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Preface

The goal of this project is to help improve the value and character of defense resource planning 
in an era of growing uncertainty and complex strategic challenges. Because it is impossible 
to predict what threats may arise and how defense funding will progress, a new approach is 
needed to develop robust resource strategies, that is, strategies that perform well over a wide 
range of threat and funding futures and thus are better at managing surprise. 

To address this need, RAND researchers applied a proven approach to strategy discovery, 
Robust Decision Making, or RDM, to defense planning. RDM, a quantitative decision sup-
port methodology for informing decisions under conditions of deep uncertainty and complex-
ity, has been applied to many policy areas in the last decade. This document explores how the 
RDM method may be applied to defense resource planning in an application to air-delivered 
conventional munitions mix planning.

This research was conducted under the sponsorship of the Cost Assessment and Pro-
gram Evaluation (CAPE) Directorate within the Office of the Secretary of Defense (OSD) 
by the International Security and Defense Policy Center of the RAND National Defense 
Research Institute, a federally funded research and development center sponsored by the Office 
of the Secretary of Defense, the Joint Staff, the Unified Combatant Commands, the Navy, the 
Marine Corps, the defense agencies, and the defense Intelligence Community.

For more information on the International Security and Defense Policy Center, see http://
www.rand.org/nsrd/ndri/centers/isdp.html or contact the Director (contact information is  
provided on the webpage). 

http://www.rand.org/nsrd/ndri/centers/isdp.html
http://www.rand.org/nsrd/ndri/centers/isdp.html
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Summary

This study applies Robust Decision Making (RDM)—an approach to management under 
conditions of deep uncertainty—to the challenge of defense resource planning. Defense plan-
ning faces many difficult and conflicting requirements. It must allow detailed comparisons 
among many complicated options, so that the nation can reliably and cost-effectively meet 
its military needs. Defense planning needs to enable coordination among large, complicated 
organizations. It needs to guide investments, some of which have years-long lead times. It is 
expected to provide transparency and accountability to the public. And it needs to recognize 
that most long-range predictions are wrong and that the future is sure to surprise. 

Concerned that the current approaches to defense planning rest too heavily on assump-
tions that may not hold, the Cost Assessment and Program Evaluation (CAPE) Directorate 
within the Office of the Secretary of Defense (OSD) asked RAND to evaluate the utility of 
RDM. Although its distant origins lie in defense planning, RDM has more recently matured 
and has seen widespread application in the areas of energy, environment, climate, infrastruc-
ture, and insurance. As an initial test case, CAPE asked RAND to apply RDM and evaluate its 
utility for one of the archetypal challenges of defense planning under uncertainty: the muni-
tions mix problem. This report addresses in detail how RDM might be applied to this specific 
problem, but the reader should bear in mind that the purpose of the report is not to present a 
recommended solution for managing the munitions mix but rather to investigate the applica-
bility of RDM to a broad set of defense challenges involving deep uncertainty.

Planning with Predictive Failure 

Traditionally, the Department of Defense (DoD) has conducted defense resource planning 
by employing the predict-then-act approach. Analysts assemble available evidence into best- 
estimate predictions of the future and then use models and tools to suggest the optimal strat-
egy given these predictions. Such methods work well when the predictions are accurate and 
not controversial. Otherwise, the methods can produce gridlock and lead to solutions that fail 
when the future turns out differently than expected.

Since the end of the Cold War, DoD has been operating in a security environment that 
has become one of surprise and uncertainty and is virtually certain to confound even the best 
predictions. Although DoD has taken steps to improve the range of its predictions, there is no 
guarantee that such improvements will keep pace with the inherent unpredictability of today’s 
long-term national security challenges. Many defense analysts now argue that DoD plans 
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should assume a high likelihood of predictive failure of any postulated future (e.g., Danzig, 
2011).

RDM is an iterative, quantitative, decision support methodology designed to address the 
challenges of predictive failure. The approach has been applied to areas outside national secu-
rity, such as flood risk (Fischbach, 2010; Lempert et al., 2013a) and water management appli-
cations (Groves and Lempert, 2007; Groves et al., 2008; Means et al., 2010) in situations where 
decision makers face conditions of deep uncertainty. Deep uncertainty occurs when the parties 
to a decision do not know—or agree on—the best model for relating actions to consequences 
or the likelihood of future events (Lempert, Popper, and Bankes, 2003).

RDM rests on a simple concept. Rather than using models, data, and constraining 
assumptions to describe a best-estimate future, RDM runs models using hundreds, thousands, 
or even millions of different sets of assumptions to describe how plans perform in many plau-
sible futures. The approach then uses statistics and visualizations on the resulting large data-
base of model runs to help decision makers identify those future conditions where their plans 
will perform well and poorly. This information can help decision makers develop plans that are 
more robust to a wide range of future conditions. 

In contrast to the predict-then-act approach, RDM runs the analysis “backward,” using a 
vulnerability-and-response approach. Analysts begin with one or more strategies under consid-
eration (often a current plan) and then, using potentially the same models and tools, character-
ize a spectrum of future conditions, including some where a strategy fails to meet its goals (is 
vulnerable). This serves as a stress-test of strategies and helps decision makers identify “robust” 
strategies—those that perform reasonably well regardless of what the future brings—and iden-
tify the key tradeoffs among potential robust strategies. Often, the robust strategies identified 
by RDM are adaptive, designed to evolve over time in response to new information (Lempert, 
Popper, and Bankes, 2003).

The predict-then-act approach condenses information about a range of potential futures 
into a single best-estimate future (sometimes expressed as a probabilistic forecast) or a small 
number of planning scenarios. But RDM assembles the results of many hundreds, thousands, 
or even millions of computer simulation model runs and uses this database of runs to compre-
hensively explore and summarize the challenges and opportunities the future might bring. In 
particular, RDM provides a means to effectively communicate the information in these many 
runs by summarizing them as a small number of decision-relevant scenarios. By embracing 
many plausible futures, RDM can help reduce overconfidence and the deleterious effects of 
surprise, can systematically include imprecise information in the analysis, and can help deci-
sion makers and stakeholders with differing expectations about the future nonetheless reach 
consensus on action (Lempert and Popper, 2005; Groves and Lempert, 2007; Hallegatte et al., 
2012).

Munitions Mix Challenge

CAPE and RAND agreed to evaluate RDM by applying it to the air-delivered conventional 
munitions mix challenge. DoD must purchase sufficient weapons for its platforms to enable 
U.S. forces to complete their missions. Deciding which munitions to purchase is complicated 
because future conflicts and associated missions are uncertain, and many different types of 
weapons exist, each serving different purposes and carried by different platforms. Some weap-
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ons are very expensive but others are less so; likewise, some are very sophisticated and some 
more rudimentary. Each campaign will typically require the use of specific weapons in par-
ticular ways, orchestrated across the entire campaign. For instance, many campaigns begin by 
using a relatively small number of expensive, standoff, precision-guided munitions (PGMs) to 
disable the adversary’s air defenses. Subsequently, more numerous and less-expensive muni-
tions destroy other targets.

Currently, DoD uses the Munitions Requirement Process (MRP) to inform its munitions 
purchase decisions. Each year, DoD and the services conduct the MRP to generate a total 
munitions requirement. The MRP first identifies a small number of specific scenarios called 
illustrative planning scenarios and then develops detailed target lists for each scenario. Each  
service—the Army, Navy, Air Force, and Marine Corps—then recommends its optimal weap-
ons mix contingent on the planning scenarios and all the assumptions they contain. 

The current MRP aims to avoid predictive failure in several ways. First, it includes a small 
number of alternative planning scenarios, whose goal is to approximate the range of relevant 
future conditions that DoD’s munitions mix will need to address. A wealth of detail is added 
to each scenario to further reduce uncertainty. These details include specific limiting assump-
tions about global and regional security conditions, local operational conditions, various par-
ticipants’ alignment and force postures, and choices by a range of actors involving priorities, 
operations, and risk profiles. Finally, safety factors in the form of increased weapons require-
ments are added to compensate for those uncertainties not considered in the analysis. 

The MRP is often criticized for overstating requirements and for purchasing inadequate 
quantities of some munitions. Further, the MRP provides little information to DoD regarding 
the security environments or specific contingencies for which its weapons mix is likely to prove 
sufficient and those for which it is likely to fall short. These shortcomings seem inherent in 
the predict-then-act approach that underlies the MRP, along with many other areas of defense 
planning. Each illustrative planning scenario contains hundreds to thousands of assumptions. 
These constraining assumptions decrease the flexibility of the analysis and thus its ability to 
explore over a wide range of security environments and contingencies. This limits the opportu-
nities for participants in the process to tune assumptions so that the analysis generates robust 
policy recommendations. 

A More Robust Munitions Mix Strategy

This study conducted two iterations of an RDM analysis. The first iteration focused on a broad 
array of munitions mix strategies developed to address relatively simple planning scenarios. The 
second iteration included strategies that were based on the findings of the first but focused on 
a narrower range specifically designed to be robust over a wide range of futures. 

CAPE staff participated actively in both iterations of the analysis, helping to define the 
munitions mix strategies considered, the uncertainties they face, and the metrics and models 
used to evaluate their success.

Many uncertain factors may affect the success of a munitions mix strategy. In particular, 
this study aims to examine potential interplays between large- and small-scale factors. Tradi-
tional defense planning scenarios are generally differentiated by large-scale factors, such as the 
size of the campaign (small or large), where it is fought (e.g., Asia, the Middle East), and the 
military nature of the enemy (developing country or near-peer). But each scenario also contains 
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numerous small-scale assumptions, such as the effectiveness of particular weapons against par-
ticular targets or the resilience of the enemy. The extent to which policy implications drawn 
from such scenarios depend on the large- or small-scale factors, or some combination, may 
not be clear. This study thus considers many futures that explore alternative combinations of 
large- and small-scale factors. In particular, we characterized potential future security environ-
ments by assembling a list of the 35 conflicts fought by the United States over the last century 
and grouped these conflicts into six categories of increasing intensity. We then constructed 25 
alternative future security environments, each a 20-year window (covering most munitions’ 
life cycle) of different combinations of conflicts in these six security environments, as shown in 
Figure S.1. The first of these security environments represents a repeat of the last 20 years. The 
other 24 were chosen to provide a diverse range of environments. For each security environ-
ment, we considered 50 randomly chosen combinations of parameters representing the small-
scale factors, for a total of 1,250 futures against which to stress-test the munitions strategies.

We built two coupled models for this study to link policy choices to outcomes. The weap-
ons on target (WoT) model uses weapons inventories to fight individual campaigns. The cam-
paign generator (CG) generates 20-year sequences of campaigns and provides the munitions 
to fight them. The WoT model simulates individual campaigns on a day-to-day basis, using an 
optimization algorithm to match munitions and delivery vehicles to targets. WoT is similar to 
such campaign models as the Air Force’s Combat Forces Assessment Model and related models 
used by CAPE, but with less detail. The CG provides a series of campaigns and their attributes 

Figure S.1
Future Security Environments Used in the RDM Analysis

NOTES: Security environments (SEs) are ordered so that the last 20 years are listed first, and then entries are ordered according to 
increasing severity. SE A is the most benign and SE F is the most stressful. 
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to the WoT model. The two models are configured so that we can run thousands of alternative 
futures for each of several munitions mix strategies. 

As with many policies, munitions mixes are adaptive, adjusting over time in response to 
new information. Much less often are policies designed to be adaptive. A strategy so designed 
takes near-term actions with explicit consideration of how they might be subsequently adjusted. 
A strategy designed to be adaptive may also include systematic consideration of how it will 
gather information and respond to it in the future. Traditionally, analyses of munitions mix 
strategies have not considered how such mixes might adjust over time. Rather, they focus on 
describing some single best mix at a single point in time. This study takes a first step toward 
considering adaptive munitions mix planning strategies. We characterize each strategy with 
two components: desired portfolio goals that specify the number of each type of munition that 
policymakers would like to have in the U.S. stockpile and purchasing rules that describe how 
munitions will be purchased to replenish the stockpile when it is depleted during one or more 
campaigns. The portfolio goals are related to the alternative force sizing constructs often used 
in DoD planning. We find consideration of purchasing rules important. In many futures in 
our analysis, munitions mix strategies fail because they do not appropriately restock inventories 
between closely spaced campaigns.

To compare the performance of alternative munitions purchasing strategies in each of the 
many futures, this RDM analysis uses two measures: cost and military sufficiency (i.e., cam-
paign success rates and the amount of time to complete successful campaigns). 

The findings of this analysis emerge from simplified models and unclassified data, so at 
best are suggestive rather than definitive. Nonetheless, this analysis finds that a munitions 
mix strategy that we call Big+Deter-Mixed is robust over a wide range of plausible futures. The 
Big+Deter-Mixed strategy consists of a portfolio goal, which specifies the desired number of 
weapons of each type, and a purchase rule, which specifies the order in which munitions will 
be replaced when the stockpile is depleted. We constructed the portfolio goal by using a WoT 
optimization model to give the weapons mix that provides the best balance between weapons’ 
acquisition cost and time to completion for two planning scenarios: (1) a deterrence campaign 
with a small number of targets accessible only to standoff weapons and (2) two back-to-back 
medium-size campaigns. We chose this set of planning scenarios through an iterative process 
of stress-testing strategies with portfolio goals derived from alternative sets of planning sce-
narios. Big+Deter-Mixed uses a purchase rule we call replenishment, which restocks weapons 
inventories in proportion to shortages in the inventories. We considered two alternative pur-
chase rules and chose replenishment as the superior one.

We stress-tested Big+Deter-Mixed and five alternative strategies over a wide range of 
futures that combine assumptions about both large-scale factors—alternative security environ-
ments with varying levels of severity—and small-scale factors—alternative values for param-
eters representing weapons effectiveness, adversary’s capabilities, and tactical decisions. We 
evaluated the strategies using three measures of performance: their ability to complete cam-
paigns (success rate), the speed with which they complete campaigns (days to completion), and 
the total cost of acquiring and replenishing the weapons portfolio (cost).

A scenario discovery statistical cluster analysis, applied to the model-generated database 
of thousands of futures, identifies two important scenarios around which we organize our com-
parisons of the strategies. The Moderate Scenario contains those futures in which Big+Deter-
Mixed has a generally high success rate (greater than 90 percent) and the Extreme Scenario 
contains those futures where Big+Deter-Mixed has a generally low success rate (less than  
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90 percent). The most important uncertainties distinguishing these two scenarios are the 
severity of the security environment and the effectiveness of Global Positioning System (GPS) 
weapons. These two scenarios—Moderate and Extreme—suggest that with a high level of 
GPS effectiveness and in security environments up to the severity level of the last 20 years, 
Big+Deter-Mixed will have a generally high success rate over a wide range of assumptions about 
other uncertainties. If GPS effectiveness is low, the Big+Deter-Mixed strategy will have high 
success rates only in security environments about half as severe as those in the past 20 years. 
The scenarios produced by this analysis helped organize the rest of the study and also dem-
onstrate how in RDM analyses the planning scenarios are outputs of rather than inputs to the 
analysis.

Of the six strategies considered in this analysis, Big+Deter-Mixed is the most robust in 
both scenarios, in the sense that it performs better than the alternatives for each of the three 
measures—success rate, completion time, and cost—over a wide range of futures. 

Figure S.2 summarizes the strengths and limitations of Big+Deter-Mixed over the wide 
range of futures in the Moderate Scenario. Each dot in the figure represents the performance 
of the Big+Deter-Mixed strategy in one future. The horizontal axis shows the days to comple-

Figure S.2
Days to Completion Regret, Success Regret, and Success Rates for the Big+Deter-
Mixed Strategy for Each of the 361 Futures in the Moderate Scenario
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tion regret, that is, how much longer Big+Deter-Mixed takes to complete its campaigns than 
the strategy in the future that completes them the fastest. The vertical axis shows the success 
rate regret, that is, how much lower Big+Deter-Mixed ’s success rate is than the strategy with 
the highest success rate in that future. The color of each dot shows Big+Deter-Mixed ’s success 
rate (without comparison to any other strategy). The black “whiskers” indicate the number of 
overlapping dots. 

Figure S.2 shows some important patterns. First, Big+Deter-Mixed has zero regret in most 
futures in the Moderate Scenario. In 208 of these 361 futures, Big+Deter-Mixed performs as 
least as well or better than the other five strategies in both success rate and time to completion. 
This is the basis of our finding that Big+Deter-Mixed is the most robust munitions mix strategy 
considered in this study.

However, in a small number of futures, Big+Deter-Mixed does not perform as well as the 
alternatives. In the futures along the horizontal axis, a strategy we call Big+Deter-Time com-
pletes campaigns faster than Big+Deter-Mixed. This makes sense, because the former strategy 
has a portfolio optimized to complete campaigns quickly. But although slower, Big+Deter-
Mixed ’s success rate is at least as good as that of Big+Deter-Time in these futures. In the 
futures along the vertical axis, however, a strategy we call Big-Cost has higher success rates than 
Big+Deter-Mixed. This is surprising; Big-Cost has a portfolio optimized to save money, so that 
the strategy costs about a fourth as much as Big+Deter-Mixed. 

Analyzing in detail the futures along the vertical axis helps explain this vulnerability of 
the Big+Deter-Mixed strategy. In futures with closely spaced conflicts, the strategy spends its 
resources purchasing expensive PGMs after the first conflict and has not sufficiently replen-
ished its stockpiles when the second campaign begins. In contrast, Big-Cost purchases a large 
number of economical PGMs after the first campaign and is more quickly ready for the second. 

This RDM vulnerability analysis usefully suggests ways to adjust Big+Deter-Mixed ’s pur-
chasing rule that might eliminate this vulnerability with respect to the Big-Cost strategy. In 
particular, it suggests that a step-wise purchase rule that first invests toward the Big-Cost port-
folio and—once achieved—switches toward purchasing more expensive weapons might elimi-
nate many of the vulnerabilities of the Big+Deter-Mixed strategy.

In the Extreme Scenario, Big+Deter-Mixed generally performs better than the alternative 
strategies but has insufficiently high success rates, because the scenario’s campaigns require far 
more weapons than can be purchased. To reduce these vulnerabilities, the United States could 
spend more on munitions or consider other policy options, such as developing a surge capabil-
ity in the munitions industrial base or ensuring sufficient warning time to increase munitions 
spending well in advance of large campaigns.

The Future of RDM in Defense Planning

This initial application of RDM to the munitions mix challenge provides a proof of concept 
showing how RDM might be employed for defense planning. This application demonstrates 
that RDM can provide the types of analytic information DoD might find useful in identifying 
robust and flexible strategies that can achieve success despite predictive failure. 

Future RDM defense planning applications would need to address a number of chal-
lenges. First, they might need to draw on more powerful computational resources than were 
available for this study. The analysis here used relatively simple simulation models with no 
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classified data but still faced computational constraints. In particular, using complex models, 
it could take several weeks to conduct each iteration of the analysis, which reduces the rate at 
which we could design and explore new strategies. DoD and RAND have access to more capa-
ble computational platforms, such as the defense computing resources (e.g., DoD’s High Per-
formance Computing Modernization Program). But as RDM is integrated into defense plan-
ning, the computational requirements are likely to also increase as the models used become 
more complex.

Second, future RDM applications might need to employ a wider set of models, and ones 
not of the type currently used in formal DoD planning exercises. For instance, the importance 
of purchasing rules in the Moderate Scenario and the demands of the Extreme Scenario sug-
gest that in seeking robust strategies, an RDM munitions mix analysis might usefully consider 
policies that affect the munitions industrial base and logistics system, in addition to WoT cam-
paign models. Traditionally, the MRP employs only campaign models, so a more complete 
RDM analysis might call for a significant expansion of the elements of the full system consid-
ered in DoD’s munitions mix studies. 

Finally, integrating RDM into defense planning could raise a number of organizational 
challenges. Initially at least, and perhaps as a permanent approach, RDM might be used as 
a precursor to or in parallel with traditional processes. For instance, RDM could stress-test 
munitions mix strategies generated by the current MRP over a much wider range of futures 
and suggest new scenarios in which these strategies might be considered. In addition, RDM 
could provide guidelines for potential robust strategies, which could then be tested and fleshed 
out using traditional tools for defense planning. Alternatively, RDM analyses with very simple 
models might serve as useful screening tools to situate more traditional, detailed analyses. 
Future research and experience might help clarify the situations in which RDM analyses might 
use simpler or more complicated models as part of overall, integrated planning processes.

