagram. Given the distances between these locations and with no 
overflight of Iranian territory, we estimate that it would cost approximately $94,000 to fly 
a C-17 mission across this route. And, in fact, the optimization model chose to perform 78 
such missions, each carrying on average 7.5 tons between Bagram and Kuwait International, 
5.9  tons between Bagram and Camp Bastion, 6.0 tons between Kuwait International and 

Figure 4.1
Total Delivery Cost for a Level of USAF Resources Equal to Actual USCENTCOM Usage 
in 2009

RAND TR1313-4.1

To
ta

l d
el

iv
er

y 
co

st
 (

$M
)

Actual experience Optimization model

0

200

400

600

1,200

1,000

800

1,400

15 C-17, 21 C-130 15 C-17, 21 C-130



26    C
o

m
m

ercial In
trath

eater A
irlift: C

o
st-Effectiven

ess A
n

alysis o
f U

se in
 U

.S. C
en

tral C
o

m
m

an
d

Table 4.3
Optimization Model Solution Versus Historical Experience, Each Utilizing an Equal Number of C-17s and C-130s

Airlift 
Type

2009 Experience Optimization Solution

Cargo 
 (000 tons)

Passengers 
(000s)

Cargo 
Ton-Miles 

(M)

Passenger-
Miles 
(M)

Cost 
($M)

Cargo 
(000 tons)

Passengers 
(000s)

Cargo 
Ton-Miles 

(M)

Passenger- 
Miles 
(M)

Cost 
 ($M)

C-17 173 542 167 346 378 183 621 207 411 303

C-130 54 592 18 219 234 43 512 19 209 157

tEp 133 — 103 — 382 41 — 43 — 182

IL-76 38 — 52 — 214 137 — 85 — 392
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Camp Bastion, and 36.2 tons between Kuwait International and Bagram. In addition, the 
model also elected to move 1,200 total passengers across these 78 missions. In contrast, our 
model estimates the total TEP cost would be approximately $107,000 to $123,000 to move 
slightly less cargo and no passengers across each of these pairs.

Similarly, to illustrate the model’s motivation for replacing TEP with IL-76s for short 
movements, consider the following route: Balad Southeast, Iraq, to Ali Base, Iraq, to Kuwait 
International to Balad Southeast. Given the distances between these locations, we estimate 
that it would cost approximately $60,000 to fly an IL-76 mission across this route. The opti-
mization model chose to fly 50 such missions, carrying on average 19.3 tons between Balad 
Southeast and Ali Base, 33.4 tons between Kuwait International and Balad Southeast, 4.2 tons 
between Ali Base and Kuwait International, and 2.3 tons between Ali Base and Balad South-
east. In contrast, we estimate that using TEP would cost approximately $65,000 to $75,000 to 
move slightly less cargo across just the first two origin-destination pairs.

For the examples shown here, the C-17 and IL-76 can provide more total movements at 
considerably less cost than can TEP. The primary reason for this is the ability of the C-17 and 
IL-76 to aggregate cargo across multisortie missions, supporting a mix of high-demand and 
low-demand origin-destination pairs on a single mission. Using TEP to provide the same set 
of movements would require a separate tender for each origin-destination pair, with the low-
demand origin-destination pairs driving a comparatively high cost per amount moved.

A more macro-level perspective can also help explain the optimization model’s preference 
for organic airlift over TEP. C-17 cargo moved at a cost of $1.46 per ton-mile. As discussed in 
Chapter Three, because we assumed a C-17 cost of $12,300 per FH and a C-17 block flying 
speed of 410 nmi per hour, this C-17 cost per ton-mile implies that, on average, the optimi-
zation model was able to identify an assignment of cargoes achieving a payload of 20.6 tons 
per C-17 flying hour.11 Such a payload is a 32 percent improvement over the 2009 historical 
performance, for which the average C-17 payload was 13.9 tons per flying hour, but is still 
easily within the maximum payload for an intra-USCENTCOM C-17 sortie. By considering 
the full set of intratheater airlift requirements, the optimization model is able to assign cargo 
(and passengers) to aircraft in ways that make considerably more-efficient use of the organic 
aircraft’s FH. Note that only 27 percent of actual total TEP tonnage in 2009 involved tenders 

11 The average payload is more commonly computed on a per-sortie basis. On this basis, the optimization model achieved 
an average C-17 payload of 13.7 tons per sortie.

Table 4.4
Optimization Model Solution Versus Historical Experience, by 
Airlift Type and Origin-Destination Country Pairs

Airlift 
Type

Optimization Model Minus 2009 Experience, by Origin-
Destination Country Pairs (000 tons of cargo)

Iraq–Iraq Kuwait–Iraq
Kuwait–

Afghanistan

C-17 –12 +6 +20

C-130 +6 0 0

tEp –20 –25 –15

IL-76 +26 +18 –5
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that were awarded a cost less than $1.46 per ton-mile. This suggests that, if such payloads can 
be achieved on C-17s, under the 2009 TEP cost structure, tender is unlikely to be less expen-
sive than organic airlift for most movements.

To further demonstrate the rationale for replacing tendered movements with organic air-
lift, consider as a specific example the set of tenders awarded on October 18, 2009. On this 
date, 45 tenders were awarded, moving a total of 566 tons of cargo a total of 297,505 ton-miles 
at a total cost of $1,243,135; this equates to an average of $4.18 per ton-mile. An examination 
of the historical GDSS data reveals that 16 of these tenders moved cargo between city pairs for 
which at least one C-17 or C-130 sortie was flown between October 17 and 19, 2009; for 12 
of these 16 tenders, there was sufficient capacity on the corresponding C-17 or C-130 sortie to 
also transport the tendered cargo (assuming the maximum C-17 and C-130 cargo and passen-
ger capacities presented earlier in this chapter). The total cost of these 12 tenders was $212,420; 
this entire cost, which is equal to 17 percent of the total TEP cost for this date, could have been 
eliminated if these cargoes had simply been added to existing organic sorties. In fact, across the 
entire year, 26 percent of the total tenders awarded, corresponding to 17 percent of total TEP 
cost, could have been moved on existing organic sorties that moved between the same city pair 
within one day (before or after) of the tender award.

If additional organic aircraft were available in theater, total costs could have been 
decreased even further. Consider the subset of tender awards appearing in Table 4.5 (none of 
these tenders corresponds to the set of 12 tenders that were identified previously as candidates 
for movement on existing C-17 or C-130 sorties).

Table 4.5
Subset of Tenders Awarded on October 18, 2009

Tender 
Number Origin–Destination

TEP Cost 
($)

Cargo 
(tons)

1 Kandahar (Afghanistan)–Camp Bastion (Afghanistan) 26,405 22.4

2 Kandahar (Afghanistan)–Camp Bastion (Afghanistan) 25,146 21.3

3 Balad (Iraq)–Kuwait City (Kuwait) 15,189 14.6

4 Al taqaddum (Iraq)–Kuwait City (Kuwait) 25,227 14.0

5 Al taqaddum (Iraq)–Kuwait City (Kuwait) 21,094 16.0

6 Kuwait City (Kuwait)–Balad (Iraq) 59,857 27.5

7 Kuwait City (Kuwait)–Balad (Iraq) 26,489 11.1

8 Kuwait City (Kuwait)–Balad (Iraq) 58,380 38.9

9 Bagram (Afghanistan)–Kuwait City (Kuwait) 13,107 21.8

10 Bagram (Afghanistan)–Baghdad (Iraq) 81,635 5.6

11 Kuwait City (Kuwait)–Baghdad (Iraq) 53,426 34.2

12 Kuwait City (Kuwait)–Baghdad (Iraq) 9,386 4.2

13 Al Sahra (Iraq)–Ali Base (Iraq) 35,827 24.9

14 Kuwait City (Kuwait)–Al Sahra (Iraq) 24,858 13.8

15 Kuwait City (Kuwait)–Al Asad (Iraq) 53,186 32.0
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Suppose that six additional C-17s had been available in theater on this date. Table 4.6 
presents a set of routes (selected from the set of potential routes available to the optimization 
model) that these C-17s could have flown on this date (assuming that the C-17s were correctly 
positioned at the start of the day). This set of C-17 routes could transport all the tendered car-
goes in Table 4.5 (within the 45-ton maximum payload the model assumed for any single C-17 
sortie) and generate a total savings of $329,923, which is equal to 27 percent of the total TEP 
cost for this date. Adding these savings to the $212,420 identified previously for tenders that 
could have been eliminated, the total cost to move the 566 tons of cargo that were tendered on 
October 18, 2009, could have been reduced by $542,343, which is equal to 44 percent of the 
total TEP cost for this date, if additional organic aircraft had been available in theater and if 
all movements were assigned to aircraft more efficiently.

An important distinction to make between this optimization model’s solution and the 
2009 experience is the route structure each assumes. The optimization model makes the  
minimum-cost allocation of cargo and passengers to aircraft missions, potentially allow-
ing a different set of aircraft missions to be performed each day, as demand fluctuates. In  
USCENTCOM’s actual 2009 experience, many USAF-organic aircraft flew standard theater 
airlift routes (STAR) missions, which Joint Publication 3-17, Air Mobility Operations, describes 
as “regularly scheduled channel missions over fixed route structures with personnel and cargo 
capacity available to all customers.” Because C-17s and C-130s were performing STAR mis-
sions, which operate on a set schedule, the fleet of aircraft providing intra-USCENTCOM 
ITA in 2009 did not have the same degree of flexibility to respond to changes in demand and 
was thus susceptible to some degree of suboptimal performance, independent of its strategies 
for integrating with commercial providers.12 It is difficult to disentangle the fraction of the 
optimization model’s $175 million savings that is due to optimized versus STAR routing for 

12 Other authors have examined this issue and found that optimized scheduling could achieve significant improvements 
over STAR scheduling strategies (e.g., Therrien, 2003).

Table 4.6
C-17 Routes Potentially Replacing Tenders on October 18, 2009

Route

Route  
Distance  

(nmi)

Projected 
C-17 Cost 

($)
Replacing  
Tendersa

Projected 
C-17 Savings 

($)

Kandahar (Afghanistan)–Camp Bastion 
(Afghanistan)–Kandahar (Afghanistan) 170 5,100 1, 2 46,451

Balad (Iraq)–Al taqaddum (Iraq)– 
Kuwait City (Kuwait)–Balad (Iraq) 724 21,750 3, 4, 5, 6, 7 126,107

Balad (Iraq)–Kuwait City (Kuwait)– 
Balad (Iraq) 675 20,290 8 38,090

Bagram (Afghanistan)–Kuwait City 
(Kuwait)–Baghdad (Iraq)–Bagram 
(Afghanistan) 3,476 104,420 9, 10, 11, 12 53,134

Al Sahra (Iraq)–Kuwait City (Kuwait)– 
Ali Base (Iraq)–Al Sahra (Iraq) 798 23,970 13, 14 36,715

Ali Al Salim (Kuwait)–Kuwait City (Kuwait)–
Al Asad (Iraq)–Ali Al Salim (Kuwait) 791 23,760 15 29,426

a From table 4.5.



30    Commercial Intratheater Airlift: Cost-Effectiveness Analysis of Use in U.S. Central Command

USAF-organic aircraft and the fraction due to improved allocation across USAF-organic and 
commercial airlift options. It is likely that the additional C-17 and C-130 capacity that opti-
mized routing makes available then substitutes for CITA across the most cost-advantageous 
movements. However, it is fair to claim that some of this $175 million figure could be viewed 
as the cost to maintain the STAR channel structure in USCENTCOM.

Optimization if Additional USAF Assets Are Made Available in USCENTCOM

Doubling the Number of C-130s Available in USCENTCOM

Additional optimization model runs increased the number of USAF-organic assets available in 
USCENTCOM beyond 2009 levels to determine how this would affect total delivery costs. 
Figure 4.2 presents the total delivery cost for the two solutions discussed previously and for 
a new optimization model run that increased the number of C-130s available for daily intra-
USCENTCOM missions from 21 to 42 aircraft but held the number of C-17s at 15, the 2009 
level. Table 4.7 then presents further details on the cost, cargo, and passengers each airlift 
option moved, contrasting the two optimization model solutions.

Contrasting these two solutions shows that doubling the number of C-130s that can be 
utilized for ITA missions reduces the total delivery cost from $1,034 million to $821 million, 
with a $120 million increase in C-17 and C-130 costs, which is more than offset by a $333 mil-
lion reduction in CITA costs. Recall that the historical experience in 2009 had a total cost of 
$1,209 million; thus, the optimization model’s solution with 42 C-130s is able to achieve a cost 
reduction of $388 million below the historical cost. 

In the aggregate, the optimization model’s solution has significantly increased C-130 pas-
senger movements, with a corresponding decrease in C-17 passenger movements; it has also 

Figure 4.2
Total Delivery Cost with Double the Number of C-130s and the Same Number of C-17s, 
Versus 2009 Levels

RAND TR1313-4.2

To
ta

l d
el

iv
er

y 
co

st
 (

$M
)

Actual experience Optimization model

0

200

400

600

1,200

1,000

800

1,400

15 C-17, 21 C-130 15 C-17, 42 C-13015 C-17, 21 C-130



r
esu

lts    31

Table 4.7
Comparison of Optimization Model Solutions Utilizing Varying Numbers of C-130s

Airlift 
Type

Optimization Solution, with 21 C-130s and 15 C-17s Optimization Solution, with 42 C-130s and 15 C-17s

Cargo  
(000 tons)

Passengers 
(000s)

Cargo 
Ton-Miles 

(M)

Passenger- 
Miles 
(M)

Cost 
($M)

Cargo 
(000 tons)

Passengers 
(000s)

Cargo 
Ton-Miles 

(M)

Passenger- 
Miles 
(M)

Cost 
($M)

C-17 183 621 207 411 303 237 380 282 304 349

C-130 43 512 19 209 157 85 755 32 296 231

tEp 41 — 43 — 182 22 — 26 — 100

IL-76 137 — 85 — 392 60 — 17 — 141
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significantly increased the total amount of cargo moved on C-17s and C-130s while greatly 
decreasing the cargo moved on TEP and IL-76 charters.

As before, examining the movements at a finer level of detail offers greater insights. When 
the number of employed C-130s was doubled, 241,000 passenger movements were reassigned 
from C-17s to C-130s, and 72 percent of these reassigned movements were relatively short, 
between Kuwait and Iraq (in both directions). As an illustration of why the model makes such 
reassignments, consider the route between Ali Al Salim, Kuwait, to Balad Southeast, Iraq, and 
back to Ali Al Salim. Using differences in each aircraft’s flying speed and our cost per flying 
hour calculations, we estimated that it costs $19,000 to fly a single C-17 across this route and 
$16,000 for a single C-130. In the optimization result with 21 C-130s, C-17s performed 173 
such missions and transported 41,000 passengers, while C-130s performed 105 such missions 
and transported 13,000 passengers. The total cost for all these missions was $5 million. Con-
trast this with the optimization model results for 42 C-130s, for which the model assigned only 
66 such C-17 missions, transporting 15,000 passengers, while C-130s are assigned 354 such 
missions, transporting 45,000 passengers; the total cost has increased to $7 million. Note that 
the total passengers moved are comparable, but not equal, across the two optimization results 
because passengers could have been moved between the same city pairs along different routes. 
Thus, for a comparable level of passenger movements, the model has selected missions that 
generate a 40-percent cost increase. Why would this be desirable?

When the number of employed C-130s was doubled, the total tons of cargo transported 
by C-17 increased by 54,000 tons; the total tons of cargo transported by C-130 increased by 
42,000 tons; and total tons of cargo transported by IL-76 decreased by 78,000 tons. For C-17s, 
78 percent of this increase occurred across relatively long routes into Afghanistan from Kuwait, 
Qatar, Iraq, and Kyrgyzstan; 46 percent of the reduction in IL-76 cargo occurred over these 
same origin-destination pairs. Across relatively short routes, 43 percent of the C-130 increase 
and 21 percent of the IL-76 decrease occurred across Kuwait–Iraq or intra-Iraq routes, while 
36 percent of the C-130 increase and 17 percent of the IL-76 decrease occurred across intra-
Afghanistan movements.

The optimization model is utilizing the additional 21 C-130s in two roles: replacing 
IL-76s for short movements and replacing C-17s for passenger movements so that the released 
C-17s can then be used to displace IL-76s for long sorties. The primary motivation for such 
a shift is that the IL-76 costs much more than the C-17 for a comparable speed and cargo 
payload capacity.13 According to the Silk Way Airlines FY 2010 IL-76 contract, the cost to 
operate a “live” (i.e., cargo-carrying, as opposed to empty aircraft positioning) segment is $89 
per nautical mile.14 Recall that the TWCF DoD SAAM C-17 cost is $12,317 per flying hour; 
dividing that cost by a 410 nmi per hour C-17 planning factor yields a C-17 cost of $30 per 
nautical mile, one-third the IL-76 cost.15 This provides an incentive to reassign the longest, and 
thus costliest, routes from the IL-76s and to the C-17s and explains why the model is willing 

13 AFPAM 10-1403, 2003, provides C-17 planning factors of 45 tons payload per sortie and a block speed of 410 nmi per 
hour. Skyline Aviation, Ltd., undated, suggests an IL-76 maximum payload of 44 tons per sortie and 410 nmi per hour.
14 This contract provides fixed costs for movements between a list of 11 locations in Iraq, five locations in Afghanistan, one 
location in Qatar, and one location in Kuwait, based on the countries of origin and destination; this $89 per nautical mile 
rate applies to “alternative locations within” USCENTCOM.
15 Note that this IL-76 cost is much larger than the FY 2010 TWCF DoD SAAM rate for commercial augmentation air-
craft, whose most-expensive cargo rate was $1.09 per ton-mile for one-way transport on medium class–body aircraft (e.g., 
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to accept increased costs in one area (passenger movements via C-130) to generate even larger 
cost reductions in another area.

Considering the increase in C-130 cargo movements, a similar calculation, dividing our 
estimated $6,800 per FH by a 270 nautical mile per hour planning factor, produces a rate of 
$25 per nautical mile. This comparison is, however, more complicated because the IL-76 can 
carry considerably more cargo per sortie than the 12 tons per sortie planning factor for C-130s. 
In the optimization model results for 21 C-130s, the average payload per IL-76 sortie was 18.5 
tons, excluding empty positioning and depositioning sorties, suggesting that many IL-76s were 
not flying at maximum capacity, affording opportunities for the lower-cost-per-FH C-130 to 
perform some of these movements when the number of employable C-130s was doubled.

These calculations do not, however, include the cost to deploy additional aircraft. Thus, 
were it possible to double the number of C-130s in theater for less than $213 million,16 the 
strategy could have been cost-effective for meeting USCENTCOM ITA demands in 2009.17 
We did not include the cost to deploy additional aircraft in this analysis because any estimate 
of this cost varies significantly depending on such factors as the specific deployment location. 
If the additional aircraft were deployed to a location that already supports C-130 operations, 
the deployment costs would be significantly less than if the aircraft were deployed to a new 
location that did not previously support C-130s. The deployment costs also vary depending 
on the duration for which individual aircraft and individual servicemembers are deployed and 
also depending on whether the deployed personnel are active-duty or ARC members because 
activating some ARC positions incurs additional expenses.

However, to give an impression of the order of magnitude of these deployment costs, 
consider a case in which eight C-130s were deployed to a location that was already supporting 
20 C-130s. Based on a separate RAND model that estimates the total manpower necessary at 
a deployed location,18 an additional 312 positions would need to be deployed to this location. 
Of these, 236 would be tactical airlift aviation or maintenance positions, with the remainder 
for various base support functions. Filling all these positions with active-duty personnel would 
potentially also incur additional expenses, for a family separation allowance ($250 per posi-
tion per month), hardship duty pay (which varies by the location of deployment; in Kuwait, it 
is $100 per position per month), and hostile fire/imminent danger pay ($225 per position per 
month). If this deployment were to be sustained for an entire year, these additional expenses 
would total $2,152,000.

Assuming that the aircraft would remain deployed for six months, it would be necessary 
to fly the aircraft between their home station and the deployed location. Assuming a notional 
deployment between Dover Air Force Base (AFB) and Ali Al Salim, Kuwait (a flight of 5,603 
nmi and 20.8 FH each way, at a planning factor C-130 speed of 270 nmi per hour), at $6,800 

B767-200F), even at a fully loaded IL-76 cargo weight of 44 tons, this TWCF rate of $48 per nautical mile is slightly more 
than one-half of the $89 per nautical mile rate for IL-76s.
16 This $213 million is the savings the optimization model obtains with 42 C-130s over the optimization solution with 
21 C-130s, not the total $388 million in savings generated by the optimization model with 42 C-130s over the historical 
experience. 
17 We performed additional optimization model runs with even more C-130s (e.g., 15 C-17s and 76 C-130s), but the model 
found relatively little benefit to employing more than 42 C-130s (i.e., the optimized total cost did not decrease significantly 
when more than 42 C-130s were made available).
18 The Strategic Tool for the Analysis of Required Transportation (START) model, see Snyder and Mills (2004).
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per FH and two round trips per year, the total annual cost would be $4,515,000. Finally, if we 
assume that each individual would remain deployed for six months, it would be necessary to 
transport the individuals between their home station and the deployed location. Assuming the 
same notional locations, the FY 2010 DoD Channel Passenger Tariff rate would cost a total of 
$1,834 per person between Dover AFB and Kuwait City, Kuwait.19 Across an entire year, this 
would total $2,289,000, which is likely an overestimate because some of these personnel could 
potentially be transported on the deploying C-130 aircraft.

The sum total of these annual costs per squadron of eight C-130s deployed to an estab-
lished C-130 base, with both aircraft and active-duty personnel deploying for intervals of six 
months apiece, is $8,957,000.20 Other costs are associated with deployment, such as U.S. gov-
ernment payments to host-nation contractors to provide aspects of base support, but because 
we could not identify a means of estimating these costs on a marginal basis (that is, per addi-
tional squadron deployed), we did not include them here. Given this estimate of additional 
deployment costs, the $27 million necessary to deploy three additional squadrons of C-130s 
is much less than the $213 million reduction in ITA delivery costs that our optimization 
model suggests could be achieved were the number of deployed aircraft doubled. Thus, these 
additional deployment costs, while not insignificant, would be much more than offset by the 
potential reductions in ITA delivery costs.

Doubling the Number of C-17s Available in USCENTCOM

In another optimization model run, we increased the number of C-17s available for daily intra-
USCENTCOM missions from 15 to 30 aircraft but held the number of C-130s at 21, its 2009 
level. Figure 4.3 presents the total delivery cost for this new model run, along with the three 
solutions discussed previously. Table 4.8 then presents further details on the cost, cargo, and 
passengers moved by each airlift option, contrasting the optimization model solutions that 
differ only in the number of C-17s available for ITA movements.

Contrasting these two solutions shows that doubling the number of C-17s available for 
ITA missions reduces the total delivery cost from $1,034 million to $703 million, with a 
$113 million increase in C-17 and C-130 costs that is more than offset by a $444 million 
reduction in CITA costs. Recall that the historical experience in 2009 had a total cost of 
$1,209 million; thus, the optimization model solution with 30 C-17s is able to achieve a cost 
reduction of $506 million below the historical cost. In the aggregate, this solution has sig-
nificantly increased the passenger and cargo movements using C-17s, with a corresponding 
decrease in C-130 passenger movements, and has significantly decreased cargo movements on 
TEP and IL-76 charters. This is due to the C-17’s relative cost advantages, which we discussed 
previously. The C-17 can perform many cargo movements at lower cost than either CITA 
alternative. Moreover, it can perform many passenger movements at less cost than the C-130; 
unlike the previous optimization run in which the number of C-130s was doubled but the 
number of C-17s held constant, there is no need to accept increased passenger movement costs 
via C-130 to free C-17s for cargo movements here.

19 The Channel Passenger Tariff is stated in terms of $1,733 per person between Dover AFB and Baghdad International, 
Iraq, and an additional $101 between Baghdad, Iraq, and Kuwait City, Kuwait.
20 For comparison, the START model estimates a requirement of 978 total deployed positions for deploying the same air-
craft to a bare base. The comparable total cost associated with these 978 positions is $18,438,000.
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In fact, the $703 million cost that was achieved with 30 C-17s was essentially equal to the 
global minimum cost that could be achieved if we allowed the model access to an unlimited 
pool of C-130s and C-17s. What this suggests is that there would be no benefit to deploying 
more aircraft than required to employ 30 C-17s and 21 C-130s each day, in this optimization 
model run. In this solution, the use of TEP and IL-76 over time shows a relatively constant use 
of CITA over the entire year, suggesting that CITA is not being used solely for surge capacity 
on days with unusually high volume. Rather, the 15,000 and 23,000 tons that TEP and the 
IL-76s, respectively, deliver in this solution are the cargoes for which these two alternatives 
are the most cost-effective delivery options.21 This suggests that, even though USAF aircraft 
appear to be more cost-effective for most movements, CITA options should be retained for 
some small fraction of USCENTCOM ITA movements.22

Sensitivity Analyses

To ensure that these findings were not overly dependent on our specific cost estimates, we 
performed sensitivity analyses that varied the cost structures for the various airlift options. 
Because our analyses found TEP to be less-preferred than any of the other airlift options, we 

21 Recall our earlier assumption that limited the optimization model’s set of allowable sorties for all IL-76s and USAF 
aircraft to the sorties that were actually flown by C-130s and C-17s in USCENTCOM in 2009. Because 6,400 tons were 
moved between origin-destination pairs that only TEP served in 2009, TEP was the only delivery option available to the 
model for such movements. These 6,400 tons include TEP movements to Djibouti (in USAFRICOM) that were included 
in our set of data movement requirements but were only allowed to be performed via TEP.
22 This assumes that CITA providers would still elect to participate at the reduced volumes.

Figure 4.3
Total Delivery Cost with Double the Number C-17s and the Same Number of C-130s, Versus 
2009 Levels
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Table 4.8
Comparison of Optimization Model Solutions Utilizing Varying Numbers of C-17s

Airlift 
Type

Optimized, with 21 C-130s and 15 C-17s Optimized, with 21 C-130s and 30 C-17s

Cargo  
(000 tons)

Passengers 
(000s)

Cargo 
Ton-Miles 

(M)

Passenger- 
Miles 
(M)

Cost 
($M)

Cargo 
(000 tons)

Passengers 
(000s)

Cargo 
Ton-Miles 

(M)

Passenger- 
Miles 
(M)

Cost 
($M)

C-17 183 621 207 411 303 325 803 319 469 444

C-130 43 512 19 209 157 41 332 16 134 129

tEp 41 — 43 — 182 15 — 18 — 79

IL-76 137 — 85 — 392 23 — 4 — 51
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performed three additional optimization model runs in which 15 C-17s and 48 C-130s were 
available for ITA movements.23 Table 4.9 presents the cargo each airlift option moved in the 
historical data and under three optimization model runs, one with our baseline cost estimates, 
one in which TEP costs were scaled by 9/10 and other costs by 10/9, and one in which TEP 
costs were scaled by a factor of 4/5 and other costs by a 5/4 factor.

In these sensitivity analysis outputs, the amount of cargo transported via C-17 and C-130 
does not significantly change as their per-hour flying costs increase by up to 25 percent. This 
suggests that our finding that USAF aircraft are more cost-effective than TEP for most 2009 
ITA movements within USCENTCOM is fairly robust. Note, however, that the relative pref-
erence for IL-76 charters over TEP is highly dependent on the specific cost structure assumed 
for each option. As IL-76 costs increase and TEP costs decrease, the amount of cargo trans-
ported via TEP increases, with most of this increase coming at the expense of cargo previously 
transported via IL-76. This suggests that, while IL-76s may be slightly more cost-effective than 
TEP for most of the 2009 ITA movements within USCENTCOM best-suited for CITA, 
this preference is not robust to moderately sized changes to the relative IL-76 and TEP cost 
structures.