Above and beyond these challenges of conducting and integrating different types of 
analysis, RDM might raise challenges of process and communication for DoD. For instance, 
RDM often stress-tests strategies until they break. This provides useful information, but DoD 
might have to employ security-sensitive procedures to internally and externally manage and 
communicate information regarding the vulnerabilities of their proposed policies. 

We recommend that RDM be used to initially supplement current defense planning. As 
RDM continues to validate itself in the national security analytical realm, as it has in infra-
structure planning, it can be better integrated into the planning, programming, and budgeting 
system and deliberative planning activities. Shifting the defense planning processes to a more 
balanced approach, through the integration of RDM, would involve issues of adjustment, 
but we expect that RDM’s benefits will far exceed its costs—to the benefit of the Pentagon, 
the Congress, and the nation. RDM would improve defense planning by enabling DoD to 
examine its strategies, policies, plans, programs, and budgets over a wide range of futures; 
identify vulnerabilities; and design responses that reduce those vulnerabilities. This in turn 
would improve DoD’s ability to design and evaluate robust and flexible strategies. RDM can 
help DoD more successfully achieve its goals in a world in which surprise and uncertainty are 
virtually certain to lead to predictive failure.
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CHAPTER ONE

Introduction

This study aims to apply Robust Decision Making (RDM)—an approach to management 
under conditions of deep uncertainty—to the challenge of defense resource planning. Defense 
planning faces many difficult and conflicting requirements. It must allow detailed comparison 
among many complicated options, so that the nation can reliably and cost-effectively meet its 
military needs. Defense planning must enable coordination among large, complicated organi-
zations. It must guide investments, some of which have years-long lead times. It must provide 
transparency and accountability to the public. And it must recognize that most long-range 
predictions are wrong and that the future is sure to surprise. 

Concerned that the current approaches to defense planning rest too heavily on assump-
tions that may not hold, the Cost Assessment and Program Evaluation (CAPE) Directorate 
within the Office of the Secretary of Defense (OSD), asked RAND evaluate the utility of 
RDM. Although its origins lie in defense planning,1 RDM has more recently matured and has 
seen widespread application in the areas of energy, environment, infrastructure, and insurance. 
As an initial test case, CAPE asked RAND to apply RDM and evaluate its utility for one of 
the archetypal challenges of defense planning under uncertainty: the munitions mix problem.

Planning with Predictive Failure 

In a recent essay, Richard Danzig, Former Secretary of the Navy, faults the Department of 
Defense (DoD) for an overreliance on prediction in its planning (Danzig, 2011). He notes that 
“the propensity to make predictions—and to act on the basis of predictions—is inherently 
human” and that this propensity “is especially deeply embedded at the highest levels of DOD” 
owing in part to the long and relatively successful Cold War competition against a reason-
ably predictable adversary. But today’s security environment has become one of “surprise and 
uncertainty” that is virtually certain to confound any predictions. While lauding attempts to 
improve predictive accuracy, Danzig warns that there is no guarantee that such improvements 
will keep pace with the inherent unpredictability of today’s long-term national security chal-
lenges. Rather, he argues, DoD plans should assume a high likelihood of predictive failure.

Fortunately, Danzig notes several types of practical strategies that DoD can pursue to 
achieve its goals even when its predictions prove wrong. DoD already employs many such 
strategies to some degree, as do planners in many other fields. Danzig suggests that DoD could 

1  See, for instance, Bankes (1993) and Dewar (2002).
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accelerate the tempo of its decision making processes, while delaying some decisions. It could 
increase the agility of production processes, prioritize investments in the equipment that is 
most adaptable, build more for the short term, and nurture diversity and competition. In brief, 
Danzig argues that DoD should plan to succeed in the face of predictive failure by emphasiz-
ing flexibility and robustness in its investments and planning processes.2

Achieving such robustness and flexibility may require that DoD incorporate new meth-
ods and tools for planning. RDM may provide one such approach. An iterative, quantitative 
decision support methodology, RDM is designed to help decision makers identify and com-
pare robust strategies—ones that perform better than the alternatives over a wide range of 
plausible futures (Lempert, Popper, and Bankes, 2003; Lempert et al., 2006). The approach 
begins with one or more strategies under consideration. The analysis then runs a simulation 
model over many (hundreds to millions) of plausible paths into the future to create a data-
base of model results. Visualization and cluster analysis tools then succinctly summarize those 
future conditions that best distinguish those in which the strategy meets its goals from those 
in which it does not. The analysis then helps decision makers use this information to identify 
potential responses to any vulnerabilities and the tradeoffs among them. The RDM process 
can reduce overconfidence by challenging analysts and decision makers to explore a wide range 
of plausible futures. RDM’s design facilitates stakeholder deliberation and consensus by pro-
viding an analytic framework in which parties can agree on near-term actions without agreeing 
on long-term expectations and values. As one important attribute, RDM often helps decision 
makers to design adaptive (flexible) strategies, designed to evolve over time in response to new 
information, whose components may not be obvious at the onset. 

RDM appears to have many attributes that could enable DoD to better implement  
Danzig’s call to reduce risks from predictive failure by adopting flexible and robust strate-
gies. In the past decade, RDM has increasingly served this role for organizations concerned 
with energy and environmental management. But as Danzig notes, defense planning has its 
own unique attributes and challenges. This study thus examines how RDM might fare in this 
context.

Munitions Mix Challenge

CAPE and RAND, after reviewing several options,3 agreed to evaluate RDM by applying it to 
the air-launched munitions mix challenge. DoD must purchase sufficient weapons for its air-
craft to enable U.S. forces to complete their missions. Deciding which munitions to purchase is 
complicated because future missions are uncertain, and many different types of weapons exist, 
each serving different purposes and carried by different platforms. Some weapons are very 
expensive, but others are less so. Each campaign will typically require the use of specific weap-
ons in a particular sequence. For instance, many campaigns begin by using a relatively small 

2  Many others have criticized defense planning in the United States. For example, Davis and Khalilzad (1996) said that 
“Traditional ‘threat-based planning”. . . is no longer an adequate basis for mid- and long-range planning” in the post–Cold 
War world and that defense planning should “confront head-on the reality of substantial uncertainty in many dimensions.” 
More generally, Tetlock (2006) found that experts’ predictions across a variety of issues were only slightly better than 
chance.
3  CAPE and RAND also considered using RDM to examine solutions to the intelligence, surveillance, and reconnais-
sance (ISR) force mix investment problem and the weapons of mass destruction (WMD) failed state problem.
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number of expensive, standoff, precision-guided munitions (PGMs) to disable the adversary’s 
air defenses. Subsequently, more numerous and less-expensive munitions destroy other targets.

Currently, DoD uses the Munitions Requirements Process (MRP) to inform its muni-
tions purchase decisions.4 Each year, DoD and the services conduct the MRP to generate a total 
munitions requirement. The MRP first identifies a small number of specific scenarios called 
illustrative planning scenarios and then develops detailed target lists for each scenario. Each 
target list is divided among the military services: Army, Navy, Air Force, and Marine Corps. 
Each service calculates the munitions required to cover its targets. Although each employs a 
unique methodology, all represent predict-then-act analytics. In each case, the service recom-
mends an optimal weapons mix contingent on the planning scenarios and all the assumptions 
they contain.

The current MRP aims to avoid predictive failure in several ways. First, the MRP consid-
ers a small number of alternative illustrative planning scenarios that aim to approximate the 
range of relevant future conditions that DoD’s munitions mix will need to address. Since the 
end of the Cold War, such scenarios have become more numerous and reflect a wider range of 
contingencies. Second, the process aims to reduce uncertainty by adding a wealth of details 
to each scenario, based on specific assumptions about global and regional security conditions, 
local operational conditions, various participants’ alignment and force postures, choices by a 
range of actors involving priorities, operations, risk profiles, etc. Third, the MRP adds safety 
factors in the form of increased weapons requirements to compensate for uncertainties not 
considered in the analysis. 

The MRP is often criticized for overstating requirements and for purchasing inadequate 
quantities of some munitions. In addition, no plan is ever foolproof, but the MRP provides 
little information to DoD regarding the contingencies for which its weapons mix is likely 
to prove sufficient and the contingencies in which it is likely to fall short. These shortcom-
ings seem inherent in the predict-then-act approach that underlies the MRP. As noted by 
Loeb (2005), each illustrative planning scenario embodies a large number of assumptions, not 
only regarding the campaigns the United States will be called on to fight, but also on details 
of each campaign, such as the probability of kill (Pk) of weapons against particular targets, 
when forces will arrive in theater, the tactics commanders will employ, and the weather they 
will encounter. Typically, the analysis emphasizes a best estimate for hundreds to thousands 
of such factors. Efforts to reduce uncertainty by increasing the detail in the analysis can help 
ground some estimates in more concrete data and experience. But increasing the detail can also 
increase the number of factors for which the future is assumed to be similar to the past, can 
decrease the flexibility of the analysis and thus its ability to explore over a wide range of con-
tingencies, and can increase the opportunities for participants in the process to tune assump-
tions so that the analysis generates the desired policy recommendations. In addition, although 
safety factors can provide robustness against the failure of some assumptions, they may fail to 
adequately address others. Furthermore, such safety factors may not prove to be a particularly 
cost-effective means to achieve robustness.

In past years, RAND has applied uncertainty-sensitive approaches to aid in defense plan-
ning.5 These approaches include precursors to RDM that address the munitions mix chal-

4  Chapter 2 of Loeb (2005) provides a useful overview of the MRP.
5  See, for example, Davis and Khalizad (1996) and Camm et al. (2009).
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lenge. Brooks, Bennett, and Bankes (1999) apply “exploratory analysis” to munitions planning. 
They characterize DoD’s predict-then-act approach as a “traditional analysis” that accounts 
for uncertainty by performing sensitivity analyses of parameters used in the predicted sce-
narios. They show that the optimal solution can be very sensitive to the choice of assumptions 
in ways that can be confusing and misleading to planners attempting to choose portfolios of 
weapons. Thus, rather than search for optimal solutions, they employ the idea of satisficing 
solutions (Simon, 1956)—ones that are nearly but not quite optimal. Their exploratory analy-
sis conducts a search for such satisficing solutions (using the number of days to complete the 
campaign as the measure of merit) in a munitions problem with three types of air-launched 
weapons. They find a large set of such solutions, which is invariant to the uncertainties. This 
set of satisficing solutions is thus significantly more robust than the optimal solution originally 
generated by the analysis. In addition, they argue that this set of solutions is easier to explain 
than any particular optimal solution, so that the set provides much more useful input into the 
decision making process. 

Loeb (2005) applies a capabilities-based approach to PGM planning as an alternative 
to the prediction-based, “point scenario planning” approach currently used in the MRP. The 
capabilities approach that he uses finds strategies that “work across a wide variety of scenarios 
and uncertainties while operating within an economic framework” (p. 3). Loeb conducts an 
illustrative analysis of a capabilities approach to munitions planning that has four types of 
targets and five types of PGMs. He initially accounts for uncertainty by examining four sce-
narios with different mixes of targets but concludes that planning against the scenario with 
the most targets provides the most robust strategies. Next, he constructs five variants of this 
most stressing scenario, each with a different relative mix of targets. He finds that the optimal 
munitions portfolio for any particular scenario will fail to successfully cover all targets in the 
other scenarios. To identify portfolios that are more robust, Loeb randomly generates 10,000  
weapons mixes for a given budget constraint and identifies the portfolios with the lowest total 
regret in terms of numbers of weapons used. He also explores extensions of this analysis that 
look at reductions in budgets and production constraints.

Davis, Shaver, and Beck (2008) looked at a similar problem of investing in capabilities to 
conduct global strike campaigns, which are campaigns that involve one to hundreds of weap-
ons or, in some cases, special operations forces. They identified a number of “building blocks” 
to conduct global strike, which are binary choices of qualitative options, e.g., whether B-2s will 
be based forward and whether a conventional intercontinental ballistic missile would be devel-
oped. They created a “building blocks to composite options tool” that measured the effective-
ness and cost of each possible combination of building blocks to identify an efficient frontier 
of options where a level of effectiveness can be reached at a minimum cost. Recognizing the 
uncertainty inherent in the future and the fact that many combinations of building blocks 
were about as effective at similar cost, they constructed “spanning sets of scenarios”6 that 
they believed characterized future uncertainty. Using “portfolio analysis tools,” they examined 
where each portfolio of building blocks was vulnerable and showed how effectiveness was cal-
culated for each portfolio and scenario.

6  A spanning set is defined as “a set of test scenarios chosen so that if alternative proposed systems are tested against them, 
the systems will be ‘stressed’ in all the appropriate ways. Systems that do well across these test cases should do well in the 
situations that arise in the real world” (Davis, Shaver, and Beck, 2008, p. 26).
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These previous studies provide valuable insights and precedent but do not reach a level of 
realism or capability suitable for actual DoD planning processes. However, RDM tools and 
methods have advanced significantly since the Brooks, Bennett, and Bankes and Loeb studies 
and now may be closer to the capabilities required for practical implementation. In particular, 
the RDM process now emphasizes an iterative process of characterizing the vulnerabilities 
of proposed strategies and using this information to suggest more robust responses and the  
tradeoffs among them. In addition, RDM’s ability to address multiple measures of merit has 
also improved, along with its ability to examine adaptive strategies, which achieve robustness 
by being designed to evolve over time in response to new information. Finally, the increased 
speed and memory of available computers and the power of data analysis and visualization 
tools has enabled RDM analyses to employ more complex models.

The present study thus expands on these previous studies by employing more detailed 
models, considering adaptive munitions mix strategies and more explicitly identifying the com-
parative vulnerabilities of these strategies. For instance, this study uses a more realistic number 
of weapons (30) and representative targets (30) than the previous studies. Although these mixes 
of weapons and targets are still an abstraction from reality, the greater variety better reflects 
the tradeoffs that exist between weapons in terms of cost, effectiveness, and applicability across 
substantially different targets.7 By increasing this realism, this study is able to assess some of 
the benefits and costs of purchasing a wide variety of weapons versus focusing purchases on a 
subset of weapons. Second, this study considers how munitions mix strategies perform over a 
wide range of  20-year security environments, each filled with different types and sequences of 
campaigns. In contrast, the previous studies consider single campaigns. Considering dynamic, 
multiyear sequences of campaigns both provides a more realistic and stressing analysis of pro-
posed munitions mix strategies and enables consideration of the ways in which munitions mix 
strategies might most effectively adjust over time to changing circumstances. As demonstrated 
in this study, the ways in which such strategies change over time often prove as important as 
the desired munitions mix itself in meeting U.S. national security goals.

Organization of This Report

In the remainder of this document, we demonstrate how RDM can be used to help decision 
makers identify robust strategies for air-delivered conventional munitions mixes. In the next 
chapter, we more fully describe RDM and then use the approach to scope the munitions mix 
planning challenge. In Chapter Three, we describe the RDM analysis, the robust munitions 
mix strategies it identifies, and the performance of these strategies over a wide range of plau-
sible futures. The concluding chapter offers initial thoughts on how DoD might incorporate 
RDM into its planning processes. 

Three appendixes support this study. The first describes the weapons on target (WoT) 
model used to simulate the future campaigns. The second offers more information on our 
experimental design, and the third presents the data used to conduct this work.

7  The 30 targets differ in their mobility, their hardness, their ability to be targeted in nonpermissive environments, the 
limitations they impose on weapons size to avoid collateral damage, their dispersion, and their time criticality. Table C.7, 
below, details these differences.





7

CHAPTER TWO

The RDM Approach to Munitions Mix Planning

Decision makers concerned with the proper munitions mix for U.S. forces face a significant 
and ubiquitous challenge. Effective policy choices require quantitative analysis of future risk 
and of the effectiveness of alternative munitions mix strategies. But given the fast-paced, trans-
formative, and often surprising changes facing U.S. national security, the quantitative methods 
and tools commonly used to inform decisions could prove counterproductive and misleading. 
Any assessment of the effectiveness of future munitions mix strategies will depend on assump-
tions regarding the campaigns the United States is called on to wage, the capabilities of adver-
saries, the progress of technology, and the strategies and tactics used. But many of these factors 
are intrinsically hard to predict. Munitions mixes designed for one set of assumptions may 
prove inadequate if another future comes to pass. 

Comparison of RDM and Traditional Analysis

RDM is an iterative, quantitative, decision support methodology designed to address such 
challenges. The approach has been applied to areas outside national security, such as flood 
risk (Fischbach, 2010; Lempert et al., 2013a) and water management applications (Groves and  
Lempert, 2007; Groves et al., 2008; Means et al., 2010) in situations where decision makers 
face conditions of deep uncertainty. Deep uncertainty occurs when the parties to a decision do 
not know—or agree on—the best model for relating actions to consequences or the likelihood 
of future events (Lempert, Popper, and Bankes, 2003).

RDM rests on a simple concept. Rather than using models and data to describe a best-
estimate future, RDM runs models over hundreds, thousands, or even millions of different sets 
of assumptions to describe how plans perform in many plausible futures. The approach then 
uses statistics and visualizations on the resulting large database of model runs to help decision 
makers identify those future conditions where their plans will perform well and poorly. This 
information can help decision makers develop plans that are more robust to a wide range of 
future conditions. 

This simple concept contains two particularly important ideas. First, much quantita-
tive risk and decision analysis (in particular, DoD’s planning) typically uses a predict-then-act 
approach. Analysts assemble available evidence into best-estimate predictions of the future and 
then use models and tools to suggest the best strategy given these predictions. Such methods 
work well when the predictions are accurate and not controversial. Otherwise, the methods 
can produce gridlock and lead to solutions that fail when the future turns out differently than 
expected.
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In contrast, RDM runs the analysis “backward,” using a vulnerability-and-response 
approach. Analysts begin with one or more strategies under consideration (often a current 
plan) and then, using potentially the same models and tools, characterize a spectrum of future 
conditions, including some where a strategy fails to meet its goals (is vulnerable). This serves 
as a stress-test of strategies and helps decision makers identify “robust” strategies—those that 
perform reasonably well regardless of what the future brings—and identify the key tradeoffs 
among potential robust strategies. Often, the robust strategies identified by RDM are adaptive, 
designed to evolve over time in response to new information (Lempert, Popper, and Bankes, 
2003).

Second, traditional risk and decision analysis condenses information about a range of 
potential futures into a single best-estimate future (sometimes expressed as a probabilistic fore-
cast) or a small number of planning scenarios. But RDM assembles the results of many hun-
dreds, thousands, or even millions of computer simulation model runs and uses this database 
to comprehensively explore and summarize the challenges and opportunities the future might 
bring. In particular, RDM provides a way to effectively communicate the information in these 
many runs by summarizing them as a small number of decision-relevant scenarios. By embrac-
ing many plausible futures, RDM can help reduce overconfidence and the deleterious effects of 
surprise, systematically include imprecise information in the analysis, and help decision makers 
and stakeholders with differing expectations about the future nonetheless reach consensus on 
action (Lempert and Popper, 2005; Groves and Lempert, 2007; Hallegatte et al., 2012).

RDM Enables Decision Makers to Discover Robust Strategies Through 
Iteration 

To implement the above concepts, RDM uses sophisticated analytic tools embedded in an 
explicit process of participatory stakeholder engagement (Lempert et al., 2006; Lempert and 
Collins, 2007). As shown in Figure 2.1, RDM follows an interactive series of steps consis-
tent with the “deliberation with analysis” decision support process recommended by the U.S. 
National Research Council (2009). Deliberation with analysis begins with the participants to 
a decision working together to define the policy questions and develop the scope of the analysis 
to be performed. Subsequent steps involve expert data collection, modeling, and analysis, along 
with deliberations based on this information in which choices and objectives are revisited.

The RDM process begins at the top of Figure 2.1 (see Lempert et al., 2013b) with a par-
ticipatory scoping activity in which decision makers define the objectives and metrics of the 
decision problem, strategies or options that could be used to meet these objectives, the uncer-
tainties that could affect the success of these strategies, and the relationships that govern how 
strategies would perform with respect to the metrics (Step 1). This scoping activity often uses a 
framework called “XLRM,” described below, which helps to collect and organize the informa-
tion needed for the simulation modeling. 