23 This sensitivity analysis should not be used to contrast the 48 C-130 results with those for the previous optimizations; 
rather, it should be used to contrast the optimization model’s relative use of each mode (with the constant 48 C-130s avail-
able) as the underlying cost structure is modified.

Table 4.9
Sensitivity Analysis

Airlift 
Type

Cargo Moved (000 tons)

2009 
Experience 

(daily average 
21 C-130s)

Optimization Model Results, with 48 C-130s

Best Estimates 
of Costs

TEP Costs Scaled by 
9/10, Other Costs Scaled 

by 10/9

TEP Costs Scaled by  
4/5, Other Costs  

Scaled by 5/4

C-17 173 239 235 232

C-130 54 87 88 83

tEp 133 21 34 50

IL-76 38 57 47 38





39

ChAptEr FIvE

Conclusions and Potential Extensions to Research

The analysis presented in this report examines the cost-effectiveness of DoD’s use of CITA 
within USCENTCOM. We developed a set of models to determine the cost of obtaining 
ITA from commercial sources and to identify the marginal cost associated with increasing the 
deployed FH performed by USAF aircraft. An optimization model was then built to identify 
the minimum ITA cost that could be achieved given a set of airlift resources. We applied this 
analytic framework to the set of ITA cargo and passenger movements that were performed in 
USCENTCOM in 2009, and then examined the model outputs.

Conclusions

Our examination of the demands for ITA and the costs that were paid to CITA providers in 
USCENTCOM in 2009 led to two general conclusions.

C-17 and C-130 are both generally more cost-effective than CITA, but CITA options 
should be retained to supplement USAF aircraft. Across all optimization model runs, the 
model demonstrated a clear preference for increasing the use of USAF aircraft and decreasing 
the use of CITA, although there was a relatively small fraction of the USCENTCOM ITA 
demands for which IL-76 charters and TEP tenders were the most cost-effective options.

For a level of USAF resources equal to what was historically used in USCENTCOM (15 
C-17s and 21 C-130s available each day for ITA movements), the optimized allocation of cargo 
and passengers to airlift options was able to reduce costs by $175 million from the historical 
performance. This allocation replaced TEP with C-17s for long movements and TEP with 
IL-76s for short movements. The optimization model made these changes primarily because of 
the ability of the C-17 and IL-76 to aggregate cargo across multisortie missions, supporting a 
mix of high-demand and low-demand origin-destination pairs on a single mission. Using TEP 
for the same sets of movements would require a separate tender for each origin-destination pair, 
with the low-demand origin-destination pairs driving a comparatively high cost per amount 
moved.

With double the number of C-130 aircraft available to support USCENTCOM ITA but 
the same number of C-17s, the optimized allocation could reduce costs by slightly more than 
$210 million from the optimization result for 21 C-130s (for a total savings of approximately 
$390 million). This allocation would do so by moving significantly more passengers on C-130s 
(with correspondingly fewer passengers on C-17s), replacing IL-76s with C-17s for long move-
ments, and replacing IL-76s with C-130s for short movements. Although transferring pas-
sengers from C-17s to C-130s would often increase the costs of performing such movements, 
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the model elected to do so because such a strategy would free C-17s to take over long-distance 
cargo movements from the IL-76. This strategy was cost-effective because, on a per-mile cost 
basis, the IL-76 costs three times as much as the C-17 for a comparable aircraft block speed 
and payload. The model elected to use some of the remaining C-130 increase to replace IL-76s 
across short-distance movements, likely because the average IL-76 payload for the optimization 
model run with 21 C-130s was only 18.5 tons, suggesting that many IL-76 sorties used a larger 
and relatively expensive aircraft to move small, C-130-sized payloads.

With double the C-17s available to support USCENTCOM ITA but the same number of 
C-130s as the historical level, the optimized allocation could reduce costs by slightly more than 
$330 million from the optimization result for 15 C-17s (for a total savings of approximately 
$510 million). This allocation would do so by moving significantly more passengers and cargo 
on C-17s, with corresponding decreases in C-130 passenger movements and cargo movements 
using TEP and IL-76 charters. This is due to the C-17’s relative cost advantages, which we 
discussed earlier. 

These cost reductions do not account for the increased costs to the USAF associated with 
deploying these additional aircraft to USCENTCOM, but our preliminary analysis suggests 
that these added costs would be much smaller than the potential savings.

The minimum cost, which was achieved with 30 C-17s, was essentially equal to the global 
minimum cost that could be achieved if we allowed the model access to an unlimited pool 
of C-130s and C-17s. The model solution with 30 C-17s used TEP and IL-76s to transport 
4 and 6 percent, respectively, of the total cargo tonnage. For these cargoes, therefore, CITA 
appears to be the most cost-effective delivery option, suggesting that, even though USAF air-
craft appear to be more cost-effective for most of the USCENTCOM ITA movements, CITA 
options should be retained for some small fraction of movements.1

We also conducted sensitivity analyses, running the optimization model with lower per-
movement costs for TEP and higher costs for C-130s, C-17s, and IL-76s. In these sensitivity 
analyses, the amount of cargo transported via C-17 and C-130 did not significantly change 
as their per-hour flying costs increased by either 11 or 25 percent, suggesting that our find-
ing that USAF aircraft are more cost-effective than commercial options for most 2009 ITA 
movements within USCENTCOM is fairly robust. However, as IL-76 costs increased and 
TEP costs decreased, the amount of cargo transported via TEP increased, with most of this 
increase coming at the expense of cargo previously transported via IL-76. This suggests that, 
while IL-76s may be slightly more cost-effective than TEP for most of the ITA movements 
within USCENTCOM best-suited for CITA, this preference is not robust to moderately sized 
changes to the relative IL-76 and TEP cost structures

Decision-support tools are needed to assist the CAOC AMD and USCenTCOM 
Deployment and Distribution Operations Center with daily airlift cargo allocation deci-
sions. When multiple airlift options exist for any specific movement, identifying the cost asso-
ciated with each airlift option is only the first step of a cost-effectiveness evaluation. Given a 
large collection of movement requirements and a set of airlift alternatives, it is necessary to solve 
a routing problem and an assignment problem: which movements to assign to which missions. 
At the time of this analysis, the CAOC AMD lacked sophisticated decision-support tools to 
assist in its daily cargo-aircraft allocation decisions. The extremely large number of potential 

1 This assumes that CITA providers would still elect to participate at the reduced volumes.
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assignments prohibits any individual from considering all feasible options and selecting the 
most effective solution without the aid of a computer model. We developed an optimization 
model to perform such movement-to-mission assignments and found that the model was able 
to identify significant improvements to the historical performance. USCENTCOM actually 
incurred approximately $1,210 million in total ITA delivery costs; the model found a solution 
that could have reduced this cost by up to $175 million without increasing the daily number 
of employed C-17s and C-130s in theater. This suggests that an investment in the development 
of such tools for AMD could achieve large savings.

Potential Extensions to Future Research

As mentioned above, we were not able to thoroughly analyze the total marginal cost to the 
USAF to deploy a C-130 or C-17 squadron. Many variables significantly influence such costs, 
such as whether the squadron is an active duty, ARC, or associate unit; whether the squadron is 
deploying to a location that already supports a deployment of similar aircraft; and the arrange-
ments between the U.S. government and host-nation contractors to provide base support. Fur-
ther analysis could examine this issue in more detail and provide a range of estimates for use 
in mobility and beddown planning.

In our discussion of the optimization model results, we discussed a shortcoming of the 
model with respect to the effects of demand uncertainty. On peak demand days, the model’s 
myopic perspective attempts to satisfy this very large demand at minimum cost, even if this 
requires chartering a large number of aircraft that may be underutilized in the future. It does 
so even if paying more in the near term to move this atypically large demand via a tender pro-
gram would avoiding the long-term drawbacks associated with a large charter purchase. We 
were able to overcome this limitation in our analysis of 2009 experience by adding a constraint 
to the model that limited the maximum number of aircraft that could be chartered. The prob-
lem in practice is that it is not clear exactly what constitutes a given day’s demand as being so 
unusually large as to be unlikely to be encountered again. What is needed is a model formula-
tion that looks back across some recent period; determines how unusual a day’s demand is with 
respect to both recent history and some knowledge of expected future operations; and then 
identifies the risk, in terms of exposure to potential future cost, associated with entering into 
a lower-cost but less-flexible agreement, such as aircraft chartering, rather than a higher-cost 
but more-flexible arrangement, such as tendering, all while recognizing the uncertainty associ-
ated with future levels of demand. Further analysis could extend our optimization models to 
account for these effects of demand uncertainty.
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AppEnDIx A

Data Merging

To determine the historical level of CITA utilization within USCENTCOM in 2009, it was 
necessary to merge cargo and passenger movement data from multiple data systems. This 
appendix describes the process of generating the two new data sets for this analysis, which we 
will call the “requirements” and “execution” data sets.

We used three primary data sources to create these new merged data sets:

•	 GATeS collects data on the set of cargo and passengers that pass through Air Force aerial 
ports. From it, we obtained a data pull covering all of calendar year 2009.

•	 GDSS is a command and control system for the dissemination of airlift and tanker mis-
sion plans for all mobility air force operations. From it, we obtained a data pull covering 
all of calendar year 2009.

•	 The TeP data set is not a formal data system but rather a spreadsheet that  
USTRANSCOM’s Acquisition Directorate provided us containing TEP data covering 
October 1, 2008, through December 17, 2009. This data set contained information on 
all tenders that were offered to commercial carriers; the bids that were received from each 
of the seven carriers that participated in TEP at that time, along with an identification 
of the winning bid; and pallet-level detail on the movement history of all items moved 
through TEP.

GATES and GDSS accumulate data for both USAF-organic aircraft and the chartered 
commercial cargo aircraft AMC controls. The GATES data set provides pallet and passenger 
information, such as origin and destination, date-time, and size (weight, height, and volume). 
The GDSS data set provides sortie-level information, such as aircraft type, departure and 
arrival locations, and date-time. The GDSS data set can be viewed as assessing how the Air 
Force executed the airlift requirement reported in GATES.

Both GATES and GDSS contain a common data field identifying the mission (AMC 
Mission ID), which allowed us to link the two data sets. Each mission identification corre-
sponds to a series of sorties, or a route, that can be reconstructed from GDSS. Thus, we could 
check to see whether any segment of a given route consisted of an intra-USCENTCOM sortie.

We began by eliminating from further consideration (a) all GDSS records whose mission 
IDs did not correspond with any GATES records and (b) all GATES records whose mission 
IDs did not correspond with any GDSS records. We then examined all GDSS sorties corre-
sponding to each remaining mission ID. If all sorties within a mission had both origin and 
destination in USCENTCOM, the corresponding GATES record was added to the “require-
ments” data set, and all sorties in GDSS corresponding to this mission ID were added to the 
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“execution” data set. If a mission included an intra-USCENTCOM sortie and at least one 
sortie with either its origin or destination outside USCENTCOM, it was necessary to identify 
the intratheater segment of this mission. The execution data set included only GDSS sorties 
corresponding to the intra-USCENTCOM segment of the mission. For such missions, we 
identified a “pseudoorigin” and “pseudodestination” corresponding to the intratheater seg-
ment of the mission. The requirements data set included all GATES records corresponding 
to this mission ID, with pseudoorigins and -destinations replacing their actual origins and 
destinations.

We computed the cargo and passenger loads for each sortie in the execution data set 
from the merged data. For each sortie in the execution data set, we summed the weight, pallet 
positions, and passenger counts for all requirements data set records that would have flown on 
this sortie. Note that some of these “execution” records could be empty, i.e., show no cargo 
or passengers, if the sortie had a mission ID corresponding to a requirements data set record 
but occurred prior to the loading of the first (or following the unloading of the last) intra-
USCENTCOM cargo or passenger corresponding that mission ID.

Observe that, by linking the set of cargo and passengers from GATES with the set of sor-
ties from GDSS, the requirements data set includes all cargo and passengers that moved on at 
least one intra-USCENTCOM sortie. Note that our data set potentially includes some cargo 
and passengers that were simply transiting USCENTCOM while moving between two other 
theaters. As a practical matter, this was likely rare and should thus should account for very little 
cargo or passengers.

Because TEP serves only USCENTCOM locations, with the exclusion of Djibouti (in 
USAFRICOM), and since the TEP data do not contain any information regarding the sorties 
that accomplished these movements, we simply added all TEP movements to the requirements 
data set.1

The requirements data set contains a total of 404,000 tons of cargo. Over 98 percent of 
this cargo was moved by C-17, C-130, IL-76, AN-124 or TEP. Other aircraft transported 6,700 
tons in this data set, of which C-5s moved 94 percent. The requirements data set also contained 
a total of 1,134,000 passenger movements. Because, as discussed in Chapter Three, our models 
required all passengers to travel on C-17 or C-130 aircraft, this data set included only intra-
USCENTCOM passenger movements that occurred on C-17s or C-130s. This allowed us to 
exclude the movements of very small numbers of passengers on small aircraft (such as C-21A 
Learjets) that are not viable candidates for C-17 or C-130 movement.

1 Our requirements data set included these TEP movements to Djibouti. We excluded some records in the TEP data set 
that were identified as having never completed delivery.
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AppEnDIx B

Evaluation of the Theater Express Program

DoD’s TEP solicits commercial carriers to bid in a daily spot market to move rolling stock and 
palletized cargo within USCENTCOM.1 It is designed to augment military and commercial 
contract lift activities. Since the program began in mid-2006, it has become an increasingly 
important aspect of intratheater logistics activities within USCENTCOM. This appendix pro-
vides background on the TEP and presents our statistical analysis seeking a better understand-
ing of how factors affect the cost of using the program. This analysis relies on program data 
covering October 1, 2008, to December 17, 2009.

Competition in TEP Auctions

Programs like TEP rely on competition to discipline market participants. That is, a carrier 
would like to make excess profits on its business activities in TEP by bidding high, but the 
risk of losing business to other carriers keeps its bids in line with costs. On average, 4.2 carri-
ers bid on each TEP tender, suggesting a healthy amount of competition among carriers in the 
program. Only 9 percent of all tenders have one bidder. Because carriers do not know which 
tenders their competitors are bidding on, there are pressures to place competitive bids even 
in these cases. Figure B.1 shows the distribution of the number of carriers that bid on TEP 
tenders.

Origins and Destination of Shipments Through the TEP

Table B.1 presents a summary of TEP movements categorized by country of origin and desti-
nation. Approximately one-third of all TEP shipments originated from the distribution depot 
in Kuwait, whether measured in terms of tons of cargo shipped or in terms of value. The depot 
in Kuwait is a commercial facility located 15 km north of Camp Arifjan in Kuwait and in 
close proximity to Kuwait City International Airport and the Shuwaik commercial ocean port. 
While the distribution depot in Kuwait initially focused on servicing units located in Kuwait 
and Iraq, its role has expanded to include the entire USCENTCOM AOR (see Newton and 
Turnage, 2007).

1 TEP cannot be used to transport explosives; cargo requiring ventilation (e.g., liquid oxygen carts); wet or dry ice; regis-
tered mail; cargo requiring an escort, courier, or signature and tally record; or personnel.
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Figure B.1
Distribution of Number of Bidders in TEP Tender Auctions

RAND TR1313-B.1
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Table B.1
Summary of Theater Express Movements by Country of Origin and Destination (October 1, 2008, to 
December 17, 2009)

Country

Outgoing Movements Incoming Movements

Number of 
Awards Tons

Shipment 
Costs 
($M)

Number of 
Awards Tons

Shipment 
Costs 
($M)

Distribution depot, Kuwait 5,320 64,547.8 163.7 0 0.0 0.0

Djiboutia 0 0.0 0.0 116 674.9 4.8

Afghanistan 1,928 19,064.8 40.8 5,640 69,614.2 245.1

Bahrain 236 1,325.6 6.6 230 703.6 3.0

Kuwait 979 7,176.0 29.6 1,576 15,169.5 28.2

United Arab Emirates 2 20.3 0.2 182 396.7 2.1

Oman 88 905.9 6.2 89 383.5 2.8

pakistan 0 0.0 0.0 1 2.8 0.0

Iraq 8,069 53,028.3 145.0 8,910 66,134.7 138.6

Qatar 1,069 11,079.5 47.4 811 3,134.7 9.6

Kyrgyzstan 36 317.8 1.7 171 1,241.2 7.1

turkmenistan 0 0.0 0.0 1 10.2 0.1

total 17,727 157,466.0 441.3 17,727 157,466.0 441.3

a Djibouti falls within USAFrICOM. It is the only origin-destination serviced by tEp that falls outside of 
USCEntCOM.
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Iraq, as an origin, accounted for approximately another one-third of all cargo shipments 
between October 1, 2008, and December 17, 2009. These shipments where spread over a 
number of different airports located within the country. Qatar and Afghanistan rank next as 
important origin countries.

Not surprisingly, the primary destinations of cargo transported through TEP were in 
Afghanistan and Iraq. Approximately 44 percent of all cargo, measured by weight, arrived in 
Afghanistan, while Iraq received approximately 42 percent of all cargo. Shipments to Afghani-
stan and Iraq accounted for approximately 87 percent of the program’s cost.

TEP Activity over Time

Use of TEP has varied somewhat over the period for which we have data. Figures B.2, B.3, and 
B.4 suggest that tenders were increasing through the summer of 2009 but declined somewhat 
over the latter half of 2009. Plots of the number of tons moved and tender costs also suggest a 
ramp-up in the program between October 2008 and summer 2009, but the decline after then 
is small relative to the reduction in the number of tenders, suggesting that tenders were getting 
larger in terms of both tons moved and costs.

Analysis of Drivers of Tender Costs

The tender data show considerable variation in the bids received. In general, we would expect 
carriers to vary their bids based on the amount of cargo moved and the flight times. Fur-
thermore, as the number of bidders increases, the winning bid is likely to be lower because 

Figure B.2
Monthly Tender Awards
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the administrator has more bids to select among and because competitive pressures may be 
stronger on that route. There may also be systematic differences between origins and destina-
tions that make them more or less desirable to certain carriers. In the statistical analysis, we 
attempted to control for these factors, as well as for seasonal effects. Specifically, we model the 
tendered costs per pound of cargo (podt ) as being a function of

Figure B.3
Monthly Tons Moved
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Figure B.4
Monthly Tender Cost
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•	 flying time (tod ), measured in the equivalent required flying time of a C-130
•	 quantity of cargo shipped (qodt ), measured in tons of cargo transported
•	 level of competition (Nodt ), measured in terms of the number of bidders
•	 seasonal effects (γm ), captured by monthly dummy variables
•	 origin and destination characteristics, measured using either origin (ηo ) and destination 

(µd ) fixed effects, or using route fixed effects (λod  ).

Here, the subscript o denotes origin; d denotes destination; t denotes time measured in calen-
dar days; and m is an index on months with each t falling in one month m. Using data from 
the TEP, we ran regressions of the form

Here, εodt is an independent and identically normally distributed random error term. We also 
ran the regression without the monthly and origin and destination fixed effects. The coeffi-
cients of the logged variables can be interpreted as elasticity estimates.

In a second specification, we used route origin-destination dummy variables (λod ) to con-
trol for shipping distance and origin-destination characteristics instead of tod , ηo , and µd . Spe-
cifically, in the secondary specification, we estimated a regression of the form

Table B.2 presents the results of these regressions. These results suggest the findings described 
in the following subsections.

log( podt )=α+δ log(qodt )+φ log(Nodt )+γm+λod +εodt .

Table B.2
Regression Results for Tender Cost Regressions

Model 1a 1b 2

Dependent variable log(podt)

β (coef. on log(tod)) 0.415** 0.297** nA

Standard error 0.006 0.008 nA

δ (coef. on log(qodt)) –0.266** –0.282** –0.296**

Standard error 0.004 0.004 0.004

φ (coef. on log(Nodt)) –0.554** –0.475** –0.383**

Standard error 0.008 0.009 0.009

Month dummies (γm) no Yes Yes

Origin and destination dummies (ηo, µo, or λod) no Yes Yes

Observations 17,618 17,618 17,725

parameters 4 73 325

r2 0.522 0.622 0.681

nOtE: within this table, * indicates the coefficient is different from 0 with at least 95 percent 
confidence, and ** indicates the coefficient is different from 0 with at least 99 percent confidence.

log podt( )=α+β log tod( )+δ log qodt( )+φ log Nodt( )+γm+ηo+µd +εodt .
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Distance

Specification 1 allows us to investigate how transportation costs per pound vary with flight 
time. The elasticity estimates range between 0.30 and 0.42, suggesting that increasing flight 
time by 10 percent should increase TEP transport costs by 3 to 4 percent, with our most reli-
able estimates falling at the lower end of this range.

Quantity Effects

Specifications 1 and 2 indicate that increasing the quantity of cargo put out to bid through 
TEP by 10 percent should decrease the cost per pound transported by 3 percent. Consequently, 
combining cargo shipments that would otherwise be placed days apart for the same origin- 
destination pair can generate cost savings. This, of course, comes at the expense of delayed 
cargo arrival times and therefore represents a trade-off. We have no evidence that this trade-off 
is not currently being balanced appropriately.

Number of Bidders

The number of bidders in the tender has a significant effect on the price that must be paid. The 
point elasticity pertaining to the nmber of bidders varies between –0.38 and –0.55, depending 
on the specification and covariates included, but our most reliable estimates fall at the lower 
end of this range.

When more carriers bid on a tender, costs can decline for two reasons. First, if each car-
rier’s cost on a tender is stochastic and if carriers bid based on their actual cost, having more 
carriers bid gives the government a greater chance of receiving low-cost bids. Second, as the 
number of bidders increases in general on a route, competitive pressures to bid in line with 
actual costs may also increase, causing carriers to bid closer to their true costs.

The estimates in Table B.3 clearly suggest that increasing the number of bidders on ten-
ders will have positive effects on program cost. To understand how demand for tender services 
affects the number of carriers who bid on a tender, we ran models of the form

where Qod is the total number of tenders between origin-destination od from October 1, 2008, 
through December 17, 2009, and σCO and ψCD are fixed effects for the country in which the 
origin and destination airports, respectively lie, and εodt is a random error term. We estimated 
the model using ordinary least squares. We also estimated a second version of the model using 
Poisson regression that respects the fact that Nodt only takes integer values. The coefficient ϑ 
(i.e., the coefficient on log(Qod )) can be interpreted as an elasticity in both the ordinary least 
squares and the Poisson models. We also estimated the model with and without the country 
origin and destination fixed effects. Table B.3 shows the results of these regressions.

The estimates in Table B.3 suggest that doubling the number of tenders between an od 
pair would be expected to increase the number of bidders on that route by 13 to 19 percent on 
average, with our most reliable estimates falling at the lower end of this range.

Some caution is warranted in interpreting this result. First, TEP currently has only seven 
qualified carriers, so there is clearly an upper bound on the number of carriers that can cur-
rently bid on tenders. One strategy for reducing costs might involve expanding the program 
beyond seven qualified carriers. There is, of course, a limit to the benefits that increasing the 
number of carriers that bid on tenders can offer; however, the statistical analysis does not sug-
gest that that limit has yet been reached.

log Nodt( )= ρ+ϑ log Qod( )+σCO +ψCD +εodt ,
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Analysis of Tender Delivery Times

A review of the tender data suggests that TEP generally required cargo to be delivered within 
96 hours. If delivery takes longer than 96 hours, the carrier has breached its tender agreement, 
unless it has been provided an exemption. Exemptions can be granted for a variety of reasons, 
including weather, runway closures, airport construction, or loading and unloading issues.

Table B.4 indicates that less than 60 percent of all tenders are delivered within the 96-hour 
window. Approximately 33.5 percent of all tenders are late and nonexempt, while 9 percent of 
all tenders are late but granted an exemption.

The mean delivery time for TEP is 87.6 hours, but the standard deviation is quite large, 
at 87.7 hours. Figure B.5 shows the distribution of delivery times under TEP. The data used to 
construct this graph were restricted to the May 1, 2009, to December 17, 2009, period because 
data from earlier periods did not report the number of days a delivery was late for deliveries 
that took longer than 96 hours.

A number of factors could contribute to poor delivery time performance. Delivery time 
may be related to the workload a winning carrier faces. Furthermore, conditions outside the 
control of the carrier and that lead to delivery time exemptions are another example of poten-
tial causes of longer delivery times. Unfortunately, the tender data provide limited insight into 
what caused poor delivery time performance. To try to understand the drivers of poor perfor-
mance, we ran regressions in which the dependent variable was either an indicator variable of 
whether the cargo delivery was late or not (i.e., delivery time exceeds 96 hours) or the natural 
log of the delivery time. In the latter case, we had to restrict our attention to the May 1, 2009, 
to December 17, 2009, period because the data on delivery time for earlier periods was cen-
sored at 96 hours. Our explanatory variables included

•	 a variable intended to measure workload, which equals the natural log of the number of 
tenders the carrier won over the previous and following two-day period

Table B.3
Regression to Predict Number of Bidders

Model
1a 

(OLS)
1b 

(OLS)
2a 

(Poisson)
2b 

(Poisson)

Dependent variable log(Nodt) Nodt

υ (Coef. on log(Qod)) 0.192** 0.149** 0.158** 0.1347**

Standard error 0.004 0.005 0.004 0.0049

Origin and destination dummies no Yes no Yes

Observations 17,725 17,725 17,725 17,725

parameters 2 22 2 22

r2 0.123 0.232 nA nA

Log-likelihood nA nA –35,771.1 –34,957.4

nOtE: within this table, * indicates the coefficient is different from 0 with at least 95 
percent confidence, and ** indicates the coefficient is different from 0 with at least 99 
percent confidence.
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•	 a dummy variable indicating whether the delivery was exempt from meeting its delivery 
time requirement

•	 carrier-specific dummy variables to capture general carrier performance differences
•	 airport origin and destination dummy variables to capture factors that may be specific to 

airports that affect delivery time.

The results of the regression analysis are presented in Table B.5. These results suggest the 
following:

•	 The coefficient on the workload variable is not statistically different from 0 in either of 
the regressions, suggesting that carrier workload does not contribute directly to poor (or 
good) carrier performance measured in terms of delivery times.

•	 If a delivery receives a delivery time exemption, it increases the probability that the ship-
ment will be late by 40 percent. The second regression suggests that tenders that receive 
a delivery time exemption are likely to take 88 percent longer to arrive. Because exemp-
tions are presumably given for legitimate reasons, this finding has few policy implications.

Figure B.5
Distribution of Tender Delivery Times (May 1, 2009, to December 17, 2009)

RAND TR1313-B.5
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Table B.4
Share of Tenders That Meet or Breach Delivery Time Requirements (October 1, 2008, to 
December 17, 2009)

Nonexempt Exempt

Number Percent Number Percent

Delivery time meets requirement 9,874 55.7 314 1.8

Delivery time breaches requirement 5,930 33.5 1,609 9.1
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•	 After controlling for workload, exemptions, and origin and destination factors that may 
influence delivery times, some carriers appear to be performing better than others. In 
particular, carrier E is performing the best, while carrier B is performing the worst, in 
terms of delivery time performance. For instance, the first regression shown in Table B.5 
suggests that the likelihood that carrier B is late is 33 percent (0.107 + 0.226) greater than 
the likelihood that carrier E would be late.