In Step 2, analysts use the resulting simulation model to evaluate the strategy or strategies 
in each of many plausible futures. This generates a large database of simulation model results. 
In Step 3, analysts and decision makers use visualizations and “scenario discovery” (Bryant 
and Lempert, 2010) to explore the data and identify the key combinations of future conditions 
in each candidate strategy that might not meet decision makers’ objectives. For example, a 
munitions mix strategy may fail to meet U.S. goals if the security environment is more severe 
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than expected and if some key technology has less-than-hoped-for capabilities. Such a scenario 
(“severe security environment and poor technology performance”) may concisely capture the 
vulnerabilities of the munitions mix strategy.1

Having identified a scenario in which a strategy fails to meet its goals, decision makers 
can turn to available evidence to consider whether the scenario is sufficiently likely as to war-
rant modifications to the strategy. For example, decision makers may conclude that the risk of a 
severe security environment and technology shortcomings is sufficiently high to justify strategy 
or policy changes.

These scenarios also provide the foundation for developing, evaluating, and comparing 
potential modifications to the alternative strategies that might reduce these vulnerabilities 
(Step 4). Knowing that a particular munitions mix strategy may fail to meet goals under a 
particular set of conditions might help decision makers decide to modify that policy with an 
alternative mix of weapons. Scenario discovery on this new alternative would reveal the condi-
tions to which it is vulnerable. 

Using a tradeoff analysis, decision makers may decide on a robust strategy. Or, they may 
decide that none of the alternative strategies under consideration proves sufficiently robust and 
return to the scoping exercise, this time with deeper insight into the strengths and weaknesses 
of the strategies initially considered.2

1  Specialized software tools are available to help analysts implement these steps. For example, this study used a scenario 
discovery toolkit to conduct the scenario discovery analysis (Bryant, 2014). 
2  There are also other paths through the RDM process. Information in the database of model results might help identify 
the initial candidate strategy, or information about the vulnerabilities of the candidate strategy may lead directly to another 
scoping exercise to revisit objectives, uncertainties, or strategies.

Figure 2.1
The RDM Approach 

SOURCE: Lempert et al. (2013b). 
RAND RR1112-2.1
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As will be described in Chapter Three, this project conducted two iterations of the process 
shown in Figure 2.1.

XLRM Factors Shape the Design of the Experiment

As with many RDM exercises, this project employed a framework called “XLRM” (Lempert, 
Popper, and Bankes, 2003) to help guide model development and data gathering. Throughout 
the course of this study, we conducted 12 meetings with CAPE staff to review results and plan 
next steps in the analysis, generally using the XLRM framework to organize and document 
the discussions. We expect that any future RDM exercises with CAPE would also use this 
approach. 

The letters X, L, R, and M refer to four categories of factors important to an RDM analy-
sis: 

• Exogenous uncertainties (X) are factors outside the control of decision makers but that 
may affect the ability of near-term actions to achieve decision makers’ goals.

• Policy levers (L) are near-term actions that decision makers want to consider—in this 
case, the munitions they intend to purchase and how they make those purchases over 
time.

• Relationships (R), generally represented by simulation models, describe how the policy 
levers perform, as measured by the metrics, under the various uncertainties. 

• Metrics (M) are the performance standards used to evaluate whether or not a choice of 
policy levers achieves decision makers’ goals.

In essence, RDM compares the performance of alternative combinations of policy levers, 
as evaluated by the metrics, over a wide range of uncertain futures using the relationships or 
models. Among its benefits, the XLRM framework helps distinguish among the basic elements 
of any good decision process: decision makers’ goals, the actions they can take to achieve those 
goals, and external factors that might influence their ability to achieve their goals.

This chapter is organized around this XLRM framework, as summarized in Table 2.1.3  
It first describes the exogenous uncertain factors (X) that might affect the success of muni-
tions mix strategies. It then describes the simulation models, the relationships (R) used in this  
project, the alternative munitions mix strategies (L), and the measures (M) used to evaluate 
them. A more detailed explanation of the experimental design and the models used in the 
study is provided in Appendix B.

Uncertainties (X)

Many uncertain factors may affect the success of a munitions mix strategy. In particular, this 
study aims to examine potential interplays between large- and small-scale factors. Traditional 
defense planning scenarios are generally differentiated by large-scale factors, such as the size of 
the campaign (small or large) and where it is fought (e.g., Asia, the Middle East). But each sce-
nario also contains numerous small-scale assumptions, such as the effectiveness of particular 

3  Many RDM studies use the XLRM framework, although in many cases, including this study, the exposition of the fac-
tors flows more smoothly when presented in an order that is different from the framework’s proper name.
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weapons against particular targets. It may not be clear the extent to which policy implications 
drawn from such scenarios depend on the large- or small-scale factors, or some combination. 

This study thus considers many futures that explore alternative combinations of large- 
and small-scale factors. As described in Chapter Three, these factors will be combined together 
into 1,250 alternative futures. Each future will represent a specific set of assumptions about 
the large- and small-scale factors. The analysis will then stress-test alternative munitions mix 
strategies against these futures. We thus design this set of futures and the factors that consti-
tute them to provide the most policy-relevant stress-test possible within the computational and 
modeling constraints of this analysis. 

To characterize potential future security conditions, we first assembled a list of the  
35 conflicts fought by the United States over the last century and grouped these conflicts 
into six categories of increasing intensity, as shown in Figure 2.2. We then constructed 25 
alternative future security environments, each a 20-year sequence of different combinations 
of conflicts of these six security conditions, as shown in Figure 2.3. The first of these security 
environments represents a repeat of the last 20 years. The other 24 were chosen to provide a 
maximally diverse set. As described in Appendix B, we randomly generated many thousands 
of alternative 25-member sets of different future security environments. We then chose the set 
that was most diverse according to three patterns: average severities (i.e., average overall con-
flict intensity across all the time periods), variability (i.e., the extent of rapid switching between 
benign and extreme environments), and trend (i.e., the change in average intensity over time). 
These differing patterns seemed important to the success of munitions mix strategies and thus 
the most important to include in a set of security environments designed to stress-test alterna-
tive munitions mix strategies.

Each two-year period of conflict within the security environments consists of one to three 
military campaigns of varying intensity. We characterize each of these campaigns by varying 
numbers of 30 representative targets types, described in detail in Appendix C. In addition, 
we characterize each campaign with five attributes, representing uncertain, small-scale fac-
tors potentially important to munitions mix planning. Shown in Table 2.2, these factors were 

Table 2.1
Factors Considered in the RDM Munitions Mix Planning Analysis

Uncertainties (X) Policy Levers (L)

Security environment

Defense funding level

Technology impact

Character of conflict

Munitions acquisition policy

Campaign guidance for each conflict

Relationships (R) Measures (M)

Analytica campaign generator (CG) of  
defense and operations layers

WoT model of tactical layer

Sufficiency
     Success rate
     Days to completion of campaigns

Cost
     20-year acquisition 
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chosen in conversations among CAPE staff and our analysis team. Discussed in greater detail 
in Appendixes B and C, they include the

• effectiveness of Global Positioning System (GPS) weapons, which could become more
effective or degraded by future technological changes

• ability of adversaries to blind PGMs with seeker heads
• permissiveness of adversaries’ air defense, as reflected in the number of each adversary’s

surface-to-air missiles (SAMs) that must be destroyed before a full range of U.S. weapons
can be used against targets

• adversaries’ political will represented in the model as the percentage of targets that must
be destroyed to defeat an adversary

• campaign operations tempo (OpTempo), represented by the delivery rates of weapons.4

4  To simplify the model, we assumed four broad types of delivery platforms: nonstealth aircraft, stealth aircraft, naval 
ships, and ground-based launchers, and we assumed that each weapon can be delivered by only one platform. 

Figure 2.2
Historical Security Conditions

RAND RR1112-2.2
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Highest surge
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1918–21 Russian Civil War Incident 
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1958 Lebanon Incident 
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1964–73 Vietnam Major regional 
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1986 Libya Incident 
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2011 Libya Campaign
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Relationships (R): Models

We built two coupled models for this study to link policy choices to outcomes, as shown in 
Figure 2.4. The WoT model uses weapons inventories to fight individual campaigns. The CG 
generates 20-year sequences of campaigns and provides the munitions to fight them. The two 
models are configured so that we can run thousands of alternative futures for each of several 
munitions mix strategies.

Figure 2.3 
Future Security Environments Used in the RDM Analysis

NOTES: Security environments (SEs) are ordered so that the last 20 years is listed first, and then entries are ordered according to 
increasing severity. SE A is the most benign and SE F is the most stressful. 
RAND RR1112-2.3
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Table 2.2
Uncertain Campaign Attributes

Weapons characteristics GPS technology Performance of GPS weapons improves or 
degrades by ± 50%

Weapons characteristics Blinding (B) Performance of PGMs with seeker heads 
degrades by 0% to 75%

Adversary capability Permissiveness of air defense 
(PERM)

Number of SAM targets increases or decreases by 
± 50%

Adversary political will Adversary’s political will (WILL) Adjust the percentage of targets destroyed 
required to end campaign (normally 80%) by 
±20%

OpTempo Delivery rate (DR) Adjust delivery rates (both surge and steady-
state) by ± 50%
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The WoT model simulates individual campaigns on a day-to-day basis, using an optimi-
zation algorithm to match munitions and delivery vehicles to targets.5 WoT uses stochastic Pks 
to determine whether targets have been destroyed. WoT is similar to such campaign models as 
the Air Force’s Combat Forces Assessment Model and related models used by CAPE, but with 
less detail. WoT’s simplicity provides significant advantages in run-time. It can run a large, 
complex campaign in at most a few minutes on a modern desktop computer, compared to 
hours or days for a more complex campaign model. However, WoT cannot simulate campaigns 
with the same fidelity as that of more detailed models.

WoT requires inputs that specify the details of each campaign. For example, it requires a 
target set with different attributes for the targets, a weapons portfolio with different attributes 
for each weapon, and a Pk table that describes the likelihood that any weapon will destroy any 
given target. Appendix A provides a detailed overview of how WoT works and its data require-
ments. WoT uses probabilistic Pks, so the analysis uses 100 stochastic runs of WoT for each 
campaign and reports summary statistics on the outcomes. 

The CG provides a series of campaigns and their attributes to the WoT model. Each  
case considered in the RDM analysis consists of one munitions strategy tested against one 
future. The CG constructs a future by beginning with one of the security environments in 
Figure 2.3 and a specific set of values for the campaign attributes in Table 2.2. Together, these 
constitute the uncertainties (Xs) described above. As described in the next section, we use a 
statistically chosen experimental design to create the thousands of combinations of alternative 
security environments and campaign attributes. For each future and using one of the muni-
tions strategies—the policy levers (Ls) described below—the CG sends one campaign at a time 
to WoT, along with information on the available munitions. WoT reports back the campaign 
outcomes, including the number of weapons used. The CG adjusts U.S. weapons inventories, 
purchases additional weapons using available funding, and the sends WoT another campaign. 

5  WoT’s treatment of delivery vehicles and munitions is currently highly simplified. WoT assumes that each munition can 
be delivered by only one type of four broad classes of delivery vehicle (nonstealth and stealth aircraft, sea, or land). In addi-
tion, WoT does not reserve any vehicles or munitions for day-to-day noncontingency use. Increases in fidelity of how WoT 
simulates delivery vehicles will be considered for future research, especially when real data are used.

  Figure 2.4
  Flow of Information Between the WoT Model and  
  the CG 

RAND RR1112-2.4
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(Uncertainties) X 

(Policy levers) L 

(Relationships) R 
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generator
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tactical layer



The RDM Approach to Munitions Mix Planning    15

At the end of the 20-year sequence the CG summarizes the outcomes, using the metrics (Ms) 
discussed below.

Policy Levers and Strategies (L)

In practice, most policies are adaptive, adjusting over time in response to new information. 
Much less often are policies designed to be adaptive. A strategy so designed takes near-term 
actions with explicit consideration of how they might be subsequently adjusted. A strategy 
designed to be adaptive may also include systematic consideration of how it will gather infor-
mation and respond to it in the future.

Traditionally, analyses of munitions mix strategies have not considered how such mixes 
might adjust over time. Rather, they focus on describing some single best mix at a single point 
in time. This study takes a first step toward considering adaptive munitions mix planning strat-
egies. We characterize each strategy with two components:

• Desired portfolio goals that specify the number of each type of munitions that policy-
makers would like to have in the U.S. stockpile. These portfolio goals are related to the 
alternative force sizing constructs often used in DoD planning.

• Purchasing rules that describe how munitions will be purchased to replenish the stock-
pile when it is depleted during one or more campaigns.

This study considers a variety of alternative desired portfolio goals. We consider a base-
line portfolio, which aims to represent the current DoD portfolio.6 In addition, we consider a 
variety of alternative portfolios, constructed by running an optimization routine with the WoT 
model for specified campaigns and objective functions. 

During the course of a simulation run weapons will be expended across the various cam-
paigns. Our munitions mix strategies thus also include purchasing rules for replenishing the 
stockpile. We assume that total defense funding varies with the severity of the security environ-
ment in the previous period, representing the historically observed lag times between changes 
in observed threat and changes in the defense budget. We assume that 0.85 percent of defense 
funding is available for munitions purchases, consistent with historical averages. During each 
time period, the strategy allocates the funding available to purchase munitions to replenish 
the stockpile based on alternative purchasing rules. For instance, the strategy might prioritize 
weapon purchases on the basis of the number of each weapons type used in the last campaign 
or on the ratio in which those weapons appear in the desired munitions mix. 

As a result of these rules, the munitions mix at any particular time in any particular simu-
lation run depends on how the future unfolds. As suggested by Figure 2.5, in some futures, the 
munitions mix stays close to the desired numbers of each type of munition. In other futures, 
it may deviate significantly. As discussed in Chapter Three, the rules for purchasing weapons 
after they are depleted can be as important to the success of a munitions mix strategy as the 
desired portfolio goals themselves.

6  All weapons data in this study were taken from unclassified sources or were estimated after reviewing information in the 
unclassified literature. Greater fidelity of weapons attributes could likely be achieved by using classified data sources that are 
available to DoD. Furthermore, by limiting the study to 30 weapons and 30 types of targets, the study may have overlooked 
other combinations of weapons and targets that DoD planners recognize as important but that are not well known in open 
sources.
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This study did not consider in its relationships or in its policy levers a wide range of muni-
tions industrial base issues that might prove relevant, in particular to the adaptive strategies 
considered here. For instance, we did not consider policies that might make it possible to more 
quickly increase production of some munitions or how the size or rate of purchase might affect 
costs. Our analysis does impose a two-year latency on all munitions purchase decisions, which 
may soften the effect of these assumptions. However, expanding this analysis to include such 
industrial base issues could be a valuable direction for future work.

Measures (M)

To compare the performance of alternative munitions purchasing strategies in each of the 
many futures, this RDM analysis uses two measures: cost and military sufficiency. 

Cost is measured in two ways. For each simulation run, cost is measured as the purchase 
cost of all the weapons expended across all campaigns in a simulation run. This includes the 
purchase cost of the existing munitions expended throughout the run and the purchase cost 
of newly purchased munitions expended throughout the run. More generally, the cost of each 
munitions purchasing strategy can be compared through the acquisition cost of each strategy’s 
desired munitions portfolio, which is the total cost of purchasing all weapons in the portfolio.

The analysis uses two measures of military sufficiency: success rate and days to comple-
tion. The success rate records the percentage of campaigns won. Campaigns are won when 
the required targets are destroyed within a maximum campaign length of 200 days.7 Days to 
completion records the number of days required to win a campaign. A shorter time is desirable 
because it reduces other, nonmunitions-related costs of the campaign. 

In general, decision makers would prefer a low-cost munitions mix strategy that can win 
all campaigns and win them quickly, across a wide range of plausible futures. However, as dis-
cussed in the next chapter, there are often tradeoffs among these objectives.

7  A limit of 200 days was placed on each campaign. If a campaign went over 200 days, it was deemed unsuccessful. In 
practice, this 200-day limit was rarely binding; campaigns that lasted 200 days had usually run out of usable weapons.

Figure 2.5
Evolution of an Adaptive Strategy
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It is worth noting that although success rate and days to campaign completion corre-
spond to key goals of Pentagon leaders, analysts and decision makers often distrust these two 
measures as useful ways to quantify military sufficiency. In part, this distrust owes to the obvi-
ous difficulty of predicting these quantities with any confidence. However, using success rate 
and days to campaign completion in an RDM analysis may render them more useful because 
such an analysis does not predict, but rather evaluates, how these quantities depend on a wide 
range of assumptions and alternative policy choices.
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CHAPTER THREE

RDM Munitions Mix Analysis

We can now use the simulation model and data presented in Chapter Two to conduct the 
munitions mix RDM analysis. We conducted two iterations of the loop shown in Figure 2.1 
during the course of the project. The first iteration focused on a broad array of strategies devel-
oped to address relatively simple planning scenarios. The second iteration, whose strategies 
were based on findings from the first, focused on a narrower range of strategies more specifi-
cally designed to be robust over a wider range of futures. This chapter will briefly summarize 
the analysis of the first set of strategies and then will present the analysis of the second set in 
more detail.

Initial Analysis of a Broad Range of Munitions Mix Strategies

As described in the previous chapter, we consider adaptive munitions mix strategies that have 
both a desired portfolio goal that specifies desired number of weapons of each type and a pur-
chasing rule that specifies the order in which munitions will be purchased when the stockpile is 
depleted. In the initial scoping of strategies (Step 1), we considered five portfolio goals and two 
purchasing rules for a total of ten strategies. We choose these goals and strategies, in consulta-
tion with CAPE, to provide a broad scan of the performance of alternative strategies.

The five portfolio goals are derived from alternative DoD force sizing constructs.  In par-
ticular, we considered

• Baseline, representing the current munitions portfolio
• Small-Cost, which purchases weapons designed to fight—at least cost—a Small War 

planning scenario with prolonged irregular campaigns
• Small-Time, which purchases weapons designed to fight—as quickly as possible—a Small 

War planning scenario with prolonged irregular campaigns
• Big-Cost, which purchases weapons designed to fight—at least cost—a Big War planning 

scenario with two back-to-back, medium-size campaigns
• Big-Time, which purchases weapons designed to fight—as quickly as possible—a Big War 

planning scenario with two back-to-back, medium-size campaigns.

For all but the Baseline, the study used the WoT model to find the optimum munitions 
portfolio for the specified planning scenario (Small War or Big War) and objective function 
(least cost or least time). This process—with its planning scenarios and optimization goals—



20    Defense Resource Planning Under Uncertainty

aims to approximate the current DoD predict-then-act approach to munitions planning. The 
appendixes of this report provide more details on these calculations. 

For the two purchasing rules, we considered 

• Stockpile, which spends all available funding in proportion to the portfolio goals, and 
continues purchasing weapons as long as funding is available, and 

• Replenishment, which purchases only until the desired portfolio goal has been reached. If 
funding is insufficient to fully meet the portfolio goals, the replenishment rule spends in 
proportion to the shortages in the goals. 

Note that the stockpile rule can continue purchasing weapons beyond the portfolio goals, 
so in some futures, many more weapons may be purchased than the replenishment goal. The 
replenishment rule focuses munitions purchases on replacing weapons that were heavily used in 
the previous period; that is, the rule shifts purchasing priorities dynamically as information is 
learned about which weapons have proven most useful to combat commanders. Even with the 
same portfolio goal, the two purchasing rules can lead to very different weapons inventories.

The team next evaluated the ten strategies over a wide range of plausible futures (Step 2). 
Each future consisted of one security environment and one combination of each of the small-
scale uncertainties shown in Table 2.2. The computational resources available to this study gave 
us the ability to consider analyses with about 10,000 total cases, representing about a week of 
run time on RAND’s ten-core cluster computer. We allocated those 10,000 cases by pairing  
20 security environments with 50 alternative combinations of assumptions about the small-
scale uncertainties,1 so that each of the ten strategies was tested in 1,000 different futures. 

This database of runs supported an initial vulnerability analysis of the ten strategies, 
which RAND and CAPE staff used to refine the strategies considered in the second iteration 
of the analysis. In particular, this initial vulnerability analysis suggested the following.

First, the strategies based on the Small War planning scenarios, Small-Cost and Small-
Time, had very poor success rates (that is, they rarely destroy the required number of targets) 
in any but the least-stressing security environments. Not surprisingly, these strategies seemed 
appropriate only if defense planners were confident that larger contingencies were exceedingly 
unlikely.