Table B.5
Regression to Predict Late Deliveries

Dependent Variable

Dummy Variable =  
1 if Late,  

0 Otherwise
Log 

(delivery time)

Log (number of tenders within 2 days pre and post) 0.008 –0.010

Standard error 0.007 0.022

Exemption dummy variable 0.406** 0.879**

Standard error 0.011 0.033

Carrier dummies (excluded carrier = G)

Carrier A –0.084** –0.178**

Standard error 0.014 0.040

Carrier B 0.107** 0.280**

Standard error 0.015 0.046

Carrier C 0.016 -0.104

Standard error 0.016 0.066

Carrier D –0.049** –0.248**

Standard error 0.013 0.042

Carrier E –0.226** –0.466**

Standard error 0.011 0.034

Carrier F 0.013 0.036

Standard error 0.012 0.036

Origin and destination dummies Yes Yes

Observations 17654 9671

parameters 64 62

r2 0.193 0.242

nOtE: within this table, * indicates the coefficient is different from 0 with at least 95 percent 
confidence, and ** indicates the coefficient is different from 0 with at least 99 percent confidence. 





55

AppEnDIx C

Estimating the Full Marginal Costs of Utilizing C-130 Aircraft

This analysis provides estimates of the full marginal cost of changing the rate at which C-130 
aircraft fly when home stationed or deployed. Obviously, operating an aircraft at a higher 
operating tempo will incur additional direct expenditures related to the additional flying. The 
additional flying would also hasten the time until major maintenance and aircraft replacement, 
which will induce additional expenditures.

To study how a marginal increase in FH affects the full range of costs the Air Force 
incurs, we developed a discounted cash flow model for conducting the airlift activities the 
deployable fleet of C-130E and C-130H aircraft currently perform. We used the model to esti-
mate the full marginal cost of an additional one-time flight. The cost estimates presented here 
can inform decisionmakers wishing to compare the cost of utilizing C-130 aircraft relative to 
other means of transport.

The data used in this analysis come from a variety of sources, including

•	 USAF C-130E and C-130H aircraft inventory and projections of future aircraft life and 
use

•	 USAF tabulations of home stationed and deployed FH intensities and SF by squadron
•	 cost estimates developed from the CORE model
•	 reports from RAND and other defense research organizations that provide estimates of 

major maintenance costs and timing.

Our analysis was confined to a subset of the C-130 fleet. First, the analysis considered the 
current fleet of MDS C-130E and C-130H aircraft. Data on the current fleet of C-130J aircraft 
are maintained separately and were not available for our analysis. Second, since our focus was 
on C-130 use for typical cargo movements, we did not consider any of the modified variations 
on the C-130E and C-130H aircraft, such as the AC-130 or WC-130. Third, we limited our 
attention to aircraft associated with commands that could potentially be deployed to combat 
areas—AFRC, AMC, ANG, PACAF, and USAFE. We excluded aircraft associated with Air 
Combat Command, Air Education and Training Command, Air Force Materiel Command 
(AFMC), and Air Force Special Operations Command.

The appendix proceeds by describing the current fleet of C-130E and C-130H aircraft 
and the assumptions about future aircraft utilization we received from the Air Force. Next, 
we describe the cost assumptions used in the analysis, taking considerable time to describe 
how we estimated fixed and variable costs for aircraft associated with different commands and 
whether these aircraft are deployed or home stationed. Next, we describe the discounted cash 
flow model we used to generate estimates of the marginal cost of different aircraft utilization 
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assumptions. Finally, we summarize the marginal cost estimates we obtained using the dis-
counted cash flow model.

The Fleet of C-130E and C-130H Aircraft

The inventory of C-130Es and C-130Hs considered for this analysis consists of 317 aircraft. 
AMC created the corresponding aircraft data set on June 17, 2009, and provided it to RAND. 
This data set offers a snapshot of what the fleet of aircraft looked like as of that date. Each 
aircraft is associated with a command, owning unit, and possessing unit in the inventory. For 
each aircraft, the data include EBH, which accumulates according to its past FH and the SF 
associated with past flights. In particular, a single flight will contribute to an aircraft’s EBH in 
an amount equal to the SF associated with that flight times the duration of the flight in hours. 
The inventory provides information on the lifetime and recent average SF each aircraft has 
experienced, along with the aircraft’s squadron-average SF.

In addition to providing information on the historical use of the aircraft, the inventory 
provides an estimate of each aircraft’s FH and years until grounding. The Air Force assumes 
grounding occurs once an aircraft reaches 45,000 EBH. For our analysis, we used the Air 
Force’s assumptions about future aircraft utilization. In particular, we calculated an aircraft’s 
future FH/year and average FH SF as follows and incorporated it into our life-cycle cost 
analysis:

Table C.1 summarizes the aircraft counts, EBH, and future FH and SF we inferred from 
the Air Force aircraft inventory. Two hundred and sixty-three of the 317 aircraft in the inven-
tory are of the newer C-130H aircraft design. Aircraft were not distributed evenly across the 
commands we considered. ANG operates the most aircraft, with 141 C-130Es and C-130Hs; 
PACAF and USAFE operate the least aircraft, with 14 and 13 aircraft, respectively. All the air-
craft PACAF and AFRC operate are C-130Hs, while USAFE operates only C-130Es.

Aircraft in the current C-130 fleet date back to as early as the 1960s. As a result, many 
C-130s, especially C-130Es, have been in use for decades. In general, C-130Es tend to have 
more EBH than C-130Hs, although there is considerable variation in EBH across and within 
commands for each MDS. Figure C.1 shows the cumulative distribution of EBH by com-
mand. ANG and AFRC both operate aircraft that tend to have fewer EBH than those operated 
by the other commands considered in this analysis.

Aircraft associated with AMC and PACAF are assumed to perform the most FH per year, 
while ANG is projected to fly the fewest FH per aircraft per year. In terms of FH SF, flights out 
of AMC are projected to be the least detrimental to aircraft life, while ANG flights will reduce 
aircraft life at a faster rate per FH than other commands.

Future average FH/year= Est FH until grounding
Est years until grounding

Future average SF= 45,000−Current EBH
Est FH until grounding
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Differences in Deployed versus Home Stationed Flying

Flying requirements are known to vary when aircraft are deployed as opposed to at home sta-
tion. To understand these differences, we used data from AFMC on average squadron FH per 
day and SF when home stationed and deployed. The data are organized by squadron and cover 
only C-130H aircraft.1 As a result, no data for USAFE were available because its entire fleet of 
C-130 aircraft consists of the “E” series.

Table C.2 summarizes the average FH per day and SF calculated from the AFMC data. 
Aircraft from every command tend to fly more when deployed than when at home station. The 
biggest increase over home station occurred in AFRC, while PACAF had the smallest increase. 
In terms of SF, flights for deployed AFRC aircraft were less intense than those for home sta-
tioned aircraft. The data suggest that the opposite holds true for aircraft associated with the 
AMC, ANG, and PACAF.

1 We were unable to identify a source that provides these data for C-130Es.

Table C.1
Summary of C-130E and C-130H Aircraft Inventory and Future Use Assumptions

Number of 
Aircraft

Average EBH 
per Aircraft

Future Average

FH per Year  
per Aircraft SF per FH

C-130E

AFrC 0 nA nA nA

AMC 23 34,688 664.7 1.8

AnG 18 32,835 419.5 2.1

pACAF 0 nA nA nA

USAFE 13 37,271 578.1 2.2

All C-130Es 54 34,692 562.1 2.0

C-130h

AFrC 84 17,748 435.9 2.2

AMC 42 35,954 767.5 2.3

AnG 123 17,825 379.5 2.6

pACAF 14 39,100 729.6 2.2

USAFE 0 nA nA nA

All C-130hs 263 21,828 478.3 2.4

C-130E and C-130h combined

AFrC 84 17,748 435.9 2.2

AMC 65 35,506 731.1 2.1

AnG 141 19,741 384.6 2.5

pACAF 14 39,100 729.6 2.2

USAFE 13 37,271 578.1 2.2

All C-130Es and C-130hs 317 24,019 492.4 2.3

SOUrCE: All values derived from USAF C-130 aircraft inventory data maintained by AMC. EBh 
calculated as of June 17, 2009.
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To understand the level of deployment in the Air Force’s assumptions for future flying 
activity, we compared the historical C-130H FH (Table C.2) with the Air Force assumptions 
about future C-130H annual FH (Table C.1), by command. For AFRC, ANG, and PACAF, 
the Air Force has assumed future FH will be lower, on average, than the home-stationed rate 
of the data presented in Table C.2. For consistency, in our base case scenario, we made the 
assumption that C-130s would be deployed 0 percent of the time in the Air Force’s projections 
of future FH. To identify the marginal cost of deploying aircraft in the future, we increased 
our assumption of the percentage of time aircraft are deployed from that 0 percent.

Figure C.1
Distribution of C-130E and C-130H Equivalent Flying Hours Across Commands, as of 
June 17, 2009
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Table C.2
Summary of Flying Hour Intensities and Severity Factors for Home-Stationed 
and Deployed C-130Hs

AFRC AMC ANG PACAF

number of squadrons with data 9.0 3.0 16.0 1.0

Fh/day home stationed 1.4 1.7 1.4 2.2

Fh/day deployed 5.1 3.7 4.2 4.1

ratio of deployed to home stationed 3.7 2.2 3.0 1.8

SF home stationed 2.5 2.6 2.5 2.2

SF deployed 1.6 3.2 3.0 2.7

ratio of deployed to home stationed 0.6 1.2 1.2 1.2

nOtE: Based on calculations performed for C-130h aircraft associated with different 
squadrons. Data from AFMC, August 10, 2010.



Estimating the Full Marginal Costs of Utilizing C-130 Aircraft    59

Cost of C-130 Operations

This section describes the costs associated with operating and maintaining a fleet of C-130 air-
craft. These estimates, along with the future flying projections in the previous section, drive the 
discounted cash flow model. While our aircraft inventory does not include any information 
on the Air Force’s C-130J fleet, this section also includes cost estimates for this aircraft series. 
We needed these estimates to project the cost of maintaining C-130 airlift capabilities after a 
C-130E or C-130H must be grounded.

Our analysis distinguished between fixed and variable aircraft operating costs to help 
us understand how these costs might vary by command when an aircraft is at home station 
or deployed. We also estimated the effects of additional FH on major maintenance costs and 
timing, as well as on aircraft replacement costs. This section describes each of these cost cat-
egories and the discount rate assumption for this analysis.

Operating Costs

To estimate operating costs, we modified a standard USAF model called CORE. Our analysis 
broke the resulting cost estimates out into the fixed and variable costs. The variable costs are 
those associated with additional flying (i.e., those that would change if the cargo mission were 
added to an already deployed force), while the fixed costs are those for maintaining the aircraft 
at either the home station or a deployed location. Because personnel cost factors change when 
a unit is deployed (as explained later), the fixed costs at a deployed location may differ from 
those at home station.

The CORE model uses standard USAF planning factors published in AFI 65-503 appen-
dixes to estimate the marginal cost of adding a squadron to (or removing it from) an existing 
active-component base. In essence, the model uses resource counts, resource consumption 
rates, and resource prices to estimate the costs in a format defined by the Air Force Cost Analy-
sis Improvement Group (AFCAIG). The costs are grouped into seven distinct categories with 
multiple subcategories. The major AFCAIG categories are

•	 1.0 Personnel (direct compensation, including health and pensions)
•	 2.0 Materiel support (materiel consumed at the squadron)
•	 3.0 Intermediate maintenance (maintenance and materiel consumed outside the squad-

ron)
•	 4.0 Depot maintenance (aircraft and engine overhaul, mainly)
•	 5.0 Contractor support (both depot and intermediate maintenance, but performed at 

contractor locations)
•	 6.0 Sustainment (mainly support equipment replacement, sustainment engineering, and 

software)
•	 7.0 Personnel support (training, permanent change of station, medical, base operating 

support [BOS], and installation support).

As an example of the subcategories, the first indenture of the personnel category includes 
subcategories for operations, base maintenance, squadron staff, and security personnel. BOS 
personnel costs are included in the personnel support category. There are even subsubcatego-
ries. For example, the operations subcategory has subsubcategories that distinguish among 
pilots, other officer aircrew members, and enlisted aircrew members.
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There are specific prices for each resource category, often tied to the specific aircraft 
MDS being evaluated. Thus, pilots may receive the same remuneration as other officers, but 
their training costs are typically much higher, and the cost of training a fighter pilot typically 
exceeds the costs of training a transport aircraft pilot.

The standard CORE model was developed expressly to model active component squad-
rons’ costs. Over time, the reserve component (RC) has begun to comprise a larger portion of 
the total force. The RC possesses and operates the majority of C-130 aircraft and has supported 
a major portion of recent contingency operations. We have expanded some of the resource cat-
egories in CORE and used pricing data from the RC appendixes in AFI 65-503 to obtain a 
more-accurate picture of the ANG and AFRC costs than would be possible by relying on active 
component personnel costs.

First, we expanded the personnel definitions in CORE to include drill personnel whose 
peacetime activities are limited to periodic weekend and summer training activities. We then 
revised the CORE calculations to include the cost of drill personnel in each of the personnel 
categories.

While the standard ANG and AFRC tables in AFI 65-503 identify the numbers of drill, 
Active Guard Reserve (AGR), and Air Reserve Technician (ART) personnel in typical units 
at their peacetime locations, they do not indicate how many drill personnel change to active 
status when they deploy. Drill personnel changing to either ART or AGR status receive that 
level of compensation. Thus, we modified the CORE calculations in two ways, one for opera-
tions personnel and another for maintenance personnel. For operations personnel, we used the 
internal CORE calculations based on crew size, crew ratio, and number of aircraft to compute 
the number of ART or AGR personnel needed to deploy a squadron. Then we increased the 
AGR or ART personnel by that number and reduced the number of drill person by the same 
amount. For maintenance personnel, we used the START model to estimate the additional 
number of maintenance personnel needed at a typical deployed unit and adjusted the ART, 
AGR, and drill maintenance personnel accordingly.

In addition, CORE’s focus on squadron costs uses the primary aircraft authorized (PAA) 
concept for estimating resources and costs. PAA is only a subset of the total aircraft inventory 
(TAI) owned by the Air Force. The PAA concept is used for budget planning and other unit-
level forecasts because some additional aircraft assigned to the unit may be assigned to other 
activities, such as depot maintenance.