Second, the strategies with stockpile purchasing rules generally outperformed the strat-
egies with replenishment purchasing rules, as might be expected because the stockpile rule 
purchases more munitions. But, surprisingly, in many futures, the replenishment rule outper-
formed the stockpile rule. The replenishment rule performed better in those futures in which 
a series of campaigns closely spaced in time would significantly deplete weapons inventories 
and insufficient funding was available to replace them quickly. In such futures, the replenish-
ment rule spent its limited funding in a smarter way. It focused its funding on munitions that 
had been heavily used in the previous period, whereas the stockpile strategy bought a constant 
proportion of weapons no matter what had been used in the previous period. 

Third, the cost-minimizing portfolio goal, Big-Cost, often had higher success rates than 
the time-minimizing portfolios’ goals, Big-Time. We expected that the Big-Cost strategy, which 
purchases fewer weapons that are less capable than does Big-Time, would trade lower cost for 

1  The 50 combinations were selected using a Latin Hypercube experimental design that randomly samples parameter 
values but spaces them to ensure a relatively uniform distribution of parameters.
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less success and longer campaign completion times. This did occur in some futures. In some 
futures, both Big-Cost and Big-Time had high success rates. In these futures, Big-Time com-
pleted the campaigns more quickly. In some futures, Big-Cost failed to complete campaigns 
because it ran out of standoff weapons before it rendered the security environment permis-
sive. But surprisingly, in a relatively large share of futures, Big-Cost completed campaigns that 
Big-Time did not. In such futures, repeated campaigns would deplete weapons inventories. 
Big-Cost strategies, with their less-expensive weapons, had sufficient funding to replenish their 
stockpiles before the next campaign began. Big-Time, with its more expensive weapons, could 
not and was thus unready to complete the campaign. 

Fourth, the vulnerability analysis identified two types of futures in which both Big-Cost 
and Big-Time performed poorly. These strategies proved vulnerable in futures with degraded 
GPS performance. These strategies also failed against deterrence campaigns, which, although 
relatively small, require high-performance weapons. Deterrence campaigns (characterized by 
numerous short-duration campaigns, employing high-tech standoff PGMs at a high usage rate) 
are thus not lesser-included cases of the Big War planning scenarios.

Analysis of Potentially More Robust Munitions Mix Strategies

We next developed a new set of alternative strategies in consultation with CAPE and using the 
findings from the first round of vulnerability analysis. As in the initial analysis, each strategy 
consists of desired portfolio goals and purchasing rules. However, the portfolio goals for these 
strategies were specifically designed to be robust over a wider range of futures. 

In particular, we used the WoT model to find portfolios with optimal performance in 
each of several carefully constructed planning scenarios, each designed to address specific vul-
nerabilities identified in the initial analysis. We also eliminated the Small War portfolios, 
which performed too poorly in the initial analysis to warrant continued consideration.

Both the Big-Time and Big-Cost portfolios from the initial analysis had poor performance 
in deterrence campaigns, which, although smaller in size, did not represent a lesser-included 
case of the Big War planning scenario. Each of the three additional strategies thus added a 
deterrence campaign to the Big War planning scenario. In addition, rather than optimizing 
portfolio goals for either minimum cost or time, we optimized for various mixes of these two 
objectives. As described in Appendix B, the Big+Deter-Time strategy, heavily weighted (95 per-
cent) toward the time-minimized portfolio, provided the best mix of the existing time- and 
cost-minimized objectives. The two other new strategies address specific vulnerabilities iden-
tified in the initial analysis. Big+Deter-Mixed addresses the vulnerability of cost-minimized 
portfolios to running out of expensive standoff weapons by using planning scenarios where 
it can employ only standoff weapons. This increases the costs but pushes the strategy to use 
cost-effective standoff weapons. Big+Deter/GPS-Mixed addresses the vulnerability to low GPS 
effectiveness by using a planning scenario with a 33 percent reduction in the effectiveness of 
GPS weapons, which results in a strategy with larger inventories of munitions.

For this new set of alternative strategies, we also used only the replenishment purchas-
ing rule from the initial analysis, in which weapons are purchased in proportion to shortages 
in portfolio goals. This new set of strategies did not include the stockpile purchasing rule, 
in which weapons are purchased in proportion to portfolio goals. The initial analysis sug-
gested the replenishment purchasing rule performed better than the stockpile purchasing rule 
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in many futures because the former purchased the weapons most heavily used in the previous 
conflicts. In addition, the one advantage of the stockpile rule—that it continued to purchase 
weapons beyond the portfolio goals as long as funding was available—seemed unrealistic to 
defense planners at CAPE.

Table 3.1 summarizes the six alternative munitions mix acquisitions strategies considered 
in this stage of the analysis. The first three—the Baseline portfolio and the two Big War port-
folios that optimized for least cost and least time to finish the campaign—remain from the 
initial analysis. The last three are the new “mixed” portfolios. Note that the estimated cost of 
all the portfolios is similar, with the exception of Big-Cost, which is considerably less expensive. 

Figure 3.1 compares the relative size and mix of munitions in terms of estimated acquisi-
tion costs (i.e., the cost if the entire portfolio were purchased at once) for three of the portfolios 
in Table 3.1. The left panel shows the estimated acquisition value of current baseline invento-
ries, the middle panel shows the Big-Cost portfolio, and the right panel shows the Big+Deter-
Mixed portfolio. Note that the Big+Deter-Mixed and especially the Big-Cost portfolios have 
significantly less diversity of weapon types. In general, the portfolios developed in this study 
use fewer types of munitions than the current Baseline portfolio and usually concentrate most 
acquisition spending on a handful of munitions, for two primary reasons. First, the base-
line portfolio has evolved over time as new weapons have been developed, but older weapons 
remain in inventories. Second, DoD’s planning scenarios are likely more detailed than the 30 
target types2 in this study, thus providing more opportunities to match specialty weapons to 
particular target types.3 In the final chapter of this study, we will discuss some implications of 
these differences in weapons mix diversity.

2  See Table C.7 for a complete listing and characterization of target types employed in the project.
3  See Table B.1 for a complete listing of munitions employed in the project.

Table 3.1
Strategies Used in the RDM Analysis

Strategy Name Explanation

Estimated 
Acquisition  

Cost  
($ Billions)

Baseline Desired portfolio goal is Baseline existing inventories 73.1

Big-Cost Desired portfolio goal minimizes the cost of campaigns 14.4

Big-Time Desired portfolio goal minimizes the time of campaigns 66.7

Big+Deter-Time Deterrence campaign included in planning scenarios; reduces total costs with 
a 95/5 ratio of time-minimizing portfolio to cost-minimizing portfolio

67.2

Big+Deter-Mixed Deterrence campaign included in planning scenarios; cost-minimizing 
portfolio heavy in standoff weapons; reduces total cost with a 55/45 ratio of 
time-minimizing portfolio to cost-minimizing portfolio

60.6

Big+Deter/GPS-
Mixed

Deterrence campaign included in planning scenarios with GPS degradation; 
reduces total cost with a 75/25 ratio of time-minimizing portfolio to cost-
minimizing portfolio

84.5

NOTES: The Big Wars strategies include weapons to fight two back-to-back, medium-size, major regional 
campaigns. All strategies in this table use the replenishment purchasing rule.
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Stress-Testing of Strategies over Many Futures

The team next evaluated the six strategies over a wide range of plausible futures (see the box 
labeled “Evaluation in many futures” in Figure 2.1). Each future consists of one of the 25 secu-
rity environments (the large-scale factors shown in Figure 2.3) and one combination of values 
for each of the small-scale uncertainties shown in Table 2.2. We paired 25 security environ-
ments4 with 50 alternative combinations of assumptions about the small-scale uncertainties 
generated with a Latin Hypercube experimental design, so that each strategy was tested in 
1,250 different futures. With its six alternatives strategies, this stage of the analysis required 
7,500 (6 × 1,250) total cases, which took about a week of run time under ideal conditions on 
RAND’s ten-core cluster computer.5

Figure 3.2 provides an initial screening of the tradeoffs among the six alternative strat-
egies. The figure compares the success rates and costs for each strategy averaged over the  
1,250 futures.6 The best strategies are those with relatively high success rates and relatively low 

4  The second iteration of the RDM analysis added five additional security environments to the 20 used in the first itera-
tion. One of these additional security environments approximated the security environment of the past 20 years, and the 
other four focused on less-severe security environments that were underrepresented in the original 20 security environments.
5  In practice, each iteration of the analysis took much longer than a week. Other applications competed for resources on 
the computer, which limited the number of cases that could be run at once and slowed the simulations. Furthermore, some 
programming errors were not apparent until the cases were run; therefore, cases sometimes ran multiple times. 
6  The RDM analysis also tracks days to completion as one measure (M). However, at this stage of the analysis, days to 
completion has limited value because the strategies have a large divergence in success rates. The “marginal” campaigns 

Figure 3.1
Relative Acquisition Costs of Weapons in Three Desired Portfolio Goals

NOTE: Weapons with an estimated acquisition cost of over $2 billion are labeled.
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costs. The cluster of points in the upper right of the figure suggests that the Big+Deter-Mixed 
strategy performs better than Big-Time and the two other mixed strategies. Big+Deter-Mixed 
has a higher average success rate than Big-Cost, but the latter costs half as much. The Base-
line strategy performs less well than the others. The Big-Cost and Big+Deter-Mixed strategies 
thus suggest a tradeoff frontier. Decision makers might choose between these two strategies 
depending on how much they valued success rates relative to costs.7 

Scenarios That Illuminate the Vulnerabilities of Strategies

After reviewing the initial screening in Figure 3.2, the team decided to examine in more detail 
the strengths and potential weaknesses of the Big+Deter-Mixed strategy. This choice reflects 
a judgment that senior decision makers may regard campaign success rate as more important 

where some strategies are successful but others are not successful tend to be stressful and necessitate a large number of days 
to completion; thus, strategies that are successful would be penalized for having a large number of days to completion. 
7  The reader should note that the cost differences shown in Figure 3.2 are statistically significant. The error bars show the 
standard errors over the stochastic simulations treated in the analysis. In general, the reported differences among the per-
formance of strategies in this analysis have high statistical significance because each strategy is tested against the same set of 
futures, and the rankings of strategies are consistent across these futures, even when the percentage differences are relatively 
small.

Figure 3.2
Average Success Rates and Average Costs of Munitions Expended Across Strategies
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than cost. In addition, in some futures considered in the analysis, one of the other strategies, 
for instance Big+Deter/GPS-Mixed, performs better than Big+Deter-Mixed or Big-Cost. But, as 
shown in the following discussion, these two strategies dominate the others over a sufficiently 
broad range of futures and performance measures that it makes sense to focus the vulnerability 
and response option analysis on the Big+Deter-Mixed strategy. 

Although Big+Deter-Mixed has the highest average success rate of the six alternative strat-
egies, its average rate (77 percent) is not as high as one would like. We thus ask the question: 
What key characteristics distinguish the futures in which Big+Deter-Mixed has a high success 
rate from those futures in which it does not? In consultation with CAPE, the team defined an 
acceptably high success rate as 90 percent or greater.

Applying scenario discovery algorithms (Bryant and Lempert, 2010) to the database of 
1,250 futures suggests that of all the uncertainties considered in this analysis, three—two 
large-scale and one-small scale—are most important in distinguishing those futures where 
Big+Deter-Mixed has a high success rate. These are the following:

• Average severity measures the severity of the security environment, normalized so that 
20 straight years of quiescent security conditions is 0, and 20 straight years of global war 
is 1. There is a strong relationship between average severity and success; high-severity 
security environments have too many targets for any strategy to be highly successful.

• Trend measures how average severity changes over time. A value of 0.5 means that the 
severity stays constant over time; higher values indicate that the severity increases, and 
lower values indicate that the severity decreases. The Big+Deter-Mixed strategy was vul-
nerable to futures in which the trend was far from constant.8

• GPS measures how the effectiveness of GPS weapons changes over the baseline, in terms 
of a percentage (i.e., 0.05 is a 5 percent improvement in effectiveness). Big+Deter-Mixed 
has less success when GPS is degraded. With improvements in GPS weapons, Big+Deter-
Mixed can be more successful in futures that are more severe.

Figure 3.3 displays the two scenarios defined by these three uncertain parameters.  
In the Moderate Scenario—shown in the figure as the region inside the black, dashed line—
are futures in which the Big+Deter-Mixed strategy has a success rate greater than 90 percent. 
In the Extreme Scenario, Big+Deter-Mixed has a success rate less than 90 percent. Of the  
1,250 futures considered in our analysis, 361 fall into the Moderate Scenario, whereas the 
other 889 futures fall into the Extreme Scenario. Note that the security environment over the 
past 20 years (dark circles in Figure 3.3) lies just inside the Moderate Scenario as long as GPS 
effectiveness remains high.

These two scenarios—Moderate and Extreme—suggest that in security environments up 
to the severity level of the last 20 years, the Big+Deter-Mixed munitions acquisition strategy 
will have generally high success rates over a wide range of assumptions about other uncertain-
ties, assuming a high level of GPS effectiveness. If GPS effectiveness is low, the Big+Deter-
Mixed strategy will have high success rates only in security environments about half as severe 
as those in the past 20 years. The Big+Deter/GPS-Mixed strategy can mitigate this sensitivity 

8  Since only two points in Figure 3.3 are excluded by the restrictions on the trend, it is possible that the trend was serving 
as a proxy for some other feature of those two security environments that made them particularly stressful.
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to degraded GPS. But as Figure 3.2 shows, this strategy trades increased success when GPS is 
degraded for decreased success in other types of futures.

Later in this chapter, we will briefly discuss how further RDM analyses might suggest 
munitions acquisition strategies that improve performance in Extreme futures outside the 
Moderate Scenario. But now, we turn to a more focused examination of the tradeoffs among 
strategies in the Moderate Scenario.

Performance of Big+Deter-Mixed Strategy in the Moderate Scenario

Figure 3.4 compares the six alternative strategies using the maximum regret across all the 
futures in the Moderate Scenario9 for the three measures of interest in this study: success, 
the cost of the munitions expended, and days to completion.10 Figure 3.2 focused on average 

9  For a particular purchasing strategy, regret is the difference between that strategy’s measure and the measure of the best 
strategy. For example, if Strategy A takes 50 days to complete a campaign and Strategy B takes 60 days, the regret of Strat-
egy A is 0 days (it is the best strategy) and the regret of Strategy B is 10 days (it takes 10 days longer than the best strategy).

This study uses a modified calculation of regret that looks only at regret to other strategies that are at least as successful 
at conducting a particular campaign. Thus, if Strategy A spends $80 billion and has 100 percent success, Strategy B spends 
$90 billion and has 100 percent success, and Strategy C spends $40 billion and has 50 percent success, the regret of Strat-
egy A is $0 (no strategy spent less and was as successful), the regret of Strategy B is $10 billion (Strategy A was $10 billion 
cheaper and had the same success), and the regret of Strategy C is $0 billion (no strategy spent less and was as successful).
10  Days to completion regret is calculated based on only the 172 futures in the scenario where all strategies were 100 per-
cent successful. As noted in an earlier footnote, the days to completion metric will provide a penalty for strategies that take 
a long number of days to complete stressful scenarios even though other strategies are unsuccessful. Calculating days to 

Figure 3.3
Construction of the Moderate Scenario: Futures in Which Big+Deter-Mixed Has High (Greater Than 
90 Percent) Success Rate

NOTES: Each point represents the average success rate for a security environment across a variety of futures. Each
security environment is included in 50 of the futures—23 with GPS > 0.05 and 27 with GPS < 0.05.
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performance, but this figure focuses on worst-case performance. Nonetheless, the basic pat-
terns remain the same across the two figures. Big+Deter-Mixed generally completes the most 
campaigns (second-lowest success regret) and generally completes them the fastest (among 
the lowest days to completion regret). Big-Cost also has high success rates and is the least 
costly. However, the Big-Cost strategy can take much longer to complete campaigns relative 
to Big+Deter-Mixed and the other strategies, as shown by its high days to completion regret. 

Table 3.2 summarizes the performance of the six alternative strategies across the 361 
futures in the Moderate scenario using all the measures considered in the analysis. Big+Deter-
Mixed and Big-Cost dominate for all but one measure (Big+Deter-Time and Big-Time each has 
slightly smaller maximum days to completion regret than does Big+Deter-Mixed). Big+Deter-
Mixed has zero success regret in 323 of the 361 futures. Big-Cost is not far behind, with zero 
success regret in 313 of the futures. With its much lower cost, Big-Cost has both zero cost regret 
and zero success regret across 277 futures. 

Figure 3.5 focuses on the strengths and limitations of Big+Deter-Mixed by plotting its 
days to completion and success regret across all 361 Moderate Scenario futures. Because many 
dots overlap, the “whiskers” indicate the number of overlapping dots. The inset table shows 
the distribution of futures at the origin (zero success and days to completion regret) where the 
number of overlapping dots is particularly high. 

Not surprisingly, Big+Deter-Mixed has zero success regret and days to completion regret in 
most futures in the Moderate Scenario. In 208 of these 361 futures, Big+Deter-Mixed has zero 
regret for both measures; that is, it has a success rate and days to completion at least as good as 
the other five strategies. However, it is important to note that zero regret does not necessarily 

completion only for futures where all strategies are 100 percent successful ensures that the measure provides a comparison 
of futures in which the strategies have the same level of success.

Figure 3.4
Maximum Success Regret, Maximum Days to Completion Regret, and Maximum Adjusted Cost  
Regret in the Moderate Scenario

NOTE: Days to completion regret was calculated only for futures where all of the strategies were successful 100 
percent of the time (172 futures).
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imply a high success rate. In 25 of the futures at the origin of Figure 3.5, Big+Deter-Mixed has 
success rates less than 90 percent, although it still has success rates at least as high as the alter-
native strategies.11 In a small number of futures (those along the vertical axis), Big+Deter-Mixed 
has high success regret but zero or small days to completion regret. In these futures, the strat-
egy fails more campaigns than alternative strategies, but for those campaigns it does complete, 
it does so as quickly as do the alternative strategies. In a relatively larger number of futures, 
Big+Deter-Mixed has high days to completion regret but zero success regret. In these futures, 
the strategy completes as many campaigns as the alternative strategies but can take longer to 
finish them. In those futures where Big+Deter-Mixed has high success regret, Big-Cost is always 
the strategy with the highest success rate. In futures where Big+Deter-Mixed has high days to 
completion regret, Big+Deter-Time (and never Big-Cost) often completes campaigns the fastest. 

Figure 3.5 also notes two specific futures, labeled Future 1016 and Future 1152,12 which 
we will now consider in more detail. Such detailed “drill-downs” into particular case stud-
ies are useful for three reasons. First, such case studies provide a way to validate outliers. 
A detailed analysis of an individual case helps to validate that the models are working as 
intended. Second, case studies provide a greater understanding of how the strategies actu-
ally perform across a 20-year future. Third, the case studies provide deeper insight into the  
tradeoffs among the strategies and why these tradeoffs occur. 

11  The goal of the scenario discovery algorithms is to find a parsimonious definition of a scenario that best captures futures 
of interest (i.e., futures where Big+Deter-Mixed has a success rate of at least 90 percent) and excludes all other futures (i.e., 
futures where Big+Deter-Mixed has a success rate of less than 90 percent). The “coverage” of the Moderate Scenario is  
82 percent, i.e., 82 percent of futures in which Big+Deter-Mixed has a success rate of at least 90 percent are included in the 
Moderate Scenario. The “density” of the Moderate Scenario is 83 percent; i.e., Big+Deter-Mixed has a success rate of at least 
90 percent in 83 percent of the futures included in the scenario.
12  The numbers 1016 and 1152 refer to the order in which the futures were calculated during our runs.

Table 3.2
Summary of Measures in the Moderate Scenario (361 Futures)

Strategy

Maximum 
Adjusted  

Cost Regret  
($ Millions)

Maximum 
Success 

Regret (%)

Maximum 
Days to 

Completion 
Regret (When 
All Are 100% 
Successful)

Number 
with Zero 
Success 
Regret

Number 
with Zero 
Success 

and Cost 
Regret

Average 
Cost  

($ Millions)

Average 
Success 

(%)

Average 
Days to 

Completion 
(When All 
Are 100% 

Successful)

Baseline 44,776 36 162 186 38 34,526 91.3 104

Big-Cost 4,315 15 310 313 277 19,745 95.5 124

Big-Time 47,848 24 15 277 12 49,300 94.8 72

Big+Deter- 
Time 47,842 24 13 281 9 49,310 95.0 72

Big+Deter-
Mixed 47,849 18 16 323 17 48,934 95.9 72

Big+Deter/ 
GPS-Mixed 47,845 24 17 295 8 49,620 95.3 73

NOTES: Days to completion was calculated only for futures where all of the strategies were successful 100 percent 
of the time (172 futures). Shaded rows indicate the two best-performing strategies.
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In Future 1016 (labeled in the upper-left of Figure 3.5) the Big+Deter-Mixed strategy 
has its maximum regret; it fails in 18 percent of the future’s campaigns, whereas the Big-Cost 
strategy successfully completes all the campaigns.13 Future 1016 has security environment 21, 
which mirrors the past 20 years. The upper panel in Figure 3.6 compares the performance 
of the Big+Deter-Mixed and Big-Cost strategies over the progression of security conditions in 
this future. This security environment is characterized by several periods of relatively intense 
combat; Big+Deter-Mixed fails to complete combat in two of these periods. For example, the 
2022 period presents security condition E (multiple major regional) with two major regional 
campaigns. The model simulates each campaign 100 times. Big-Cost is successful in all 200, 
whereas Big+Deter-Mixed is successful in only half these campaigns. 

13  Future 1048 overlaps Future 1016 in Figure 3.5. It has the same security environment as Future 1016 and has similar 
uncertainties; thus the behavior and results of the two futures are very similar.

Figure 3.5
Days to Completion Regret, Success Regret, and Success Rates for the  
Big+Deter-Mixed Strategy for Each of the 361 Futures in the  
Moderate Scenario
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The lower panels of Figure 3.6 show some of the details that explain why in this future 
Big-Cost succeeds but Big-Deter-Mixed fails.14 The Big-Cost strategy usually purchases stand-
off PGMs that are about half the cost of the weapons purchased by Big+Deter-Mixed (see 
the bottom left of Figure 3.6; strategies that minimize time to completion tend to buy more 
expensive weapons). Both strategies have the same maximum funding available in each period, 
thus Big-Cost will tend to purchase about twice as many munitions. The bottom-right panel 
of Figure 3.6 shows that this purchase pattern can prove disastrous for Big+Deter-Mixed—it 
twice runs out of standoff PGMs completely and therefore is unable to successfully complete 
the campaign. In this future, Big+Deter-Mixed never has the funds or the time needed to build 
up its standoff PGM inventories to its goals. The intensity of conflict also prevents Big-Cost 
from reaching its goals in most periods, but in 2030 and 2032, it has managed to reach its 
goals, so its inventories of standoff PGMs level out.15

In Future 1152 (labeled near the bottom of Figure 3.5) Big+Deter-Mixed has zero success 
regret but high days to completion regret. This is a future in which Big-Cost fails in two cam-
paigns in the 2032 period where Big+Deter-Mixed is successful. Big-Cost fails in these futures 

14  Keeping a record of the parameters and variables generated by the models enables an after-the-simulation analysis. 
For example, quantities used of each weapons type are tracked for each campaign. This recordkeeping has a cost—a large 
number of variables must be recorded. Big+Deter-Mixed generated about 37 MB of data. However, this is a small cost rela-
tive to the computation time that would be needed to reproduce the data.
15  Big-Cost goes above its goals in 2016 and 2018 because there remain inventories of existing standoff PGMs that the 
strategy no longer purchases. These existing inventories are expended during the campaigns.

Figure 3.6
Case Study of Future 1016 Comparing Big+Deter-Mixed and Big-Cost Strategies

NOTES: Percentages in the table on the top of the figure indicate the percentage of simulated campaigns that 
were completed successfully. Cost per standoff PGM is the cost of weapons acquired at the beginning of each 
period (no acquisition in 2014). Remaining standoff PGMs is the number remaining at the end of the each period. 
RAND RR1112-3.6
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because its goals are too small to stock sufficient quantities of munitions. Big+Deter-Mixed 
has sufficient weapons to complete all campaigns in this future but does not complete them as 
quickly as several other strategies.16

Future 1152 has security environment 24, which starts off as benign but enters a period 
of deterrence that is broken by major regional campaign (i.e., two types of campaigns in each 
period). As shown in the top panel of Figure 3.7, both strategies succeed until the year 2032, 
during which Big-Cost fails whereas Big+Deter-Mixed is successful. The lower panels of Figure 
3.7 explain why. Big+Deter-Mixed increases its inventories of munitions throughout most of 
the future; however, it never reaches its full portfolio goals because the benign security envi-
ronments in the early years provide only modest levels of munitions funding. In contrast, Big-
Cost’s portfolio goals are much less costly, so it reaches them in 2020 and thereafter replaces 
only those weapons used during campaigns. In 2030, both strategies’ inventories similarly 
deplete their inventories of standoff PGMs, but this reduction is a relatively greater percentage 
for Big+Cost. In 2032, Big+Cost is able to return its inventories to its goals; however, the legacy 

16  Big+Deter-Mixed completes the campaigns in 88 days on average, whereas Big-Time and Big+Deter-Time complete the 
campaigns in 73 days and Big+Deter/GPS-Mixed completes the campaigns in 71 days. Therefore, Big+Deter-Mixed has a 
days to completion regret of 17 days.

Figure 3.7
Case Study of Future 1152 Comparing Big+Deter-Mixed and Big-Cost Strategies

NOTES: Percentages in the table on the top of the �gure indicate the percentage of simulated campaigns that 
were completed successfully. Remaining standoff PGMs is the number remaining at end of the each period. 
Percentage of portfolio goal is the minimum percentage across all munitions after acquisition at the beginning 
of the period.
RAND RR1112-3.7
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weapons remaining from the current baseline were mostly used in 2030,17 and the inventories 
are no longer sufficient to complete either campaign in 2032.

Performance of the Big+Deter-Mixed Strategy in the Extreme Scenario

This study also compared the six alternative strategies in the Extreme Scenario, which includes 
the 889 futures in which Big+Deter-Mixed generally has a success rate less than 90 percent. 
Table 3.3 summarizes the results. As in the Moderate Scenario, Big+Deter-Mixed and Big-Cost 
are the two dominant strategies. The relative performance of Big+Deter-Mixed compared to the 
other strategies is even better in the Extreme than in the Moderate Scenario. 

Overall, however, none of the alternative strategies considered in this analysis have suf-
ficiently high success rates in the Extreme Scenario. Larger, more costly weapons portfolios 
would clearly increase success rates in this scenario. In addition, future RDM analyses might 
consider other policy options, such as developing a surge capability in the munitions indus-
trial base or ensuring sufficient warning to increase munitions spending in advance of large 
campaigns. However, it is worth noting that the current analysis provides the valuable service 
of clearly delineating the types of futures beyond which the munitions mix strategies under 
consideration cease to perform well. 

Future Focus on Purchase Rules in Addition to Portfolio Goals

Most munitions mix analyses, including this one, focus on what we call here portfolio goals, 
which specify the desired number of weapons of each type policymakers aim to purchase. But 
as this analysis makes clear, the purchase rules, which specify the order in which munitions 

17  The Big-Cost strategy ran out of four legacy PGMs completely in 2030, which it does not purchase as part of its strategy: 
AGM-154 (Joint Standoff Weapon), AGM-158 (Joint Air-to-Surface Standoff Missile-ER [extended range]), BGM-109E 
(Tomahawk Land-Attack Missile), and MGM-168 ATACMS (Army Tactical Missile System).

Table 3.3
Summary of Measures in the Extreme Scenario (889 Futures)

Strategy

Maximum 
Adjusted Cost 

Regret  
($ Millions)

Maximum 
Success 

Regret (%)

Number 
with Zero 
Success 
Regret

Number 
with Zero 
Success 

and Cost 
Regret

Average 
Cost  

($ Millions)
Average 

Success (%)

Baseline 43,924 44 148 73 57,277 60

Big-Cost 0 43 341 341 31,483 61

Big-Time 58,646 21 505 86 69,243 67

Big+Deter-Time 58,802 20 524 57 69,261 67

Big+Deter-Mixed 56,117 16 761 278 68,419 70

Big+Deter/GPS-Mixed 58,853 20 579 54 69,495 68

NOTE: The shaded rows indicate the two best-performing strategies.
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will be replaced when the stockpile is depleted, may be at least as important in determining 
the success of any munitions mix strategy. In many futures, the Big+Deter-Mixed and Big-Cost 
strategies fail to complete campaigns, or fail to complete them quickly, because a series of ear-
lier campaigns have depleted stockpiles, leaving them poorly matched to the needs of the next 
conflict.

Future RDM analyses could usefully focus on a wider and more carefully tailored set 
of alternative purchase rules than those considered here. However, the current analysis is suf-
ficient to suggest some hypotheses regarding more successful purchasing rules. For instance, 
a step-wise purchasing strategy might prove promising. Such a strategy might initially, when 
faced with depleted inventories and limited funding, focus on purchasing economical weap-
ons, similar to those in the Big-Cost strategy. Such purchases would aim at inventories able to 
successfully complete campaigns, even if it took a long time to do so. As inventories and fund-
ing increased, the strategy could next focus on purchasing more expensive weapons that can 
complete campaigns quickly. As a simple first step toward modeling such a step-wise strategy, 
one might design a purchase rule that first invests toward the Big-Cost portfolio, and—once 
achieved—switch to another portfolio that buys pricier weapons that aim to minimize time. 
Such a strategy should, at a minimum, perform at least as well as the Big-Cost strategy. It would 
also make clear the tradeoffs between spending additional resources on more effective weapons 
in the present and the risk of spending additional resources fighting longer campaigns in the 
future.

Note that such a step-wise strategy would focus on achieving robustness adaptively, that 
is, successfully evolving over time in response to new information. It would also exemplify sev-
eral of Danzig’s recommendations for preparing for predictive failure. The strategy would delay 
some decisions until more funding is available, prioritize cost-effective standoff weapons that 
are adaptable to a variety of future contingences, and purchase more for the short term. Such a 
step-wise strategy would first invest to ensure success and then invest to reduce time, total costs 
of campaigns (including the costs from lengthening campaigns), and risk.
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CHAPTER FOUR

Conclusions

This initial application to the munitions mix challenge suggests that RDM can provide useful 
inputs to defense planning. The approach provides a systematic, detailed, quantitative means 
to plan defense investments while acknowledging the likelihood of predictive failure. RDM 
stress-tests plans over a wide range of plausible futures, suggests scenarios that illuminate the 
distinguishing characteristics of futures in which strategies do and do not meet their goals,  
and helps decision makers use this information to develop more robust plans and evaluate the 
tradeoffs among them. RDM can help identify and evaluate adaptive strategies, ones designed 
to evolve over time in response to new information. Danzig (2011), among others, faults DoD 
for an overreliance on prediction in its planning. He recommends robust and flexible strate-
gies as a response to the likelihood of predictive failure. Although RDM is not a substitute for 
DoD’s current reliance on scenario-based analysis, with its overconstraining set of assumptions, 
this research project suggests how this new approach could complement traditional analysis. 
Such synergy could not only provide DoD with a significantly broader set of alternative futures 
to evaluate but also enable analytical economy by focusing these more costly techniques on sce-
narios of highest interest. This initial application suggests that RDM could not only help DoD 
conduct the type of planning demonstrated here—evaluating and implementing resource-
focused strategies—but also conduct programmatic-, policy-, and operational-related analysis 
associated with PPBS,1 planning scenarios, and courses of action.

A Robust Munitions Mix Strategy

The findings in this report emerge from simplified models and unclassified data, so at best are 
suggestive rather than definitive. Nonetheless, this analysis finds that a munitions mix strategy 
that we call Big+Deter-Mixed is robust over a wide range of plausible futures. The following 
summary of this strategy and its performance may provide useful insights for current muni-
tions mix decisions and suggest more generally the types of information available from an 
RDM analysis.

The Big+Deter-Mixed strategy consists of a portfolio goal, which specifies the desired 
number of weapons of each type, and a purchase rule, which specifies the order in which 
munitions will be replaced when the stockpile is depleted. We constructed the portfolio goal 
by using a WoT optimization model to give the weapons mix that provides the best balance 

1  PPBS is DoD’s major decision making process, composed of planning, programming, and budgeting system. DonVito 
(1969). 
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between weapons’ acquisition cost and time to completion for two planning scenarios: (1) a 
deterrence campaign with a small number of targets accessible only to standoff weapons and 
(2) two back-to-back medium-size campaigns. We chose this set of planning scenarios through 
an iterative process of stress-testing strategies with portfolio goals derived from alternative sets 
of planning scenarios. Big+Deter-Mixed uses a purchase rule we call Replenishment, which 
restocks weapons inventories in proportion to shortages in the inventories. We considered two 
alternative purchase rules and chose replenishment as the superior one.

We stress-tested Big+Deter-Mixed and five alternative strategies over a wide range of 
futures that combine assumptions about both large-scale factors—alternative security environ-
ment with varying levels of severity—and small-scale factors—alternative values for param-
eters representing weapons effectiveness, adversary capabilities, and tactical decisions. We eval-
uate the strategies with three measures of performance: their ability to complete campaigns 
(success rate), the speed with which they complete campaigns (days to completion), and the 
total cost of acquiring and replenishing the weapons portfolio (cost).

A scenario discovery statistical cluster analysis, applied to the model-generated data-
base of thousands of futures, identified two important scenarios around which we organized 
our comparisons of the strategies. The Moderate Scenario contains those futures in which 
Big+Deter-Mixed has a generally high success rate (greater than 90 percent) and the Extreme 
Scenario contains those futures where Big+Deter-Mixed has a generally low success rate (less 
than 90 percent). The most important uncertainties distinguishing these two scenarios are 
the severity of the security environment and the effectiveness of GPS weapons. These two  
scenarios—Moderate and Extreme—suggest that with a high level of GPS effectiveness and in 
security environments up to the severity level of the last 20 years, Big+Deter-Mixed will have a 
generally high success rate over a wide range of assumptions about other uncertainties. If GPS 
effectiveness is low, the Big+Deter-Mixed strategy will have high success rates only in security 
environments about half as severe as those in the past 20 years.

Of the six strategies considered in this analysis, Big+Deter-Mixed is the most robust in 
both scenarios, in the sense that it performs better than the alternatives for each of the three 
measures—success rate, completion time, and cost—over a wide range of futures. A strategy 
called Big-Cost costs about a fourth of Big+Deter-Mixed in all futures, but in most futures (but 
not all), it has lower success rates and substantially longer completion times. 

Big+Deter-Mixed does have vulnerabilities, however. In the Moderate Scenario, Big+Deter-
Mixed completes campaigns in some futures significantly more slowly than in a strategy we call 
Big-Time, which costs about the same but stocks a larger number of expensive standoff weap-
ons. In these futures, Big-Time’s extra, high-performance PGMs make a critical difference. 
Somewhat surprisingly, Big+Deter-Mixed also has lower success rates in some futures than 
Big-Cost, which stocks primarily less-expensive weapons. In these futures, in which the United 
States fights a series of closely spaced conflicts, the replenishment purchase rule focuses too 
many resources on restocking expensive PGMs, so that Big+Deter-Mixed ’s munitions portfolio 
is misaligned with the needs of subsequent campaigns.

This vulnerability analysis suggests ways to adjust Big+Deter-Mixed ’s purchasing rule that 
might eliminate this vulnerability with respect to the Big-Cost strategy. However, the vulner-
ability analysis does not suggest ways to adjust Big+Deter-Mixed (other than spending more on 
munitions) to eliminate the vulnerability with respect to the Big-Time strategy.

In the Extreme Scenario, Big+Deter-Mixed generally performs better than the alternative 
strategies but has insufficiently high success rates, because the scenario’s campaigns require far 
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more weapons than contained in the stockpiles. To reduce these vulnerabilities, the United 
States could spend more on munitions or consider other policy options, such as developing a 
surge capability in the munitions industrial base or ensuring sufficient warning time to increase 
munitions spending well in advance of large campaigns.

The Future of RDM in Defense Planning

This initial application of RDM to the munitions mix challenge provides a proof of concept 
showing how RDM might be employed for defense planning, which was the research project’s 
overarching goal. This particular munitions mix application demonstrates that RDM can pro-
vide the types of analytic information DoD might find useful in identifying robust and flexible 
strategies that can achieve success despite predictive failure. 

Future RDM defense planning applications would need to address a number of challenges. 
First, to the extent that future RDM applications used models more complicated than 

those used in this study, they might need to draw on more powerful computational resources 
than we had available. The analysis here used relatively simple models with no classified data 
but still faced computational constraints. In particular, using complex models could take sev-
eral weeks to conduct each iteration of the analysis, which reduces the rate at which we could 
design and explore new strategies.2 DoD has access to more capable computational platforms, 
such as the defense computing resources (e.g., those of DoD’s High Performance Computing 
Modernization Program). Using more powerful computational resources could have two major 
benefits. First, it would shorten the time between developing a new strategy and conducting 
the model runs necessary to assess that strategy. Thus, a greater number of iterations could be 
run in a given amount of calendar time to develop strategies that are robust to vulnerabilities 
discovered in each iteration. Beyond just adding more iterations, it would allow the research 
team to interactively investigate more policy options and optimization approaches. Second, it 
would allow the models to assess a larger, more realistic variety of targets, weapons, delivery 
platforms, and operational and environmental conditions. However, as RDM is integrated 
into defense planning, the computational requirements may also increase as the models used 
become more complicated.

Second, future RDM applications might need to employ a wider set of models, beyond 
the types presently used in current DoD planning exercises. For instance, the importance of 
purchasing rules in the Moderate Scenario, and the demands of the Extreme Scenario, sug-
gest that in seeking robust strategies, an RDM munitions mix analysis might usefully consider 
policies that affect the munitions industrial base and logistics system, in addition to WoT cam-
paign models. As an example, a more comprehensive follow-on analysis might consider the 
effect of weapons and manufacturing technology, acquisition and testing, weapons industrial 
base opportunities and limitations, economies of scale in both purchase and delivery of muni-
tions, global redistribution of munitions, and integrated logistics during periods of conflict. 
Traditionally, the MRP employs only campaign models, so a more complete RDM analysis 

2  Running one strategy over 1,250 futures took about a week under ideal conditions (i.e., a dedicated core of a processor 
was available to process the strategy). However, computation time was much longer when the server was busy with other 
RAND projects.
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could call for a significant expansion of the elements of the full system considered in DoD’s 
munitions mix studies. 

Finally, integrating RDM into defense planning could raise a number of analytical oppor-
tunities. Initially at least, and perhaps as a permanent approach, RDM might be used as a pre-
cursor to, or in parallel with, traditional processes. For instance, RDM could stress-test muni-
tions mix strategies generated by the current MRP over a much wider range of futures and 
suggest new scenarios in which these strategies might be considered. In addition, RDM could 
provide guidelines for potential robust strategies, which could then be tested and fleshed out 
using traditional tools for defense planning. Such integration would raise important questions. 
For instance, RDM analyses that used more complicated models would involve and produce 
vast amounts of data—requiring means to make them transparent, traceable, and credible. 
Alternatively, RDM analyses with very simple models might serve as useful screening tools to 
situate more traditional, detailed analyses. Future research and experience might help clarify 
the situations in which RDM analyses might use simpler or more complicated models as part 
of overall, integrated planning processes.

Above and beyond these considerations of conducting and integrating different types of 
analysis, RDM might raise an issue of process and communication for DoD. For instance, 
RDM often stress-tests strategies until they break. This provides useful information, but DoD 
might have to employ security-sensitive procedures to internally and externally manage and 
communicate information regarding the vulnerabilities of their proposed policies. 

We recommend that RDM be used to initially supplement current defense planning. As 
RDM continues to validate itself in the national security analytical realm, as it has in infra-
structure planning, it can be better integrated into PPBS and deliberative planning activities. 
Shifting the defense planning processes to a more balanced approach, through the integra-
tion of RDM, would involve issues of adjustment, but we expect that RDM’s benefits will far 
exceed its costs—to the benefit of the Pentagon, the Congress, and the nation. RDM would 
improve defense planning by enabling DoD to examine its strategies, policies, plans, programs, 
and budgets over a wide range of futures, identify vulnerabilities, and design responses that 
reduce those vulnerabilities. This in turn would improve DoD’s ability to design and evalu-
ate robust and flexible strategies. RDM can help DoD more successfully achieve its goals in a 
world in which surprise and uncertainty are virtually certain to lead to predictive failure.
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APPENDIX A

The Weapons on Target Model

Introduction

This appendix overviews the WoT model and then describes WoT in functional terms, its key 
techniques and algorithms, its limitations and artificialities, its coding standards, its modes of 
operation, and its data file. 