Assumptions About Some CORE Personnel Factors

While the model is formally defined in one of the AFI 65-503 appendixes (Appendix A56-1), 
the other AFI 65-503 appendixes that provide the requisite data have progressively deviated 
from that formal standard over time. More-recent appendixes often do not provide sufficient 
detail for entry directly in the model, especially about personnel levels. In perhaps the most 
egregious example of this steady erosion of detailed information, the active component appen-
dix that identifies typical aircraft unit strengths (A42-1) no longer presents any data regarding 
squadron personnel levels at all.

It was necessary to make some assumptions about the available data and to use older data 
to estimate some C-130 parameters in CORE. In the specific case of active component person-
nel data, we used the personnel data from the version of A42-1 originally published in Janu-
ary 2005, implicitly assuming that there had been no meaningful changes in actual squadron 
manning assignments since then.
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Both the ANG and the AFRC provide more-recent personnel data but not at the level of 
detail needed for CORE. ANG provides an aggregate weapon system manpower category with 
no separation of personnel into CORE’s operations, maintenance, staff, and security subcate-
gories, along with a BOS category. Therefore, we assigned all weapon system manpower AGRs 
to full-time staff positions (e.g., wing commander or maintenance director with administra-
tive personnel), and we assigned sufficient drill personnel to meet the crew ratio to operations. 
Remaining personnel, including all civilian employees, were assigned to maintenance.

AFRC provides more detailed data about operations and maintenance personnel, distin-
guishing between operations and maintenance. The command also has an additional category, 
support and wing staff, that subsumes the staff positions, BOS, and security. We assigned all 
such personnel to wing staff, essentially assuming that none of them would deploy during a 
contingency and that they would still conduct their activities at home station.

In addition, the AFRC appendix makes no distinction between ARTs who are officers 
and those who are enlisted in each of the subcategories. We used the ratio of drill officers and 
enlisted personnel in each subcategory to assign ARTs to either officer or enlisted.

Assumptions About Personnel Deployment

Personnel costs for ANG and AFRC units change during a contingency because some deploy-
ing personnel must be changed to AGR or ART status. As mentioned above, we used the 
START model to estimate the number of personnel required for a typical deployment. Specifi-
cally, we assumed that 16 aircraft would deploy. Because typical ANG or AFRC squadrons 
used in our CORE model have only eight PAA, we assumed that these squadrons would pro-
vide half the operations and maintenance personnel for such a deployment and that they would 
join an existing base with adequate wing staff, security, and BOS. Thus, these squadrons only 
needed to activate operations and maintenance personnel.

To estimate the costs of activating these personnel in the CORE model, we shifted suf-
ficient operations drill personnel to ART or AGR status to meet the same crew ratio as peace-
time. For ANG units, this was the entire population of operations personnel. Some AFRC 
operations personnel did not deploy but continued their drill and administrative activities at 
home station. We used the START model’s maintenance requirement to estimate the number 
of maintenance personnel that would change from drill to ART or AGR status.

Assumptions About Training

Many, but not all, RC personnel have had basic and initial skill training during their prior ser-
vice. Because CORE was originally designed for the active component, it has no factor to esti-
mate the costs of training non–prior service drill personnel in their initial skill. We assumed 
that all RC personnel had prior service for the purposes of this analysis. Thus, we assumed that 
the ANG and AFRC had zero training costs. To the extent that each MAJCOM requires non–
prior service personnel, it will experience higher fixed costs than estimated in this analysis.

Implicitly, we also assumed that the training costs do not change regardless of the number 
of aircraft deployed. That is, we assumed that the personnel annual attrition rates and the need 
for replacement personnel would remain constant, so Air Education and Training Command 
costs would not change, which means that the AFCAIG training category costs would remain 
the same in the active component.
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Distinguishing Between Fixed and Variable Costs

The AFCAIG categories and subcategories provide a natural division of fixed and variable 
costs. Four of the categories (personnel, intermediate maintenance, sustainment, and person-
nel support) are fixed costs associated with owning and operating the fleet. One of the catego-
ries (materiel support) consists solely of costs that rise with increasing FH. The two remaining 
categories (depot maintenance and contractor support) are mainly composed of subcategories 
that do not change with FH, but each has an exception. In the case of depot maintenance, 
there is an accounting category for FH-dependent costs, which consists mostly of engine main-
tenance. For contractor support, the contractor logistics support (FH) subcategory reflects sup-
port contract provisions that are priced by FH (often related to component maintenance and 
materiel replacement).

Estimates of Fixed and Variable Costs

Table C.3 summarizes the estimates of fixed costs when the aircraft is home stationed or 
deployed, as well as the variable costs per flying hour. The fixed costs are annualized for incor-
poration into the discounted cash flow model presented shortly.

In most cost categories, the C-130H aircraft is slightly more expensive than the older 
C-130E model. The C-130J aircraft, however, generally provides a significant cost advantage 
over the C-130E and C-130H aircraft, in terms of both fixed and variable costs.

Table C.3
Estimates of C-130 Fixed and Variable Costs

Fixed Cost per Year 
($000s, FY 2010) Variable Cost 

per Flying Hour 
($000s, FY 2010)At Home Station Deployed

C-130E

AFrC 4,924.9 6,716.0 5.8

AMC 5,153.4 5,153.4 5.8

AnG 5,056.9 7,522.9 5.8

pACAF 4,072.9 4,072.9 5.8

USAFE 5,439.8 5,439.8 5.8

C-130h

AFrC 4,945.1 6,414.5 5.9

AMC 5,172.1 5,172.1 5.9

AnG 5,077.8 8,243.8 5.9

pACAF 4,091.6 4,091.6 5.9

USAFE 5,458.5 5,458.5 5.9

C-130J

AFrC 4,593.0 6,289.1 3.3

AMC 3,766.3 3,766.3 3.3

AnG 4,491.7 6,941.5 3.3

pACAF 3,380.6 3,380.6 3.3

USAFE 4,687.1 4,687.1 3.3

nOtE: Estimates developed using COrE model and assumptions described 
previously.
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The cost of the C-130J compared to the C-130E and C-130H at AMC is worth highlight-
ing. For example, at AMC, the C-130H generates $5.2 million per year in fixed costs annually 
(whether deployed or at home) and produces variable costs at a rate of approximately $5,900 
per FH. If AMC replaces a C-130H with a C-130J, the fixed costs associated with operating 
the aircraft drop to $3.8 million per year, and variable costs fall to $3,300 per FH. Recogniz-
ing this cost savings and its particularly large effect at AMC is helpful for interpreting some of 
the results presented at the end of this appendix.

Major Maintenance Costs

Corrosion and fatigue from age and use damage aircraft, leading to flight restrictions, major 
maintenance activities, and ultimate replacement. In particular, the C-130’s center wing is sus-
ceptible to significant damage from use. For a detailed discussion of the corrosion and fatigue 
issues the fleet of C-130 aircraft faces, see Orletsky et al., 2011. These issues have caused the Air 
Force to adopt the following major maintenance schedule to address fatigue issues that occur 
with the C-130’s center wing:

•	 Rainbow Fitting Replacement: The outer-wing attachment points (known as rainbow fit-
tings) do not have a fatigue life commensurate with the rest of the center wing and must 
be replaced at about 24,000 EBH.

•	 TCTO 1908 Inspection and Repair: The Air Force applies TCTO 1908 protocol to 
address fatigue risks present at 38,000 EBH. Assuming the aircraft passes the TCTO 
1908 protocol, it is allowed to operate unrestricted to the assessed service-life limit of the 
center wing, 45,000 EBH.

We assumed that all aircraft would undergo rainbow fitting replacement at 24,000 EBH 
and successfully complete TCTO 1908 at 38,000 EBH, allowing them to fly to 45,000 EBH 
unrestricted. Furthermore, we assumed that C-130J aircraft would need to undergo similar 
major maintenance at the same costs and EBH points as earlier C-130 variants. Table C.4 pro-
vides the cost and timing of both major maintenance activities.

At 45,000 the C-130 center wing must be replaced under current component design limi-
tations. The cost of the center wing replacement is estimated at $9.4 million in FY 2010 dol-

Table C.4
Timing and Cost of Standard Major Maintenance 
Activities for C-130 Aircraft

Maintenance Activity
Timing 
(EBH)

Cost 
($000s,  

FY 2010)

rainbow fitting 24,000 733.8

tCtO 1908/Lower wing 38,000 932.9

SOUrCE: Based on estimates in Orletsky et al., 2011. 
Costs inflated from FY 2007 dollars to FY 2010 dollars 
using standard Air Force cost inflation factors for 
operations and maintenance activities.
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lars.2 In addition to costing millions of dollars, this replacement can take a significant amount 
of time. Furthermore, even after the center wing is replaced, the aircraft is likely to be at greater 
failure risk per FH. Because center wing replacement is not currently standard practice and 
because our model is not well suited for modeling the costs associated with increased failure 
risk with EBH, we did not consider replacement of the center wing. Should the center wing 
replacement occur, the next major scheduled maintenance is replacement of the outer wing, 
which occurs at 60,000 EBH under current component design limitations.

Aircraft Replacement Costs

Current protocol calls for replacing C-130 aircraft once they reach 45,000 EBH. The current 
replacement version of the C-130 aircraft is the C-130J. In our analysis, we assumed that all 
C-130E and C-130H aircraft would be replaced with C-130J aircraft at 45,000 EBH. Further-
more, because we looked into perpetuity, we had to make assumptions about C-130J replace-
ments in the distant future. For the purposes of our analysis, we assumed that C-130Js would 
be replaced with C-130Js of the same cost (in real dollars) at 45,000 EBH.

Orletsky et al., 2011, provides an estimate for the flyaway cost of a C-130J of $61 million 
in FY 2007 dollars. We inflated this estimate to FY 2010 dollars using standard USAF infla-
tion factors for aircraft and missile procurement, to obtain an estimate of $63.9 million in FY 
2010 dollars.

Discount Rate

In this analysis, we considered a variety of different costs that will occur at different times in 
the future. To put these costs in comparable present dollar terms, we used the long-term real 
discount rate of 2.7 percent per year that the Office of Management and Budget prescribes 
(OMB, 2009). OMB based its recommended real discount rate for long-term investments on 
the 30-year Treasury bill rate and assumptions about inflation. This rate is appropriate for cash 
flows that are known with certainty or when decisionmakers are not risk adverse. If there is 
uncertainty about the future cash flows under consideration and when decisionmakers are risk 
averse, a higher discount rate can be justified. For the purposes of sensitivity analysis, we also 
considered a 5-percent real discount rate.

Modeling C-130 Cost from a Discounted Cash Flow Perspective

This section describes the discounted cash flow model we applied in our analysis. In the model, 
time is continuous and indexed by t. One unit of time represents one year in the model. The Air 
Force operates a fleet of N similar aircraft. Let n = 1,2,...N be an index of C-130E and C-130H 
aircraft in the fleet. We assumed the fleet to be operating in a steady-state environment with 
annual FH and average SF remaining unchanged after t > 0. In particular, we assumed that the 
assumptions of future aircraft use provided by the Air Force hold into perpetuity.

Each aircraft in the fleet is associated with EBH, En(t), which increases over an aircraft’s 
life with usage. We started the calculations at t = 0, which we assumed to be the end of FY 
2010. We took the set

2 Orletsky et al., 2011, estimates a cost of $9 million dollars for a center wing replacement. We have updated that cost 
estimate to FY 2010 dollars. 
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as our initial condition, with

for all n. To calculate the set

as of the end of FY 2010, we updated the EBH of each aircraft as of June 17, 2009, using the 
assumptions about future FH rates and SFs.

There is a fixed cost associated with the fleet that accrues at rate ƒn per aircraft over time. 
The fixed cost ƒn varies by aircraft, depending on its command and the percentage of time it is 
assumed to be deployed or stationed at home. In particular, if φn represents the percent of time 
aircraft n is deployed, then

where

Each aircraft n engages in FH at a particular rate hn, of a particular severity factor sn, and of 
a cost that varies proportionally with FH by cn (i.e., 1 FH costs, cn ). The increase in EBH for 
aircraft n of 1 hour of flying is equal to sn. For our analysis, we assumed that the Air Force 
estimates of future C-130 flight activity did not reflect deployed activities (i.e., φn = 0 in our 
base case). A simplistic comparison of C-130 deployed and at-home FH with the assumptions 
of future aircraft FH supports this assumption. For the purposes of varying the deployment 
rate, φn, we calculated

and

where

and µn and ωn are the ratio of deployed to home-based FH and SF described in Table C.2 for 
the command associated with aircraft n.

Major maintenance events occur at certain points in an aircraft’s life, depending on an 
aircraft’s EBH. Let i = 1,2,..., I be an index on the set of major maintenance events, and let αi 
be the EBH that triggers major maintenance event i. Assume that αi is ordered such that 0 < 
αi ≤ α2 ≤ … ≤ αI . Let the cost of major maintenance event i equal θi. For the purposes of our 
analysis, we considered only the major maintenance events in Table C.4.

{E1
0 ,E2

0 ,....,EN
0 }

En(0)= En
0

{E1
0 ,E2

0 ,....,EN
0 }

fn =φ n fn
D + (1−φ n ) fn

H ,

fn
D = the fixed cost per year when deployed

fn
H = the fixed cost per year when stationed at home.

hn =φnµnhn
H + (1−φn )hn

H

sn =φnωnsn
H + (1−φn )sn

H ,

hn
H = the FH rate of aircraft n when stationed at home

sn
H = the severity factor of aircraft n when stationed at home
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We assumed that, once an aircraft reaches EBH of b, it must be replaced. As discussed 
above, b = 45,000 EBH. The capital cost of replacing the aircraft is p. Furthermore, we assumed 
that, after replacement, the new aircraft would be operated at the same FH intensity (hn) and 
under the same SF (sn). We assumed that the replacement aircraft would be C-130Js, which 
may operate at different costs but are maintained and replaced under the same EBH schedule. 
We represented C-130Js in the calculations with a superscript, J.