Overview

WoT is a time-stepped Monte Carlo simulation of strike campaigns. It attempts to quickly 
achieve a user-specified objective (the destruction of a given fraction of a specified target set) 
within the limits of weapon inventories, weapon delivery rates, and the anti-access capabilities 
of adversaries. It does so using user-specified alternative strategies against high-priority targets 
and limits on weapon use such as constraints on collateral damage. 

Many tradeoffs are possible in the design of force-on-force models such as WoT. Speed 
and detail can be traded off against each other, as can transparency and validity. The RDM 
process requires a fast and transparent model (because of the large number of cases to be 
treated and because of the need to explain results). To illustrate its speed, when run on a laptop 
computer with trials entailing 6,280 targets having 25 priorities, WoT completed 100 trials in 
57 seconds. WoT provides a high level of transparency by relying on a few simple techniques 
and algorithms. It also features over a dozen “probes” that enable users to follow and under-
stand its operation. For example, one such probe allows users to follow day-by-day progress as 
campaigns proceed. Another probe illuminates the weapon selection process, and so on. 

WoT adheres to certain user-imposed rules and constraints. For example, users may 
impose a shoot-look-shoot strategy or a shoot-shoot-look strategy against high-value targets. 
As another example, users can constrain weapon use (perhaps by prohibiting the use of large 
“dumb” bombs against targets in urban areas). WoT has three modes of operation: normal, 
time-minimizing, and cost-minimizing. In its normal mode of operation, WoT seeks to kill 
prioritized targets as effectively as possible within the limits of weapon inventories, weapon 
delivery rates, and the previously described user-imposed rules and constraints. In its time-
minimizing mode, WoT identifies the weapon mix yielding the most rapid achievement of 
objectives subject to weapon delivery rate limits. In its cost-minimizing mode, WoT identifies 
the munitions mix yielding the lowest procurement-cost munitions mix with which objectives 
can be achieved.
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WoT imposes minimal constraints on users. In particular, it has no meaningful limit on 
the number of targets or target types, weapons or weapon types, means of weapon delivery, 
and so on.

WoT output includes the following:

• summary material describing scenarios, the mode of WoT operation employed, and the 
weaponeering tactic selected against high-priority targets

• a description of weapon delivery rate capabilities, in terms of surge and sustained rates
• a summary of the level of success achieved, including the overall average number of tar-

gets killed and the fraction of targets killed; WoT’s objective, also stated as a percentage 
of targets killed, is also provided

• weapon expenditures by weapon type, expressed as the mean and standard deviation of 
the number of weapons expended across all trials

• weapon costs by weapon type, expressed as the mean and standard deviation of the pro-
curement cost of weapons expended across all trials; total weapon procurement cost is 
also provided

• additional summary information, such as the cumulative probability of successful termi-
nation by day

• information generated during trials to facilitate testing and improve understanding of 
outcomes, including day-by-day activity and result summaries, progress in achieving 
user-specified subobjectives, planning processes, and weapon selection processes 

• outputs from “probes” described previously.

Techniques and Algorithms

Two key techniques in making WoT run efficiently are prioritization of targets in the WoT 
data set and the preprocessing of Pks. Target prioritization enables the efficient target selection 
process shown in Figure A.1. Preprocessing Pks enables the simple weapon selection process 
shown in Figure A.2. 

The so-called “greedy algorithm” and the Mersenne Twister are two key algorithms in 
WoT. Greedy algorithms follow the problem-solving heuristic of making the locally optimal 
choice at each stage with the hope of finding a global optimum. WoT uses the greedy algorithm 
for the prioritized target set in all modes of operation.1 Although greedy algorithms are gen-
erally very efficient means for finding optimal solution, they do not always do so. Sometimes 
they yield locally optimal solutions that approximate a global optimal solution in a reasonable 
time. The problem of mistaking a locally optimal solution (a “bump”) for a global optimal 
solution (a “peak”) was not seen in the WoT application when optimal solutions were found 
manually. More abstractly, the appropriateness of the greedy algorithm in minimizing cost or 
campaign time is illustrated by a simple thought experiment based on a simple question: Can 
the addition of an option (not forced) to use a weapon increase the minimum time or cost to 
complete a campaign? Such an option clearly cannot force an increase in the cost or time to 
complete a campaign because the option can be ignored. In the WoT application, the greedy 
algorithm resembles the steepest-edge method used in linear programming. Many organiza-

1  In its normal and time-minimizing modes of operation, WoT selects the usable weapon with the highest Pk against 
any given target. In its cost-minimizing mode, WoT selects the usable weapon with the highest ratio of Pk to unit cost (the 
weapon providing the most “bang for the buck”).
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tions, for instance the assessment branch of the Office of the Chief of Naval Operations, N-81, 
find the greedy algorithm an effective approach in their campaign analyses.

A high-quality pseudorandom number generator is critical to generating valid results in 
Monte Carlo simulations. The Mersenne Twister is currently regarded the current gold stan-
dard of pseudorandom number generators for Monte Carlo simulations.2 To illustrate, the 
period of a pseudorandom number generator is a simple indicator of its quality. The Mersenne 
Twister algorithm has a staggering period of 1.3 × 1090 samples. The Mersenne Twister also has 
the advantage of portability; results generated using a 32-bit Windows computer are identical 
to those generated on a 64-bit Apple Macintosh computer.

Limitations and Artificialities

Fleeting and dispersed targets were added late in the development of WoT. Testing against 
such targets using probes indicated no operational problems. However, problems were reported 
when optimizing weapon inventories against target sets including such targets. Project resource 
limitations prevented exploration of these reports, so WoT should not be used in its optimiza-
tion modes against target sets including fleeting or dispersed targets.

2  See University of Michigan (undated).

Figure A.1
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In its cost-minimizing mode, WoT identifies the weapon mix with the least procurement 
cost capable of meeting scenario requirements. This process was recognized as suboptimiza-
tion; it would be better to identify the weapon mix with the lowest total warfighting cost 
capable of meeting scenario requirements. A process for identifying such a weapon mix was 
developed, but project resource limitations prevented its implementation.

The greatest artificiality of WoT is in its treatment of adversary air defense systems. Rather 
than rolling back air defenses and progressively exposing targets to attack, WoT treats air 
defenses in an all-or-nothing manner. In principle, such treatment could be avoided by simply 
associating targets with the defense systems protecting them and allowing the target to be struck 
freely when all such defensive systems have been killed. However, such detailed modeling lies 
beyond the scope of this project. The effects of this artificiality can be reduced by describing 
the expected air defenses that must be killed to achieve a semi-permissive environment.

Lack of reconstitution capabilities for Red is another artificiality in WoT. Reconstitution 
capabilities could be added with data describing reconstitution rates.

WoT does not treat Blue attrition. Blue losses are not counted, and sustained weapon 
delivery capacities do not degrade over the course of conflicts. Implementing Blue losses was 
determined to be beyond the scope of this project, but a placeholder method that could be used 
to implement Blue losses was built into WoT.

Perfect bomb damage assessment (BDA) is the last noted artificiality in WoT. Targets are 
determined to have been killed if and only if they have actually been killed. The simulation of 
imperfect BDA is thorny both for failure to recognize that a target has been killed or the false 

Figure A.2
Weapon and Target Pairing in WoT
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belief that a target has been killed. At present, the best way to incorporate the effects of imper-
fect BDA is a “tax” on Pks to increase weapon expenditures.

Functional Description

WoT is described here functionally in terms of overall organization, initialization, operation, 
and termination.

Organization

WoT is organized simply using just three methods (essentially subroutines):

1. a method for starting up the model
2. a method for executing trials, generating intermediate results, and outputting final 

results
3. a method for shutting down the model.

WoT Initialization

Initialization of WoT on startup begins by priming a pseudorandom number generator  
with fixed seeds. This assures that its results are reproducible. WoT then opens the input file 
“WoT.dat” determining the name for an output file to be used by Analytica, the name of the 
scenario (which can include material used by Analytica), and possibly other files used for test-
ing or special purposes. One such special purpose is determining the weapon mix with mini-
mum procurement cost—here WoT opens the file “OptWpns.dat” into which it will write that 
optimum weapon mix. Another special purpose is enabling the user to rerun cases of interest—
here WoT opens the file “seed.log” so that a trial of interest can be recreated using the original 
seeds for the pseudorandom number generator to reproduce and examine previous results.

Operation

Operation begins with trial setup, preprocessing weapon effectiveness data, trial initialization, 
daily operations, and trial termination.

Trial Setup

Trial execution begins by setting up the scenario for the trial. This entails the following steps:

1. Determine the initial permissiveness and the requirement to achieve a permissive envi-
ronment in the event that the initial environment is nonpermissive.

2. Determine the maximum number of days a scenario simulation will be allowed to run 
and the number of Monte Carlo trials to be conducted.

3. Determine a weapon rule to be used in deciding on the number of weapons to be allo-
cated against high-priority targets by level of permissiveness. The choices are (a) use a 
single weapon, (b) use a pair of weapons to more quickly defeat air defenses, and (c) use 
as many weapons as needed to achieve 95 percent confidence that air defense targets 
will be killed.

4. Determine weapon groupings. The weapon group construct is used to capture the 
idea of competition for delivery resources. It also captures the idea of independence 
among delivery resources. For example, there is competition among gravity weapons 
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for aircraft. On the other hand, the number of surface-to-surface weapons that can be 
launched in a given day is independent of the number of strike sorties that can be gen-
erated on that day

5. Set surge and sustained rates, which are described by weapon group using the number 
of surge days possible, the surge delivery rate, and the sustained delivery rate. For some 
weapon systems, such as Tomahawk land attack missiles, surge rate is not applicable. 
Surge and sustained rates are set equal for such weapon systems.

6. Set the number of distinct types of weapons, the number of weapons of each type avail-
able at the outset of the scenario, the permissiveness condition under which a given 
weapon type is usable, and the weapon group to which an individual weapon belongs.

7. Define holders for intermediate and end results. For example, holders for the mean and 
standard deviation of weapons expended are defined by weapon type.

8. Define the terms needed for preprocessing data (described below).
9. Define the terms needed to characterize individual targets. For example, targets are 

characterized by priority, as live or killed, distributed, and so on.
10. Read user-defined Pks for each weapon against each target type as well as the unit cost 

of each weapon.3

11. Compute the cost-effectiveness of each weapon against each target type. Cost- 
effectiveness against a given target type is computed as Pk divided by unit cost. Weapon 
cost-effectiveness will be used only in WoT’s cost-minimization mode.

12. Read target priorities by type and assign priorities to individual targets.

Preprocessing Weapon Effectiveness Data

Following initial setup of the scenario, WoT preprocesses inputs to speed up weapon selection. 
In its normal or time-minimizing modes, WoT attempts to use weapons with the highest Pk 
against each target. In its cost-minimizing mode, WoT attempts to use the most cost-effective 
weapon against each target. Pk values and cost-effectiveness scores are sorted accordingly. This 
gives WoT a prioritized list of weapons for use against each target type according to its mode 
of operation.

Trial Initialization

Following preprocessing, metrics that crosscut trials are initialized. For example, total weapon 
procurement cost is initialized to 0; it is incremented as trials are completed. 

Daily Operations

WoT makes certain determinations at the outset of each day. Have any scheduled replenish-
ments arrived? Are any surviving fleeting targets exposed? If a fleeting target has just become 
vulnerable, how long will it remain so? With these determinations, a strike plan is generated 
and strikes are conducted accordingly. At the end of each day of operation, BDA is conducted 
to determine stochastically which engaged targets were killed in the previous day and which 
targets survived. After completing BDA, a status assessment is performed. Have priorities been 
achieved? If initial conditions were nonpermissive, are conditions now permissive? 

3  Users can assign Pks to prevent inappropriate weapon use. For example, a weapon that would create unacceptable col-
lateral damage against a given target type can be assigned a Pk of 0 against that target type. As another example, a weapon 
that represents overkill against a given target could in turn be assigned a Pk of 0 against that target type.
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WoT, in its normal mode of operation, begins with the highest-priority targets and assigns 
the highest Pk usable weapon against each of them. A weapon is declared usable if (1) there 
is delivery capacity for it, (2) the weapon can be used in the current permissiveness environ-
ment, and (3) WoT has not been forbidden to use the weapon against the target.4 Strikes are 
conducted daily with each day’s strikes followed by BDA. The process of striking targets by 
priority is illustrated in Figure A.1, which illustrates the simple case of ten targets and a weapon 
delivery rate limited to four weapons per day.

WoT normally selects weapons according to their probability of kill. Choices are made 
within the constraints of weapon inventories, usability, and the availability of means of deliv-
ery. This process is illustrated in Figure A.2. WoT first decides if a preferred weapon is avail-
able. If it is not, it moves on to its next-preferred weapon. If a weapon is available, WoT tests for 
its usability. As noted previously, an available weapon is declared usable if (1) there is delivery 
capacity for it, (2) the weapon can be used in the current permissiveness environment, and (3) 
WoT has not been forbidden to use the weapon against the target. Hence, weapon selection is 
done by order of preference against the target of interest with the requirement that there is at 
least one weapon remaining in the portfolio, that there is means to deliver the weapon, that the 
weapon can be used in the current permissiveness environment, and that the use of the weapon 
against the target of interest is acceptable to the user.

Trial Termination

Trials are terminated when user-specified objectives have been achieved or when WoT deter-
mines that those objectives are unachievable. As an example of the latter determination, WoT 
will terminate when all weapon inventories have been exhausted or when all remaining weap-
ons are unusable against a live target that must be killed to meet user-specified requirements. 

Run Termination

WoT executes a user-specified number of trials for each case. WoT prepares and outputs final 
results when those trials have been completed.

WoT Data Files

A short sample WoT data file is provided in Figure A.3. Line numbers in the example have 
been added for clarity; line numbers are not present in actual data files. 

A line-by-line description of the data file is now provided to explain WoT setup and to 
provide insights into the operation of WoT.

Line 1. This is a scenario description. It can be arbitrarily long. For this sample data file, 
WoT would designate the scenario “Sample Short Data File.”

Line 2. This is a 0/1 Boolean entry indicating whether the scenario is initially considered 
permissive. Low-level conflicts are examples of initially permissive scenarios. Conflicts with 
adversaries having strong anti-access/area denial capabilities are examples of initially nonper-
missive scenarios. The sample data file indicates an initially nonpermissive environment.

4  For example, weapon use against certain types of targets can be forbidden because their use would cause unacceptable 
collateral damage or because they represent “overkill.” Setting the weapon’s Pk against the target to 0 signals forbidden use. 
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Figure A.3
A Sample WoT Data File

1  Sample Short Data File
2  1
3  1
4  100
5  100.0
6  200
7  1
8  2
9  0       2       100     50
10  1       999     100     100
11  2
12  85      0.130   0       0
13  10      1.447   0       0
14  999
15  10
16  10
17  4
18  4 1     0 0      0
19  8 2     0 0      0
20  12 3    0 0      8
21  16 4    0 0      0
22  0       0.33 0.50
23  1       0.52 0.50
24  2       0.31 0.35
25  3       0.34 0.34

Line 3. This indicates the target priority level for achieving permissive conditions. In this 
example, only the highest-priority targets must be killed to achieve permissive conditions.

Line 4. This indicates the maximum number of days (here 100) that trials will be allowed 
to run. In addition to allowing users to impose a time limit on campaigns, this input serves as 
a guard against runaway trials that WoT for some reason cannot terminate. Such trials were 
eliminated in testing.

Line 5. This indicates the required percentage of targets to be killed for success. It is used, 
as will be discussed below, to temper the effects of all-or-nothing anti-access capabilities for 
the adversary.

Line 6. This is the number of trials to be conducted.
Line 7. This specifies a strategy for assigning weapons against high-priority (anti-access 

system) targets. Here, the entry 1 indicates the use of a shoot-look-shoot strategy with high-
priority targets struck using a single weapon followed by BDA. The entry 2 indicates a shoot-
shoot-look strategy in which high-priority targets are struck with two weapons before con-
ducting BDA. This strategy accelerates the achievement of permissive conditions at the cost of 
increased use of the most capable weapons. The entry 3 indicates a strategy against difficult-to-
kill high-priority targets in which weapons are assigned until a 95 percent probability of kill is 
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achieved. This strategy can accelerate the achievement of permissive conditions more than the 
shoot-shoot-look strategy—at a higher cost in the use of the most capable weapons.

Line 8. This is the number of weapon groups to be used. A simple weapon grouping might 
use two weapon groups: surface-to-surface missiles and air-delivered weapons. A more sophis-
ticated grouping might organize weapons into surface-to-surface missiles, those delivered by 
bombers, and those delivered by fighter/attack aircraft. Without weapon groups (i.e., using 
an all-encompassing weapon delivery rate), we would have such anomalies as the inability to 
launch a JDAM because the weapon delivery rate was exhausted by TLAMs. Put another way, 
weapon groups allow for independence in the use of weapons with differing means of delivery.

Lines 9 and 10. Weapon groups are characterized by weapon delivery rates in surge and 
sustained operations. These lines indicate the duration of surge operations and the number 
of weapons per day in surge and sustained operations. In this example, there are two weapon 
groups with the first group able to surge for two days with a surge rate of 100 weapons per day 
followed by a sustained rate of 50 weapons per day. The second group in this example is able to 
deliver 100 weapons per day under all conditions. It might reflect surface-to-surface missiles, 
to which the surge concept does not apply. 

Line 11. This is simply the number of types of weapons. In this simple example, there are 
only two types of weapons.

Lines 12 and 13. These lines describe the two types of weapons specified above. The ini-
tial number of weapons in the portfolio, weapon unit cost, usability in nonpermissive environ-
ments, and the weapon group associated with the weapon are specified.

Line 14. This is the frequency with which resupply is conducted. The value 999 entered 
into data assures that there will be no resupply in campaigns that cannot extend beyond 100 
days.

Lines 15 and 16. These lines reflect the number of weapons of both types added to the 
portfolio when replenishment occurs (ignoring the fact that with replenishment scheduled 
every 999 days, there will be no replenishment).

Line 17. This line identifies the number of distinct target types in the target set.
Lines 18–21. Each of these lines characterizes the targets of a given type in the target set. 

The first entry specifies the number of targets of the specified type. The second entry specifies 
the priority of the target type. The next two entries are used to characterize fleeting and distrib-
uted targets. Fleeting targets are characterized by the mean time between periods of exposure 
and the duration of periods of exposure. Distributed targets are characterized by their number 
of designated mean points of impact (DMPIs): Point targets can be identified as having 0 or 
1 DMPI. To illustrate, line 20 (“12 3  0 0   8”) indicates that there are 12 targets of this type, 
they are third in priority, they are not fleeting, but are dispersed with 8 DMPIs.

Lines 22–25. The last lines of the WoT data set specify weapon Pks for target/weapon 
pairs. Thought of as a table, each row reflects a target type and each column reflects a weapon 
type. As noted above, weapon use against a set target type can be prohibited by setting the 
associated Pk to 0.

The WoT Header File

WoT uses a single so-called header file, “WoT.h,” to define the objects (such as weapons and 
targets) in WoT. The header file is used to set the mode of operation, with instructions for 
doing so in the header file. The header file can also be used to activate and deactivate probes 
that can be used for testing and increasing transparency.
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Coding Standard

WoT is written in the 2003 version of ANSI-standard C++. The 2003 standard was selected 
for portability; it was thought possible that some users’ systems might not have the most recent 
(2011) C++ compiler. Also, little coding advantage was seen in the most recent standard for 
this application. DoD coding standards were used to develop WoT.

WoT has eight points of internal self-testing. For example, WoT checks to see if targets 
have been entered in priority order. If not, an error message indicates the problem and its loca-
tion. WoT always terminates when it detects an error so that such errors cannot be ignored. 
WoT also uses a belt-and-suspenders approach in some areas with results computed by two 
separate means using different inputs. Failure to agree between the two processes would signal 
a problem.