Finally, to discount future costs to current dollars we assumed a real discount rate, r. 
Table C.5 provides a list of the key variables integrated into the analysis and their sources.

Table C.5
Summary of Data Requirements and Sources for Discounted Cash Flow Model

Variable Description Source

{E1
0,E2

0,...,EN
0 } EBh for each aircraft in current fleet USAF C-130 tAI spreadsheet updated to 

the end of FY 2010 using assumptions on 
future flying hour intensities and SF

{h1
A ,h2

A ,...,hN
A} Forecast future flying hour intensities  

by aircraft when home stationed
USAF C-130 tAI spreadsheet 

{µ1,µ2,...,µN} ratio of deployed Fh/day to home 
stationed Fh/day

USAF at home and deployed C-130 
spreadsheet

{s1
A , s2

A ,..., sN
A} Forecast of future average SF by aircraft 

when home stationed
USAF C-130 tAI spreadsheet

{ω1,ω 2,...,ω N} ratio of deployed SF to home-stationed  
SF per flight hour

USAF at home and deployed C-130 
spreadsheet

{c1,c2,...,cN} variable cost of a flying hour by aircraft Modified COrE Model

{ f1
H , f2

H ,..., fN
H } Fixed cost per year by aircraft home 

stationed
Modified COrE Model

{ f1
D , f2

D ,..., fN
D} Fixed cost per year by aircraft deployed Modified COrE Model

{φ1,φ2,...,φN} percent of time aircraft are deployed Authors based on assessment of home 
based and deployed Fh relative to Air 
Force’s assumptions of future Fh

{α1,α 2,...,α I} Set of EBh that trigger major  
maintenance activities

Orletsky et al., 2011

{θ1,θ2,...,θ I} Cost of major maintenance type Orletsky et al., 2011, updated to $ FY 2010 

β EBh at which an aircraft must be  
replaced

Orletsky et al., 2011

π Capital cost of replacing an aircraft Orletsky et al., 2011, updated to $ FY 2010

r real discount rate OMB
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Calculating Discounted Future Cash Flows

For calculating discounted cash flows, it was helpful to track the nth aircraft’s vintage. Let 
νn(t) = 0,1,2,… equal the number of times the nth aircraft has been replaced as of time t. To 
simplify notation, assume that νn(0) = 0 for all n. Under this assumption, the EBH of the nth 
aircraft at any time is

Note that an aircraft’s life span (measured in time) is given by

Aircraft n is initially replaced at time

Therefore, νn(t) is given by the function

Major maintenance event i is triggered when En(t) = αi. For vintage 0, the ith major main-
tenance event occurs at time

which may be before t = 0. To identify which major maintenance is scheduled to occur first 
after t = 0, we solved for

where A0n = Tn – Ln < 0 is added to the set {A1n, A2n,…, Ain} and represents the date at which the 
initial vintage of aircraft n was purchased.

We were then able to characterize the life-cycle costs of an aircraft, taking into account 
replacement and continuation costs. It is convenient to write the life-cycle cost in recursive 
form. Specifically,

Notice that

En(t )= En
0+ hnsnt−vn(t )β.

Ln =
β
hnsn

.

Tn =
β−En

0

hnsn
.

vn(t )= v ∈ {0,1,...} :Tn+ (v−1)Ln ≤ t <Tn+ vLn[ ].

Ain =
αi−En

0

hnsn
,

in
0 = i=1,2,...,I : A(i−1)n ≤0< Ain
⎡⎣ ⎤⎦ ,

Πn(En
0 )= e−rt hncn+ fn[ ]t dt

0

Tn

∫
PDV of O&M cost on Initial Aircraft  

+ e−rAinθii=in
0 ,..,I∑

PDV of Major Maintenance
      Cost on Initial Aircraft  

+ e−rTnπ

PDV of Replacement 
Cost for Initial Aircraft

+ e−rTnΠn
J (0)

PDV of Continuation Cost  

            =
(1−e−rTn ) hncn+ fn( )

r
+ e−rAinθi +i=in

0 ,..,I∑ e−rTnπ+ e−rTnΠn
J (0).

Πn
J (0)
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takes on a nice closed form expression, which is given by

The life-cycle cost of operating the entire fleet of aircrafts at t = 0 is therefore given by

Having described how we calculated the life-cycle costs of operating the fleet, we can 
now calculate the marginal cost per FH of a one-time flight at t = 0. This cost depends on 
whether the flight is home based or deployed and varies across aircraft according to the follow-
ing calculation:

Estimates of the Full Marginal Cost of Additional C-130 Flying Hours

This section provides estimates of the average marginal cost by command. We break the mar-
ginal cost estimates up into the direct cost incurred at t = 0 and changes in costs that accrue 
over time on a present discounted value. In addition to describing the cost effects, we also 
characterize the marginal change in the date of aircraft replacement associated with each case.

Table C.6 summarizes the findings when we used OMB’s 2.7 percent annual real dis-
count rate. These findings suggest that an additional FH costs, on average, $5,900 in one-time 
direct costs and $900 in future costs on a discounted cash flow basis. The $900 in future 
costs represents the present discount value of speeding up major maintenance activities and 
replacement, as well as the savings that may be due to replacing an older C-130 variant sooner 
with the newer C-130J model, which tends to cost less to operate. The fleetwide average effect 
does not vary much depending on whether the one-time additional FH is while the aircraft is 
deployed or home stationed; however, differences do exist across commands. 

In particular, the cost of an additional FH on future discounted costs is, on average, 
approximately zero at AMC and greater than the fleetwide average at ANG. The fact that 
AMC’s future discounted costs are near zero deserves explanation. As discussed earlier in this 
appendix, replacing a C-130E and C-130H aircraft with a C-130J at AMC leads to signifi-
cantly greater operating cost savings. In turn, speeding up the time to aircraft replacement 
yields nontrivial cost savings. Offsetting these benefits are, of course, the costs associated with 
performing major maintenance and procuring new aircraft sooner. In AMC’s case, these two 
factors approximately cancel each other out.
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Table C.7 considers a higher real discount rate of 5.0 percent per year. Under the higher 
discount rate, the discounted future net costs of a one-time additional FH actually increase to 
$1,500 in the home-stationed case and $1,600 in the deployed FH case, from the $900 level 
found under the lower discount rate of 2.7 percent. This may seem counterintuitive because a 
greater discount rate generally decreases net present value. We obtained our result because the 
future costs associated with major maintenance activities and replacement occur earlier than 
the benefits associated with faster movement to the less-expensive-to-operate C-130J aircraft. 
This means that the costs from aging the aircraft fleet tend to be frontloaded relative to the 
operating cost benefits of switching to a C-130J at an earlier date. A higher discount rate will 
tend to reduce the present value of the benefits that accrue from the lower operating costs asso-
ciated with the C-130J. Overall, the discount rate sensitivity analysis suggests that the choice 
of discount rate is important and can materially affect the estimates. 

Table C.6
Summary of Marginal Cost Estimates and Changes in Time to Aircraft Replacement by 
Command at an Assumed Annual Real Discount Rate of 2.7 Percent

One-Time 
Cost 

($000)

Change in  
Future Costs 

($000)

Full 
Marginal 

Cost 
($000)

Change in Time 
to First 

Replacement 
(days)

a b c = a + b

One-hour flight at t = 0 for a home-based aircraft

AFrC 5.9 1.2 7.1 –0.9

AMC 5.8 0.0 5.8 –0.5

AnG 5.9 1.2 7.0 –1.0

pACAF 5.9 0.9 6.8 –0.5

USAFE 5.8 0.9 6.7 –0.6

Overall average 5.9 0.9 6.8 –0.8

One-hour flight at t = 0 for a deployed aircraft

AFrC 5.9 0.8 6.6 –0.5

AMC 5.8 –0.1 5.8 –0.6

AnG 5.9 1.4 7.3 –1.1

pACAF 5.9 1.1 7.0 –0.6

USAFE 5.8 1.1 6.9 –0.7

Overall average 5.9 0.9 6.8 –0.8
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Table C.7
Summary of Marginal Cost Estimates and Changes in Time to Aircraft Replacement by 
Command at an Assumed Annual Real Discount Rate of 5.0 Percent

One-Time 
Cost 

 ($000)

Change in 
Future Costs 

($000)

Full 
Marginal 

Cost 
($000)

Change in Time 
to First 

Replacement 
(days)

a b c = a + b

One-hour flight at t = 0 for a home-based aircraft

AFrC 5.9 1.5 7.4 –0.9

AMC 5.8 1.0 6.9 –0.5

AnG 5.9 1.6 7.5 –1.0

pACAF 5.9 2.0 7.9 –0.5

USAFE 5.8 2.1 7.9 –0.6

Overall average 5.9 1.5 7.4 –0.8

One-hour flight at t = 0 for a deployed aircraft

AFrC 5.9 0.9 6.8 –0.5

AMC 5.8 1.2 7.1 –0.6

AnG 5.9 1.9 7.8 –1.1

pACAF 5.9 2.4 8.3 –0.6

USAFE 5.8 2.6 8.4 –0.7

Overall average 5.9 1.6 7.4 –0.8
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AppEnDIx D

The Commercial Intratheater Airlift Optimization Model

This appendix outlines a mathematical formulation for the cost minimization of CITA move-
ments in the USCENTCOM AOR. The model accounts for organic airlift and for two modes 
of commercial airlift. These civilian systems include the contractual leasing of commercial air-
craft and the tendering of items via TEP. In terms of payload, the model tracks the movements 
of both cargo and passengers. In this particular AOR, commercial airlift does not handle pas-
senger traffic for the U.S. military. Consequently, organic lift is the only available means of 
moving personnel.

The CITA model itself is a large-scale MILP, which uses integer assignments for such 
factors as the assignment of aircraft to routes and the choice of whether to tender via a TEP 
carrier. The model’s objective is to minimize the total cost of airlift over the modeled time 
horizon, and these costs include the operating costs for military assets, funds spent to acquire 
leased aircraft, and the cost to hire tender carriers. The operational optimization platform is 
an eight-core workstation running Cplex, a commercial optimization solver. Cplex is able to 
multithread a computer’s individual cores, such that each CPU can process a distinct node on 
the branch-and-bound tree to expedite solution times. In the most computationally challeng-
ing scenarios we examined, the model required approximately one week of clock time (or 50 
days of CPU time) to complete.

Modeling Structure, Elements, and Data

Before entering a detailed description of the CITA model, it is important to first present its 
fundamental indices. These elements, which will become subsets in the algebraic formulation, 
are

•	 ac = aircraft, drawn from an organic pool of C-130s and C-17s, and IL-76s as contract 
assets

•	 cargo = type of payload, either cargo or passengers
•	 b = bases within USCENTCOM where cargo is available for either pickup or delivery
•	 r = routes, which are predefined as an ordered set of bases, b
•	 t = time, which ranges from day 1 to day 365 of calendar year 2009.

The largest data pool feeding the CITA model was the set of cargo requirements in 
USCENTCOM during the calendar year 2009. As discussed in Appendix A, military and 
contract movements came from the GATES database, TEP movements from a spreadsheet 
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USTRANSCOM’s Acquisition Directorate supplied us. During this time frame in USCENT-
COM, airlift handled approximately 1.1 million passenger movements and 400,000 tons of 
cargo.

In the model, each organic and contracted aircraft may fly along one of approximately 
1,000 prescribed routes on each scenario day. These routes were not necessarily those flown 
in 2009, but each route was created from sorties that were flown by at least one organic cargo 
asset in that time frame. The model disallows a particular aircraft from one of these routes 
if it would be unable to complete the route implementing quick turn ground times within a 
16-hour duty day. TEP aircraft, however, were not assigned to any specific route in the model. 
During the bidding process, a bid awardee agrees to haul the tender from its point of embarka-
tion to its point of debarkation in a method most convenient to the carrier. Delivery, however, 
must occur in a time frame agreed on prior to award of the tender.

The model has a special methodology for employing t, the time index. While it is theo-
retically possible to optimize cargo movements over the entirety of 2009 at one time, this is 
unrealistic for two key reasons. First, it implies that, from day 1, planners have perfect knowl-
edge of all future cargo requirements and could schedule cargo pickups and deliveries accord-
ingly. Perfect visibility of all information in advance is highly unlikely and is not representative 
of historical experience in the AOR. Second, the size of an optimization matrix that manages 
cargo over the full time horizon would be extremely large, and the difficulty of solving the 
resultant integer problem would be immense. Even a capable solution platform would be hard 
pressed to solve to even an approximate optimum in a reasonable time frame.

In practice, planners typically have knowledge of upcoming cargo movements with 
roughly 24 to 48 hours’ notice. The CITA model implements this degree of advance informa-
tion by employing a rolling time window whose width is two days (see Figure D.1). During 
optimization, the model has knowledge of which cargo is available to move “today.” Call this 
initial period t1. The model also has visibility of cargo that will become available to move 
“tomorrow” (period t2). As shown in the figure, the model then determines the most cost-effec-
tive allocation of cargo to aircraft and aircraft to routes within this two-day window. Next, it 
stores the optimal movements for period t1 and then advances the time horizon by 24 hours. 
The MILP now has access to a near-feasible starting point for period t2. This advanced basis 
can accelerate the solution for the new window, which now extends from t2 to t3. The model 
re-solves, stores optimal cargo allocations and routings, and again advances the time counter. 
The solution iteration proceeds until the conclusion of the scenario year.

Model Constraints

The constraints in this airlift system can be described as falling into one of four categories: air-
craft management, cargo management, TEP bid mechanics, and the objective function. These 
categories are described in more detail below.