Naming conventions were carefully developed and rigidly enforced in WoT. For exam-
ple, weapon expenditures are tracked by weapon type using the variables “SumWpnsXpnd-
Type” and “Sum2WpnsXpndType” to represent the sum of weapons expended and the sum of 
squares of the number of weapons expended.

WoT has thorough internal documentation describing and explaining code and even 
indicating possible code modifications. To illustrate, the method for planning strikes has over 
200 lines, equating to over five pages, of internal documentation

As indicated above, WoT was tested across a variety of Windows, Unix, Linux, and 
Macintosh computers. It was tested using two C++ compilers for Windows and two C++ com-
pilers for Macintosh computers. No code modifications were found to be needed to port the 
code from one machine to another, and results were identical across all machines.

Finally, WoT was strenuously tested across thousands of machine-generated cases with no 
inexplicable results reported.
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APPENDIX B

Experimental Design

As with many RDM exercises, this project employed an XLRM framework to help guide 
model development and data gathering. In addition, the RDM analysis’s participatory scoping 
step—organizing discussions within the project team and with the project sponsor—relied 
heavily on this framework. XLRM proves useful because it helps organize relevant factors into 
the components of a decision-centric analysis. 

The letters X, L, R, and M refer to four categories of factors important to an RDM 
analysis: 

• Exogenous uncertainties (X) are factors outside decision makers’ control, such as the 
future security environment, funding levels, and the adversary’s capabilities that influence 
the ability of a munitions mix strategy to achieve military goals.

• Policy levers (L) are near-term actions that decision makers want to consider—in this 
case the initial munitions mix and how munitions stockpiles will be replenished over 
time.

• Relationships (R), generally represented by simulation models, describe how the policy 
levers perform, as measured by the metrics, under the various uncertainties.

• Metrics (M) are the performance standards used to evaluate whether or not a choice of 
policy levers achieves decision makers’ goals.

In essence, RDM compares the performance of alternative combinations of policy levers, 
as evaluated by the metrics, over a wide range of uncertain futures using the relationships or 
models. 

This appendix is organized around this XLRM framework, as summarized in Table 2.1.  
It first describes the simulation models, the relationships (R), used in this study. It then 
describes the specific metrics (M) used to judge the effectiveness of alternative munitions mix 
strategies, the policy levers (L) that constitute the specific munitions mix strategies considered 
in this study, and the exogenous uncertain factors (X) that might affect the performance of 
these strategies. 

Relationships (R): Models

This project uses a WoT model, which is a fast-running emulator of the more detailed cam-
paign models currently used by CAPE. This model is described in detail in Appendix A. As 
shown in Figure 2.4, we combine this model with a CG, in Analytica, that creates a series of 
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campaigns for the WoT model. We summarize the models here and describe them in detail 
below.

The WoT model is the workhorse of the simulation process. It simulates activities in each 
campaign, day-to-day. It orders targets by their priority and each day matches the most effec-
tive weapons for the highest-priority targets, within a number of constraints.1 The WoT model 
determines whether a target is destroyed by drawing a pseudorandom number between 0 and 
1 and comparing it to the Pk for the combination of weapon and target chosen.2 WoT runs 
the simulation multiple times (100 times in our simulations) and reports a number of results 
(e.g., the percentage of the simulated campaigns that were successful, the 95th percentile day 
the campaign was completed, and the 95th percentile number of each weapon expended). The 
CG, which is modeled in Analytica, is represented by the diagram in Figure B.1. The purpose 
of the CG is to model the dynamic aspects of the munitions planning process. For each two-
year period, the CG reads the security environment and conflict characters (uncertain inputs 
provided to the CG for each period of the simulation) and identifies which campaigns will 
occur in that period. It then constructs the input files for each campaign. 

Construction of most of the WoT inputs is mechanistic. For example, appropriate targets 
sets and Pk values are selected based on each type of campaign and may be modified according 
to the uncertainties provided as inputs. The key to the CG is the generation of weapons inven-
tories. “Munitions Acquisition” acquires weapons based on available funding (“Defense Fund-
ing Level” is set based on the severity of the conflict character in the previous period) and the 
“Policy Levers” (described below) that dictate the rules for acquiring weapons. In addition to 
gaining weapons in inventories (“Global Munitions”), the CG accounts for weapons expended 
in previous campaigns. “Tactical Outcomes” serves as a function that constructs the final WoT 

1  For example, the campaign may be nonpermissive until a certain group of targets is destroyed. In a nonpermissive envi-
ronment, only a subset of weapons can be used.
2  Some targets consist of multiple DMPIs. For these targets, every DMPI needs to be destroyed before the entire target is 
destroyed.

Figure B.1
Schematic of Campaign Generator in Analytica
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input data, runs the WoT model, and generates an output from the WoT model that includes 
the updated munitions inventories.

To interface the CG with WoT, we wrote parser functions (in C++ and Java) that trans-
form the WoT inputs from Analytica’s output format into the proper format for WoT.3 The 
parser functions execute the WoT model and transform WoT’s outputs. Metrics (M) concern-
ing the cost and success of that period’s campaigns are stored in an Excel file, and outputs 
describing the remaining inventories are passed back to the CG so that it can determine inven-
tories for future periods. 

Measures (M)

We consider three measures for the performance of the munitions mix strategies:

1. the cost of munitions purchases over a 20-year time period
2. the total time needed to complete all campaigns
3. the percentage of campaigns that are successfully completed.

For each of these measures, we also considered regret calculations. For the total time 
needed to complete all campaigns and the percentage of campaigns that are successfully com-
pleted, regret for a specific case is the difference between a particular strategy’s value of the 
metric and the best value of the metric across all strategies. For the cost of munitions, regret for 
a case is the difference between the cost of a particular strategy and the lowest cost of a strategy 
that has at least the same level of success (measured in metric 3).

Metric 3, the success rate, is the most important metric overall because it measures the 
ultimate goal of munitions purchases—to be successful in contingencies. Metrics 1 and 2 (cost 
and time) are both inputs that contribute to success. Decision makers would prefer to mini-
mize both, but greater cost and greater time both contribute to greater success.

In the second round of runs, we also focused on a metric called “Total Cost” that com-
bined cost and the time. We estimated that the cost of an additional day to complete a cam-
paign was about 20 times the average cost of daily munitions expenditures.

Policy Levers (L)—First Round

The first round of the study considers three alternative munitions acquisitions strategies that 
vary across two dimensions. 

We consider two sets of rules by which munitions acquisitions build inventories over time:

1. Stockpile (Stock)—the government spends all available funds on purchasing new muni-
tions. Purchases are in proportion to portfolio goals.

2. Replenishment (Rpln)—the government uses available funding to return munitions 
stockpiles to their “optimal” levels. If insufficient funds are available for total replen-

3  In addition, the parser updates some parameters based on uncertainties. For example, Analytica was very slow to update 
Pk values based on uncertainties, so the update was moved to the parser so that simulations could be conducted at an accept-
able speed.
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ishment, the government spends funds in proportion to the shortages from portfolio 
goals.4

We consider three portfolio goals toward which these rules acquire. Two of these port-
folio goals have both time and cost-minimized variants, resulting in five total portfolio goals.

a) Original portfolio (Base)—the goal is to purchase the same portfolio mix that initially 
existed.

b) Big Wars (Big)—the goal is to purchase a portfolio mix optimized for two consecutive 
major regional campaigns: 

a) Time-minimized
b) Cost-minimized

c) Small War (Small)—the goal is to purchase a portfolio mix optimized for one major 
regional and COIN campaign

a) Time-minimized
b) Cost-minimized.

The combination of these two rules and three goals results in ten strategies:

1. Stockpile—original portfolio (Base-Stock): Spend all available funds on new weapons to 
build stockpile with same weapons proportions as in the original portfolio.

2. Stockpile—Big Wars—time-optimized (Big-Time-Stock): Spend all available funds on 
new weapons to build stockpile with same weapons proportions as in the time-optimized 
Big Wars portfolio.

3. Stockpile—Big Wars—cost-optimized (Big-Cost-Stock): Spend all available funds on 
new weapons to build stockpile with same weapons proportions as in the cost-optimized 
Big Wars portfolio.

4. Stockpile—Small War—time-optimized (Small-Time-Stock): Spend all available funds 
on new weapons to build stockpile with same weapons proportions as in the time- 
optimized Small War portfolio.

5. Stockpile—Small War—cost-optimized (Small-Cost-Stock): Spend all available funds 
on new weapons to build stockpile with same weapons proportions as in the cost- 
optimized Small War portfolio.

6. Replenishment—original portfolio (Base-Rpln): Purchase new weapons to return inven-
tories to original numbers.

7. Replenishment—Big Wars—time-optimized (Big-Time-Rpln): Purchase new weapons 
to bring inventories at least as high as in the time-optimized Big Wars portfolio.

8. Replenishment—Big Wars—cost-optimized (Big-Cost-Rpln): Purchase new weapons to 
bring inventories at least as high as in the cost-optimized Big Wars portfolio.

9. Replenishment—Small War—time-optimized (Small-Time-Rpln): Purchase new weap-
ons to bring inventories at least as high as in the time-optimized Small War portfolio.

10. Replenishment—Small War—cost-optimized (Small-Cost-Rpln): Purchase new weap-
ons to bring inventories at least as high as in the time-optimized Small War portfolio.

4  Initial inventories of weapons may exceed the optimal portfolio goals. When this happens, the replenishment strategy 
will keep those excess weapons but not purchase any additional.
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To determine the time-optimal munitions mixes for the replenishment strategies, the 
WoT model includes a mode that attempts to minimize the time of campaign using a “greedy” 
algorithm. This algorithm is unconstrained by weapons inventories. Instead, in each period, 
it matches targets to the most effective weapons, regardless of cost or inventories. When the 
campaign is complete, it reports the average weapons used, which is the “optimal” portfolio to 
minimize time.

We also developed a mode in WoT that attempts to minimize weapons cost. It does this 
using a greedy algorithm that selects the most cost-effective weapons (highest Pk per dollar 
spent). The cost-minimization mode splits each campaign into two portions—the nonpermis-
sive portion, in which only standoff weapons can be used, and the permissive portion, in which 
any weapon can be used. In the nonpermissive portion, WoT selects only targets that must be 
destroyed before the campaign becomes permissive, and WoT chooses cost-effective standoff 
weapons. In the permissive portion, WoT targets the remaining targets and mostly chooses 
cost-effective nonstandoff weapons, since they are much more cost-effective than standoff 
weapons.

The optimization process includes a number of assumptions that affect optimal inventories:

1. The optimization uses best guesses for weapons and targets data (e.g., Pk values). These 
best guesses do not account for uncertainties (see below) that change these values during 
the RDM process.

2. However, the optimization assumes that 100 percent of targets need to be destroyed, 
whereas the best guess is 80 percent (and a range of 60 to 100 percent).

3. The optimization process uses 1,000 trials, whereas campaigns in the RDM process use 
only 100 trials.

4. The optimization process assumes that WoT uses one weapon per target.5
5. The optimization allows any completion time, even if it is above the 200 days allowed 

in our later analysis. 

We specify two sets of expected campaigns for determining optimal weapons portfolio 
requirements. The campaigns used to define munitions mixes are the following:

1. Big War, with two nearly simultaneous, medium-size conflicts (i.e., two major regional 
campaigns).

2. Small War, with prolonged irregular campaigns punctuated by numerous precision 
strikes (i.e., one major regional and COIN campaign).

We initially considered choosing both a risk averse portfolio level (where we have 90 per-
cent confidence that the portfolio would be successful against our expected campaign(s)) and 
a risk tolerant portfolio level (where we have a 50 percent confidence that the portfolio would 
be successful). However, during initial development of the strategies, we found that the differ-
ences in the inventories for risk averse and risk tolerant was very small—usually less than a 1 
percent difference and always less than 2 percent. We decided that given such small differences, 
it was unlikely that decision makers would accept any risk. Instead, we decided to use a single, 

5  Other modes have been developed in WoT that can use multiple weapons per target, but they have not been imple-
mented in this analysis.
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risk averse portfolio with a 5 percent buffer above the optimal portfolio level. This 5 percent 
buffer ensures that the portfolio will always be successful against the expected campaign(s).6

Table B.1 shows the five weapons goals used in the first round of the analysis. Big-Time 
uses time minimization to plan for Big Wars. Small-Time uses time minimization to plan 
for a Small War. Big-Cost uses cost minimization to plan for Big Wars. Small-Cost uses cost 
minimization to plan for a Small War. Finally, Baseline gives our initial estimates of current 
inventories. Each optimized goal contains nonzero inventories for only a handful of weap-
ons. Because they were developed with a goal of minimizing the time of campaigns, time- 
minimized inventories tend to be highly effective weapons that can be used in nonpermissive 
environments. Because time optimization ignores cost considerations, time-minimized inven-
tories also tend to be expensive (e.g., both Big-Time and Small-Time require many massive 
ordnance penetrators—MOPs). Big-Cost also purchases standoff weapons because these are 
necessary in the nonpermissive phase of the Big Wars. However, it buys many fewer than even 
the Small-Time portfolio goals. Although the time-minimized inventories bought few, if any, 
nonstandoff weapons, the cost-minimized inventories are heavy in nonstandoff weapons since 
they are so inexpensive.

Policy Levers (L)—Second Round

In successive rounds of RDM analysis, strategies are reevaluated to try to improve on the per-
formance of strategies from previous rounds. After seeing the results of the first round and dis-
cussing the results within the project team and with the sponsor, we decided on several changes 
in strategies for the second round:

• Elimination of stockpile strategies. Stockpile strategies rarely resulted in substantial 
improvements in performance over replenishment strategies, but usually cost a lot more. 
In addition, stockpile strategies were seen as unrealistic, since it would be politically dif-
ficult to buy more than the portfolio goals.

• Addition of “previous expenditure” strategies. This strategy purchases weapons in 
proportion to how many were expended during campaigns in the previous period. The 
previous expenditure strategy was implemented in the CG but not in time to analyze it and 
validate it during the project. Initial results appear similar to the replenishment strategy.

• Elimination of Small War goals. Small War strategies were very unsuccessful in the 
first round. Their inventories were too small to be successful against larger wars, and the 
Small War was always permissive, so weapons inventories geared to the Small War had 
inadequate standoff weapons. 

• Consideration of deterrence campaigns in portfolio optimization. A weakness of the 
first-round strategies was in deterrence campaigns. Although these campaigns are rela-
tively small, they rely on high-end weapons.

• Consideration of total cost. Previous portfolio goals attempted to minimize either cost 
or time. New goals attempt to minimize total cost—a combination of cost and time 
minimization.

6  The optimal inventories are based on the average weapons used; therefore, about half the campaigns would run out of 
weapons without a buffer.
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Table B.1
Portfolio Goals Used in First Phase Strategies

ID           Weapon Big-Time Small-Time Big-Cost Small-Cost Baseline

W00 AGM-130C (BLU 109) 7,088 0 0 0 250

W01 AGM-130A (Mk 84) 40,709 564 886 0 250

W02 AGM-154 (JSOW) 27,430 8,174 2,104 0 24,000

W03 AGM-158 (JASSM-ER) 3,944 0 0 0 2,400

W04 AGM-64 (Maverick) 2 0 6,292 6,301 40,000

W05 AGM-84H (SLAM/ER) 0 0 0 0 6,000

W06 AGM-86 (CALCM) 0 0 0 0 1,100

W07 AGM-88E (HARM/AARGM) 0 0 935 0 19,000

W08 BGM-109E (TLAM) 2,787 502 0 0 2,000

W09 GBU-10 Paveway II (BLU 109) 0 0 2,144 0 5,500

W10 GBU-10 Paveway II (Mk 84) 0 0 13,123 0 5,500

W11 GBU-12 (Paveway II) 0 0 17,850 3,152 32,000

W12 GBU-15 (BLU-109) 0 200 0 0 1,400

W13 GBU-15 (Mk 84) 0 0 5,019 664 1,400

W14 GBU-24 Paveway III (BLU-109) 0 0 0 0 4,300

W15 GBU-24 Paveway III (BLU-116) 0 0 2,098 1,889 4,300

W16 GBU-24 Paveway III (Mk 84) 0 0 2,627 0 4,300

W17 GBU-28 Bunker Buster 0 0 0 0 300

W18 GBU-31 JDAM (2,000 lb) 0 158 0 0 29,200

W19 GBU-32 JDAM (1,000 lb) 0 0 0 0 29,200

W20 GBU-36/37 (GAM) 21,758 0 42,011 0 10

W21 GBU-38 JDAM (500 lb) 0 441 0 0 29,200

W22 GBU-39 SDB 0 0 0 2,522 24,000

W23 GBU-53B SDB II 0 0 0 0 17,000

W24 GBU-54 (Laser JDAM) 0 0 8,528 1,846 240,000

W25 GBU-57B MOP 1,905 351 0 0 20

W26 MGM-168 ATACMS 3,037 345 0 0 2,000

W27 Mk-82 0 0 0 0 500,000

W28 Mk-83 0 0 12,604 3,154 500,000

W29 Mk-84 510 0 9,458 0 500,000

Total cost ($ billions) $66.7 $8.7 $14.4 $1.3 $73.1

NOTE: Shading indicates that the weapon is a standoff (PGM) weapon.

• Addition of goals that are robust to GPS degradation. The first round of analysis 
revealed that GPS degradation was a key determinant of success.

In the second round of analysis, we consider two sets of rules by which munitions acquisi-
tions build inventories over time:
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1. Replenishment (Rpln)—the government uses available funding to return munitions 
stockpiles to their “optimal” levels. If insufficient funds are available for total replenish-
ment, the government spends funds in proportion to the shortages from portfolio goals.

2. Previous expenditure (Prev)—the government uses available funding to purchase weap-
ons in proportion to their expenditure in the previous period. Munitions are purchased 
up until the stockpiles are returned to “optimal” portfolio goals. 

If funding is sufficient to purchase enough munitions to return to the optimal portfo-
lio goals, both replenishment and previous expenditure are equivalent—they fully restore the 
stockpile to its desired level. However, if funding is not sufficient to return to the portfolio 
goals, the two rules will purchase different shares of weapons.

We consider six portfolio goals, which represent the ideal stockpiles toward which these 
rules build. Three of these portfolio goals are carried over from the first round, and three are 
attempts to minimize total costs through linear combinations of time-minimized and cost-
minimized inventories.7

a) Original portfolio (Baseline)—the goal is to purchase the same portfolio mix that ini-
tially existed (same as first round)

b) Big Wars (Big)—the goal is to purchase an portfolio mix optimized for two consecutive 
major regional campaigns (same as first round)

a) Time-minimized
b) Cost-minimized

c) Total cost-minimization, Big Wars, and deterrence (Big+Deter-Time)—a combination 
designed to minimize total costs (i.e., both munitions costs and the cost of days to com-
plete a campaign) that is 95 percent time-minimization inventories and 5 percent cost-
minimization inventories. Both inventories account for two consecutive major regional 
campaigns plus a deterrence campaign.

d) Total cost-minimization, Big Wars, and deterrence (Big+Deter-Mixed)—a combination 
designed to minimize total that is 55 percent time-minimization inventories and 45 per-
cent cost-minimization inventories. Cost-minimization inventories are heavy in stand-
off weapons. Both inventories account for two consecutive major regional campaigns 
plus a deterrence campaign.

e) Total cost-minimization, Big Wars, and deterrence with degraded GPS (Big+Deter/
GPS-Mixed)—a combination designed to minimize total that is 55 percent time- 
minimization inventories and 45 percent cost-minimization inventories. Cost- 
minimization inventories are heavy in standoff weapons. Both inventories account for 

7  Linear combinations mean that new portfolio goals are created by multiplying other portfolio goals and combining 
them. This method of minimizing total costs can be seen as a “third-best” solution to the total cost-optimization problem. 
The best solution would be to have WoT minimize internal costs internally, but such an improvement in WoT is beyond the 
resources of the project. The second-best solution would be for WoT to use heuristics, as it does with cost and time mini-
mization. For example, instead of selecting the weapon with the best Pk, WoT could penalize weapons for their cost and 
the additional days to complete a campaign they may cause. This solution also required too many resources and created too 
much risk for this stage of the project. Therefore, we used linear combinations. Other types of linear combinations (e.g., 
combining inventories on a weapon-by-weapon basis so that one weapon could have a 0.05 factor, another a 0.25 factor, etc.) 
were not considered but could result in reductions in total cost.