Aircraft Management

There are two important aspects for tracking aircraft from day to day in the scenario. First, the 
number of aircraft assigned to each route on each day, ASSIGNac,r,t, should sum to the available 
inventory of that aircraft type on that day, NUMACac,t:



the Commercial Intratheater Airlift Optimization Model    73

Note that, in this chapter’s formulation, elements in all lower-case indicate sets. Terms in all 
caps represent system variables; items in mixed case represent the model’s input data or con-
stant values. For example, in this equation, we have introduced two variables, ASSIGN and 
NUMAC. Both ASSIGN and NUMAC are integer variables representing a discrete count of 
aircraft. During execution of the model, NUMAC is held constant for C-130s for the entire 
time horizon in each scenario. The number of C-17s is a constant for each quarter of 2009, and 
the value is derived from the average of the number of tails observed in USCENTCOM in the 
historical record.

The number of IL-76s available, however, is variable and controlled entirely by the opti-
mization routine. Because contracts for leased aircraft typically last for one year, the number of 
contract aircraft may increase only monotonically during the time frame modeled here. Conse-
quently, a floor is put in place for NUMAC, as shown in equation D.2 based on the number of 
contract aircraft leased during the previous scenario day. The model may then add new IL-76s 
to the leased fleet in each new window to represent the augmentation of the contract fleet:

It is possible to lease an arbitrarily large fleet of contract aircraft early in the year and to 
allow unneeded airframes to sit idle until a future spike in demand requires their use. Such 
behavior is generally not cost-effective because contract language typically specifies a penalty 
for the nonuse of a leased airframe. This nonuse fee helps the carrier recoup the revenue lost by 

Figure D.1
Mechanics of the Sliding Time Window

RAND TR1313-D.1

Step 1. Optimize movements over a
 two-day horizon.

Step 2. Store movements for window’s
 first day; decrement demands.

Step 3. Advance time window by one
 day. Return to Step 1.

t1 t3t2

t1 t3t2

t1 t3t2

ASSIGNac ,r ,t =NUMACac ,t∀ac,t .
r
∑

NUMAC'IL−76',t ≤NUMAC'IL−76',t+1∀t .



74    Commercial Intratheater Airlift: Cost-Effectiveness Analysis of Use in U.S. Central Command

not leasing the aircraft to another client. Planners in 2009 were very sensitive to this particular 
penalty and generally had lease arrangements for fewer than a half-dozen aircraft at any time. 
We will further address cost issues with the contract fleet in the subsection on to the minimum 
cost objective function.

Second, we required the endpoint of the route an aircraft flies on a scenario day to be the 
origin of the route for the next day’s flight. Aircraft may thus not reposition overnight. In the 
model’s route structure, aircraft could remain overnight in only eight locations in a total of 
six countries: Bagram and Kandahar, Afghanistan; Ali Al Salem, Kuwait; Thumrait, Oman; 
Balad and Al Sahra, Iraq; Al Udeid, Qatar; and Manas, Kyrgyzstan. In a practical sense, this 
emulates a small set of midsize to large regional bases that possess the security and mainte-
nance sufficient for efficiently protecting and servicing a significant subset of the mobility fleet.

Accordingly, we introduced two logical sets, head and tail:

The membership of these sets is limited to the bases that are the respective start or conclusion 
of the route in question.

Cargo Management

The principal aspects of delivering cargo in the model are the assurances that no cargo should 
be picked up before its available-to-load date (ALD) and that it should be delivered no later 
than its required delivery date (RDD):

Two new continuous variables appear in this relation. TENDERED represents the amount of 
cargo moved by TEP, and these movements may not include passengers. The TRANSPORT 
variable represents the amount of cargo moving by either organic or contract means. Contract 
carriers are prohibited from carrying passengers, and the pairing of ac = IL76 with cargo = pax 
is explicitly blocked from membership in the logical set, okcargo.

The Demand parameter is also introduced here. Demand is computed prior to optimi-
zation and takes into account the cumulative cargo demands on each scenario day based on 
the ALD and RDD of each historical movement. An item’s ALD was assumed to be the 
cargo pickup date drawn from GATES. This is a conservative assumption, because cargo may 
well have been available for pickup prior to its historical loading date. Another conservative 
assumption is that a cargo’s modeled RDD occurs on the actual date of its delivery, as shown in 
the GATES database. Where GATES did not provide a delivery time, the RDD was assumed 
to be five days after the ALD.

The CITA model also maintains an accurate mass balance of cargo awaiting delivery 
from one day to the next within the scenario. This mass balance requires a new continuous 
variable, CARGOREM, which tracks the amount of cargo that is available to move from its 
origin to its destination, but has not yet been picked up for delivery:

ASSIGNac ,r ,t = ASSIGNac ,r ,t+1r∈head r ,b( )∑ ∀ac,t ,r ,b
r∈tail r ,b( )∑ .

TENDEREDb ,b ',t 't '≤t ; cargo≠' pax '∑ +

TRANSPORTr ,b ,b ',ac ,t 'r ;t '≤t ; cargo , ac∈okcargo cargo,ac( )∑ ≥

Demandb ,b ',cargo,t∀b,b ',cargo,t .
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In short, the cargo remaining for delivery today accounts for what remained yesterday, what 
became available today, and what moved today. One should note that, when the RDD is 
greater than the ALD, there is no penalty for the early delivery of cargo. In fact, there are often 
cost efficiencies to be realized by loading a single plane with two pallets at once rather than 
delivering one pallet today and the second tomorrow.

Finally, an aircraft’s load should exceed its capacity at no point along its route. As many of 
the model’s routes consist of more than a single onload and a single offload point, we required 
a more-sophisticated logical set, loadok, to specify which loads on a route will contribute to the 
aircraft’s capacity constraint during any sortie on each route. Consider the notional four node 
route shown in Figure D.2. The valid pairings of b and b' in loadok are denoted in the figure by 
directed arcs. In this example, cargo may move from b1 to b2, but not vice versa. The arcs that 
overlap vertically are those whose loads would contribute simultaneously toward the aircraft’s 
capacity constraint. So as that aircraft moves from b1 to b2, the total load must account not 
only for cargo moving between the two bases but also for the base pairs b1-b3 and b1-b4.

The algebraic representation for tracking load capacity in the model is:

MaxLoad is a parameter representing the maximum cargo payload of each aircraft. Our mod-
eling convention assumes that aircraft payloads are limited on the basis of weight, rather than 
volume. To reflect the fact that mobility aircraft are often volume- rather than weight-limited, 

CARGOREMb ,b ',cargo ,t =CARGOREMb ,b ',cargo ,t−1+Demandb ,b ',cargo ,t

−TENDEREDb ,b ',tδcargo=bulk

− TRANSPORTr ,b ,b ',ac ,t 'r ;cargo ,ac∈okcargo cargo ,ac( )∑ ∀b,b ',cargo,t .

Figure D.2
Valid Linkages in Loadok for a Four-Node Route
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we used the average load factors presented in AF Pamphlet 10-1403 as maximum allowable 
payloads; these average load factors are considerably less than an aircraft’s maximum allowable 
weight, to reflect the effects of volumetric constraints on achievable payloads. It is possible to 
load both cargo and passengers onto the same aircraft.1 When this occurs, the model assumes 
a linear trade-off between the aircraft’s maximum cargo tonnage and its maximum passenger 
capacity. For example, the model assumes that the cargo capacity for a C-17 is 45 tons. A C-17 
can also hold a maximum of 188 passengers, which is possible with palletized seating kits. If 
the model opts to carry, say, 89 passengers (one-half its capacity), it can also carry 22.5 tons of 
cargo (one-half its maximum cargo load). This linear trade-off between cargo and passengers 
appears in the constraint via the parameter PaxScale.2

The CITA model lacks a precise volumetric, or “cube” constraint to limit the cubic feet 
and/or the number of cargo pallet positions to the volumetric capacity of each aircraft. While 
there is a field in GATES for pallet positions, we observed that the historical records corre-
sponding to USCENTCOM movements in 2009 were largely unreliable, and thus we did not 
implement a cube constraint in the current formulation. The AMC planning factors for load 
limit (as published in AFPM 10-1403) that the model used are generally quite conservative for 
the short sorties most common in the USCENTCOM AOR. For example, recall the planning 
factor mentioned earlier for the maximum load on a C-17, 45 tons. The C-17 can carry a maxi-
mum of 85 tons, so this notional maximum is used during planning to account for frequent 
loading of less-dense cargo that may take up available space on the aircraft before it reaches 
the maximum payload weight. With such conservative planning factors in play, especially in 
conjunction with relatively short sorties, activation of a cube constraint would be unlikely to 
influence the model’s outcomes.

TEP Bid Mechanics

After conducting regression analyses of the history of successful bids in the TEP program, we 
found three variables to be instrumental in determining the price of moving cargo. First, the 
distance between the cargo’s origin and its destination plays a significant role. This seems quite 
intuitive; flying longer distances requires more fuel and increases operations and maintenance 
expenses for load-carrying aircraft. Second, heavier tenders were found to cost more than 
lighter loads. Again, this seems reasonable because it takes more fuel to move the cargo than 
it does to fly an aircraft empty. Third, a frequent history of bids along an origin-destination 
pair implies a smaller expected tender cost. This is the least sensitive of the three variables, but 
it stems from a carrier’s willingness to bid lower to obtain regular tenders on a more-frequent, 
reliable transportation arc. Figure D.3 depicts a notional piecewise linear cost profile for ten-
dered cargo, emphasizing the relative importance of cargo weight, tender distance, and tender 
frequency.3

Careful incorporation of these cost factors into an optimization model is important to 
avoid nonlinearities and concave features in formulating a convex minimization problem. To 
this end, we introduced the concept of weight and history “bins” to simplify these relevant 

1 In our historical 2009 data set, 38 percent of intra-USCENTCOM C-17 sorties carried both cargo and passengers, and 
23 percent of C-130 sorties carried both cargo and passengers.
2 This is equivalent to assuming that each passenger consumes a fixed portion of the aircraft’s maximum payload weight. 
3 The x-intercept is meaningless here, since a tender of zero tons is nonsensical.



the Commercial Intratheater Airlift Optimization Model    77

TEP bid mechanics. Cargo is treated as fitting into one of three bin sizes, according to the 
weight of the tender: up to 5 tons, more than 5 tons and up to 15 tons, and more than 15 tons 
but less than 25 tons.4 On a given scenario day, a tender will also fit into one of three bins based 
on the history of movements along its origin-destination pair: less than 20 bids on this arc thus 
far this year, between 20 and 40 bids thus far, and more than 40 bids to date.

To accommodate this, we introduced a binary variable, BIDb,b’,wt,hist. BID is indexed over 
the now-familiar sets of origin base, b; destination base, b'; and scenario day, t. It is also 
indexed over two new sets, which link to two new, related parameters:

•	 wt = weight bin; 1, 2, or 3
•	 hist = history bin; 1, 2, or 3
•	 Weightwt = weight ceiling for bin wt
•	 Historyhist = floor for history bin hist.

BID allowed us to select a single weight bin, and the optimization will view only a single (and 
locally convex) cost in that bin. We assigned a single cost to each bin, derived from that bin’s 
cost at its weight ceiling. Figure D.4 depicts the transformation of the baseline cost profile from 
Figure D.3. The transformation approach has one primary advantage: The resultant objective 

4 The use of three bins may appear to be a simple approximation to the tender cost profile. Higher resolution in the approx-
imation of the cost function would be preferable, but such resolution would come at the cost of an increase in the number 
of binary elements in the BID variable. In general, the computation time necessary to solve a MILP grows polynomially 
with the number of integer and binary variables. Because the binary BID represents the majority of discrete variables in the 
model, increasing the resolution from three to four tender cost bins would represent roughly a 4/3, or 133 percent, growth 
in the count of discrete variables. Such a growth in variable count could be expected to lead to a solution time growth of at 
least (4/3)2, or 80 percent longer to solve the model, which is already quite long (approximately 50 CPU days) in the base 
case using three bins.

Figure D.3
Notional Tender Cost Profile
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function is convex. In optimizing TEP movements, the model tends to assign the bulk of 
movements within a bin close to its weight ceiling. This is sensible behavior and in accordance 
with the cost profile because the most cost-effective expenditure per ton moved occurs at the 
bin break points. The model is fairly insensitive to a change in these break points. In a sensitiv-
ity analysis, the break point vector for the bin ceilings was shifted from (5, 15, 25) to (2.5, 7.5, 
25) tons, but the two objective values were indistinguishable within the convergence criterion 
established for an integer solution.

Capturing the mechanics of the bid process required three fundamental constraints. 
First, no more than one bid may be accepted for each origin-destination pair on any given day:

Second, tendered cargo must fit into one of the three weight classes:

Considered alone, this constraint might allow a single tender to fall into multiple weight 
classes. For example, a tender of 12 tons fits under the ceiling for weight bins 2 (up to 15 tons) 
and 3 (up to 25 tons). However, in a minimum-cost environment, the optimization will select 
the lower weight class to realize the maximum cost savings.

Third, the history of tendered cargo along each origin-destination pair must fit into one 
of the history bins:

As with the weight bin restriction, the history bin constraint might allow a single tender to 
fall into multiple history bin classes. The minimum-cost objective, however, encourages the 

Figure D.4
Transformation of Notional Cost Profile
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optimization to select the history bin class with the highest floor to effect the most significant 
cost savings.

Objective Function

Finally, the model’s cost function and its continuous objective variable, COST, are given by

Two new parameters appear in the objective, RouteCostac,r and BidCostb,b’,wt,hist. RouteCost denotes 
the cost for either organic or contract lift to fly on a particular route. Organic aircraft incur a 
flat cost per flying hour, whereas charter costs were based on USTRANSCOM’s FY 2010 con-
tract with Silk Way Airlines for intra-USCENTCOM airlift. The contract language generally 
specifies a flat rate between particular airfields or a per mile charge for origins and destinations 
not specifically stated in the contract. The contract also specifies a penalty for not using a leased 
airframe, as discussed earlier in the aircraft management constraints. BidCost represents the 
price for TEP airlift based on the regression analysis’ key variables of origin-destination pair, 
weight class, and history bin.

COST = RouteCostac ,r ASSIGNac ,r ,tac ,r ,t∑ + BidCostb ,b ',wt ,histBIDb ,b ',t ',wt ,histb ,b ',t ,wt ,hist∑ .
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