Experimental Design    57

two consecutive major regional campaigns plus a deterrence campaign, both of which 
have a 33 percent degradation in the performance of GPS weapons.

The combination of these two rules and six goals results in ten strategies:

1. Replenishment—original portfolio (Baseline-Rpln): Purchase new weapons to return 
inventories to original numbers (same as first round).

2. Replenishment—Big Wars—time-optimized (Big-Time-Rpln): Purchase new weapons 
to bring inventories at least as high as in the time-optimized Big Wars portfolio (same 
as first round).

3. Replenishment—Big Wars—cost-optimized (Big-Cost-Rpln): Purchase new weapons to 
bring inventories at least as high as in the cost-optimized Big Wars portfolio (same as 
first round).

4. Replenishment—Big Wars/deterrence—total cost-optimized (Big+Deter/Time-Rpln):  
Purchase new weapons to bring inventories at least as high as in the Big Wars/ 
deterrence, total cost-minimized portfolio.

5. Replenishment—Big Wars/deterrence—total cost-optimized (Big+Deter/Mixed-Rpln):  
Purchase new weapons to bring inventories at least as high as in the Big Wars/ 
deterrence, total cost-minimized portfolio, with heavy standoff weapons.

6. Replenishment—Big Wars/deterrence/GPS—total cost-optimized (Big+Deter/GPS-
Mixed-Rpln): Purchase new weapons to bring inventories at least as high as in the Big 
Wars/deterrence with GPS degradation, total cost-minimized portfolio. 

7. Previous expenditure—original portfolio (Base-Prev): Purchase new weapons in pro-
portion to weapons use in the previous period until inventories returned to original 
numbers.

8. Previous expenditure—Big Wars—time-optimized (Big-Time-Prev): Purchase new 
weapons in proportion to weapons use in the previous period until inventories are at 
least as high as in the time-optimized Big Wars portfolio.

9. Previous expenditure—Big Wars—cost-optimized (Big-Cost-Prev): Purchase new weap-
ons in proportion to weapons use in the previous period until inventories are at least as 
high as in the cost-optimized Big Wars portfolio.

10. Previous expenditure—Big Wars/deterrence—total cost-optimized (Big+Deter/Time-
Prev): Purchase new weapons in proportion to weapons use in the previous period 
until inventories are at least as high as in the Big Wars/deterrence, total cost-minimized 
portfolio.

11. Previous expenditure—Big Wars/deterrence—total cost-optimized (Big+Deter/Mixed-
Prev): Purchase new weapons in proportion to weapons use in the previous period until 
inventories are at least as high as in the Big Wars/deterrence, total cost-minimized port-
folio, with heavy standoff weapons.

12. Previous expenditure—Big Wars/deterrence/GPS—total cost-optimized (Big+Deter/
GPS-Prev): Purchase new weapons in proportion to weapons use in the previous period 
until inventories are at least as high as in the Big Wars/deterrence with GPS degrada-
tion, total cost-minimized portfolio.

The first three portfolio goals (a, b.a, and b.b) are carryovers from the first round. Those 
portfolio goals were listed in Table B.1.

New portfolio goals were created in WoT to account for the addition of the deterrence 
campaign. Developing these goals followed the same procedure used in the first round. As in 
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the first round, those goals have a 5 percent buffer. These goals are listed in columns i and ii 
of Table B.2.

Table B.2
New Time- or Cost-Minimized Goals Used to Construct Second Phase Strategies (A)

ID            Weapon
(i) Big/ 

Deter-Time
(ii) Big/ 

Deter-Cost

(iii) Big/
Deter- 

Standoff Cost
(iv) Big/Deter/ 

GPS-Time
(v) Big/Deter/

GPS-Cost

W00 AGM-130C (BLU 109) 7,168 36 2,556 10,087 53

W01 AGM-130A (Mk 84) 41,327 986 7,399 60,527 1,479

W02 AGM-154 (JSOW) 28,809 3,283 25,314 42,671 4,931

W03 AGM-158 (JASSM-ER) 4,140 0 0 6,817 0

W04 AGM-64 (Maverick) 3 6,450 6,450 3 6,459

W05 AGM-84H (SLAM/ER) 0 0 0 0 0

W06 AGM-86 (CALCM) 0 0 0 0 0

W07 AGM-88E (HARM/AARGM) 0 987 987 0 1,481

W08 BGM-109E (TLAM) 3,053 0 0 4,860 0

W09 GBU-10 Paveway II (BLU 109) 0 2,144 2,144 0 2,144

W10 GBU-10 Paveway II (Mk 84) 0 13,460 13,460 0 15,077

W11 GBU-12 (Paveway II) 0 17,974 17,974 0 17,981

W12 GBU-15 (BLU-109) 0 0 0 0 2,262

W13 GBU-15 (Mk 84) 0 5,151 5,151 0 5,151

W14 GBU-24 Paveway III (BLU-109) 0 0 0 0 0

W15 GBU-24 Paveway III (BLU-116) 0 2,098 2,098 0 2,098

W16 GBU-24 Paveway III (Mk 84) 1 2,726 2,726 1 2,724

W17 GBU-28 Bunker Buster 0 0 0 0 0

W18 GBU-31 JDAM (2,000 lb) 0 0 0 0 0

W19 GBU-32 JDAM (1,000 lb) 0 0 0 0 0

W20 GBU-36/37 (GAM) 22,253 43,146 71,512 32,863 64,770

W21 GBU-38 JDAM (500 lb) 0 0 0 0 0

W22 GBU-39 SDB 0 0 0 0 0

W23 GBU-53B SDB II 0 0 0 0 0

W24 GBU-54 (Laser JDAM) 0 8,630 8,630 0 6,298

W25 GBU-57B MOP 2,073 88 1,489 3,185 132

W26 MGM-168 ATACMS 3,437 0 1,577 5,217 0

W27 Mk-82 0 0 0 0 0

W28 Mk-83 0 12,604 12,604 0 12,592

W29 Mk-84 528 9,873 9,873 557 9,864

NOTES: Shading indicates that the weapon is a standoff (PGM) weapon. These goals are used in linear 
combinations to construct goals actually used in the second phase.
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To generate the portfolio goals when cost-minimization is standoff-weapon heavy (in 
portfolio goal d), we developed an additional set of portfolio goals using the optimization 
procedure from the previous period. The only change was that the campaigns were designed 
so that they never became nonpermissive. In other words, only standoff weapons would be 
effective. Then, for each weapon, we chose the maximum of the previous cost-minimization 
and the nonpermissive cost-minimization. This procedure assured that the standoff heavy cost 
minimization has sufficient quantities of cost-effective standoff weapons, but it also has large 
quantities of cheap, nonstandoff weapons as backup. We decided to use a standoff-heavy cost-
minimization portfolio goal because in the first round we found that WoT would often use up 
most standoff weapons in the first campaign of consecutive campaigns, leaving few standoff 
weapons for later campaigns, thus dooming those campaigns to failure.8 This goal is listed in 
column iii of Table B.2.

To develop portfolio goals that account for GPS degradation, the same procedure was 
used, with one significant change. Rather than using the regular Pk table (see the sections 
below for more discussion on the Pk table and adjustments to it), we used a Pk table that was 
adjusted so that all GPS weapons were 33 percent less effective. These goals are listed in col-
umns iv and v of Table B.2.

All of the new portfolio goals (c, d, and e) used in the second phase are linear combina-
tions of the time- and cost-minimized inventories discussed in the previous paragraphs and 
listed in Table B.2, according to the following linear combinations that attempt to minimize 
total costs:

Big+Deter-Time
Big+Deter-Mixed
Big+Deter/GPS-Mixed.

These goals, which are the goals that are actually used in the second phase of the analysis, 
are listed in Table B.3.

To discover the linear combination of portfolio goals that minimized total costs (i.e., 
munitions cost and the cost of days to completion), we developed a new procedure that ran in 
WoT a double major regional campaign9 using a weapons portfolio that was a linear combina-
tion with percentage shares (e.g., 95 percent and 5 percent) that are divisible by 5. We plotted 
the resulting cost and days to completion on a chart and compared those to an isocost line 
that valued each day at about $7 billion (roughly 20 times the average daily cost of munitions). 
Each campaign in WoT ran for only 100 trials to conserve time.10

8  This behavior is a result of WoT’s underlying behavior; it always picks the most effective weapon, regardless of cost. 
Further, WoT does not consider the opportunity cost of using weapons now instead of saving them for another campaign. 
With cost-minimized inventories, the opportunity cost of using standoff weapons can be huge because failing to save them 
means that later campaigns might run out of standoff weapons and fail before a campaign becomes permissive.
9  Instead of two consecutive major regional campaigns, we doubled the number of targets in one major regional cam-
paign and allowed 400 days for completion. We did this because two consecutive major regional campaigns tend to disfavor 
cost-minimizing goals because WoT expends standoff weapons in the first campaign that need to be saved for the second 
campaign. This decision tends to increase slightly the share of cost-minimization inventories in the total-cost-minimized 
weapons goals.
10  More fidelity would be possible with more trials and using linear combinations that are not divisible by 5 percent, e.g., 
96/4.
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Figure B.2 shows the munitions cost and time tradeoff when combining portfolio goals 
(i) and (ii). The blue dots indicate that the weapons portfolio is successful in 100 percent of 
trials. Red dots indicate that the portfolio is successful in less than 100 percent of trials. Inven-
tories that are heavy on the cost-minimizing inventories (ii) are never successful, so they are 
not included on the chart. The blue lines are isocost lines that value each day of a campaign

Table B.3
New Time- or Cost-Minimized Goals Used to Construct Second Phase Strategies (B)

ID            Weapon
(C) Big+Deter-

Time
(D) Big+Deter-

Mixed
(E) Big+Deter/ 

GPS-Mixed

W00 AGM-130C (BLU 109) 6,811 5,093 7,579

W01 AGM-130A (Mk 84) 39,310 26,059 45,765

W02 AGM-154 (JSOW) 27,533 27,236 33,236

W03 AGM-158 (JASSM-ER) 3,933 2,277 5,113

W04 AGM-64 (Maverick) 325 2,904 1,617

W05 AGM-84H (SLAM/ER) 0 0 0

W06 AGM-86 (CALCM) 0 0 0

W07 AGM-88E (HARM/AARGM) 49 444 370

W08 BGM-109E (TLAM) 2,900 1,679 3,645

W09 GBU-10 Paveway II (BLU 109) 107 965 536

W10 GBU-10 Paveway II (Mk 84) 673 6,057 3,769

W11 GBU-12 (Paveway II) 899 8,088 4,495

W12 GBU-15 (BLU-109) 0 0 566

W13 GBU-15 (Mk 84) 258 2,318 1,288

W14 GBU-24 Paveway III (BLU-109) 0 0 0

W15 GBU-24 Paveway III (BLU-116) 105 944 525

W16 GBU-24 Paveway III (Mk 84) 137 1,227 682

W17 GBU-28 Bunker Buster 0 0 0

W18 GBU-31 JDAM (2,000 lb) 0 0 0

W19 GBU-32 JDAM (1,000 lb) 0 0 0

W20 GBU-36/37 (GAM) 23,298 44,420 40,840

W21 GBU-38 JDAM (500 lb) 0 0 0

W22 GBU-39 SDB 0 0 0

W23 GBU-53B SDB II 0 0 0

W24 GBU-54 (Laser JDAM) 432 3,884 1,575

W25 GBU-57B MOP 1,974 1,810 2,422

W26 MGM-168 ATACMS 3,265 2,600 3,913

W27 Mk-82 0 0 0

W28 Mk-83 630 5,672 3,148

W29 Mk-84 995 4,733 2,884

Total cost ($ billions) 67.2 60.6 84.5

NOTE: Shading indicates that the weapon is a standoff (PGM) weapon. 
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at about $7 billion. It is clear that the “95/5” goal minimizes total cost (i.e., its isocost line is 
nearest the origin). This point represents a 95 percent mix of (i) and a 5 percent mix of (ii).11

Figure B.3 shows a similar chart for combinations of (i) and (iii). Note that when the 
cost-minimizing goals are heavier in standoff weapons (iii), combinations with a greater share 
of the cost-minimizing inventories tend to do better. The lowest total cost appears in the 55/45 
combination. Comparing this to the 95/5 combination in Figure B.2, we see that the 55/45 
combination is cheaper ($54 billion vs. $64 billion) and takes less time to complete campaigns 
(147 days vs. 151 days). This suggests that portfolio goals (D) should dominate portfolio goals 
(C), but the ultimate arbiter of strategy effectiveness is when the cases are run across many 
years with many different uncertainties.

Finally, Figure B.4 shows combinations of (iv) and (v). WoT simulations include the 33 
percent degradation in Pk values of GPS weapons, which leads to substantially increased costs 
of munitions (more munitions have to be used to destroy the same number of targets) and 
increases the number of days to completion (more misses means that it takes longer to destroy 
all targets). The isocost lines in this chart show that the 75/25 combination has the lowest total 
cost.

11  These results clearly favor the time-minimizing portfolio (i). However, the 100/0 mixture does not do as well as the 95/5 
mixture. The problem is that the time-minimization portfolio has trouble with one type of target (depots). For this target, 
the Pk table says that a dumb bomb, the Mk-84, is the best weapon, but time-minimizing inventories include very few non-
standoff weapons. The Pk of the Mk-84 for this target is only 0.20, so there is high variability in how many weapons it takes 
to destroy all the targets; therefore, the cost-minimizing portfolio often runs out of Mk-84s and has to use a second-best 
weapon. A 95/5 combination doubles the number of Mk-84s, which prevents Mk-84s from running out.

Figure B.2
Big+Deter-Time Total Cost Minimization: Cost/Time Tradeoff for Linear Combinations of (i) and (ii)
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Figure B.3
Big+Deter-Mixed Total Cost Minimization: Cost/Time Tradeoff for Linear Combinations of (i) and (iii)
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Exogenous Uncertainties (X)
This study aims to consider the performance of alternative munitions mix strategies over a 
wide range of future conditions. The study focused on several categories of uncertain factors, 
including the following.

Security Environment 

Security environments show the sequence and type of security conditions over all periods. For 
the first phase, we used 20 security environments. Nine of them are notional security envi-
ronments that were constructed early in the project. To obtain the other 11, we developed a 
spreadsheet that randomly creates security environments based on the rules of the different 
security conditions (e.g., global war lasts for at least two periods). Metrics were created that 
measured each security environment in three ways:

• Average severity: Each security condition is assigned an integer between 1 and 6 based 
on the relative severity of the conflict (e.g., global war is assigned a 6). For each security 
environment, the magnitude is calculated by adding values for each period, and the mag-
nitude is normalized (e.g., if the security condition is always quiescent, its magnitude is 0, 
and if the security condition is always global war, its magnitude is 1). Magnitudes above 
0.60 were excluded.

• Variability: Using the assigned integers, variability was calculated by the adding the 
absolute value of changes between each period. Variability was then normalized so it 
would fall between 0 and 1.

• Trend: Using the assigned integers, the trend (i.e., the slope of the linear regression of the 
integers over time) was calculated. The trend was normalized so it would fall between 0 
and 1.

The objective of selecting the other 11 security environments was to maximize the dissim-
ilarity in these three metrics. This dissimilarity was measured by adding the Euclidean distance 
between each possible pair of security environments.12 The spreadsheet generated 100,000 sets 
of security environments, and the set with the highest Euclidean distance was chosen. These 
security environments are provided in Table B.3.

After analyzing the results of the first phase of the project, we realized that we did not 
have a security environment that closely approximated the past 20 years. SE 21 is our estimate 
of a security environment that best approximates the past 20 years.

Also, after analyzing the results of the first phase of the project, we realized that the addi-
tional 11 security environments that were added tended to be fairly severe, and very often none 
of our strategies were consistently successful. We added four additional security environments 
using a similar procedure as shown above but oversampled less-severe security conditions.13 In 
addition, in the new security environments, we manually changed any security condition F 

12  Euclidean distance takes the square root of the sums of the squares of the difference between each of the three variables.
13  The problem with the previous procedure was that we allowed all security conditions to be weighted equally. According 
to the law of large numbers, the average severity of 11 security environments with 10 security conditions each will tend to 
be close to 0.5, and large deviations will rarely be realized. The previous procedure excluded any security environments with 
an average severity of 0.6 or above to counter extreme security environments where success would be impossible, but this 
exclusion did not result in many less-severe security environments.
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(global war) to security condition E (multiple major regional) because global wars proved so 
severe that given the funding limitations in the model, no strategy could ever be successful.

Figure B.5 shows the distributions of the three attributes used to create the security envi-
ronments. The initial security environments clearly were concentrated in a moderate range. 
The additional security environments helped to fill gaps in lower severity.

Weapons Effectiveness
Pk values were modified to account for two uncertainties:

• GPS-driven changes: GPS weapons have their Pk varied ± 50 percent accounting for 
uncertainties about changes in GPS technology or GPS countermeasures.

• Blinding terminal guidance weapons: PGMs with seeker heads have a Pk of 0 when 
“zapped” by an adversary. Zapping frequency is varied between 0 and 75 percent of the 
time they are launched. To account for this blinding, the Pks are modified so that they 
account for both the Pk and the probability that the PGM is not zapped.

Uncertainty in Adversaries’ Air Defense Capability

An additional uncertainty accounts for adversaries’ air defense capabilities. 
The models currently assume that most campaigns begin in a nonpermissive environ-

ment and do not become permissive until all targets above a certain priority level have been 
destroyed (i.e., when the adversary’s SAMs have been destroyed). This priority level is unique 

Figure B.5
Distributions of Attributes for the 25 Security Environments 

NOTE: Blue indicates the SE used in the �rst phase; red indicates SE 21, which approximates the past 20 years; 
orange indicates that additional SEs were added in the second phase.
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to every type of campaign. To model the uncertainty in adversaries’ air defense capabilities, we 
change the number of SAMs by ± 50 percent. 

For example, a massive regional campaign has 29 types of targets, each with its own pri-
ority level (i.e., there are 29 priority levels). The SAMs are the 7th highest priority, so we assume 
that once the top seven priorities are destroyed completely, the campaign becomes permissive 
and all weapons may be used. If this uncertainty were + 50 percent, then 50 percent more 
SAMs would need to be destroyed before the campaign became permissive, which would prob-
ably use many more expensive, standoff weapons.

Uncertainty in Adversaries’ Political Will

The WoT model allows users to specify a certain percentage of all targets that must be destroyed 
to compel an adversary to surrender. We assume that this percentage is the same across all cam-
paigns, but we acknowledge that there could be substantial uncertainty. Thus, the range of 
values for adversaries’ political will is 80 percent ± 20 percent; i.e., it can range from 60 percent 
to 100 percent.

Uncertainty in Weapons Delivery Rates

Weapons are currently assigned to one of four delivery modes (nonstealth, stealth, naval, and 
land). Each delivery mode is assumed to have surge delivery rate that lasts for a certain period 
of time and a lower, steady-state delivery rate that follows. Delivery rates are unique to each 
campaign and are a percentage of the maximum delivery rates. 

Uncertainty in weapons delivery rates is accounted for by modifying the maximum deliv-
ery rates (both surge and steady-state) by a factor of ± 50%. This uncertainty accounts both for 
uncertainties in our modeling and estimates of weapons delivery and for uncertain attributes 
of campaigns that will affect delivery rates. For example, a campaign that requires delivery 
vehicles to be based long distances away will have a lower weapons delivery rate than a cam-
paign where delivery vehicles are based short distances away.

Uncertainty in Munitions Funding (Not Implemented)

The munitions acquisition node in Analytica assumes that 0.85 percent of DoD funding can 
be allotted to munitions acquisition. We hope to incorporate an uncertainty factor that modi-
fies that funding amount by ± 50 percent. This uncertainty factor would account for uncer-
tainties in:

• overall levels of GDP for the United States
• the percentage of GDP allocated for DoD
• the percentage of DoD funding allocated for munitions acquisition
• the overall price level of munitions.

Because of complications in the Analytica design, we did not implement this uncertainty.

Uncertainty About the Fog of War (Not Implemented)

The WoT model currently assumes that the success of strikes can be observed instantaneously. 
An uncertainty that may be incorporated into a future version of WoT is uncertainty about 
whether a strike was successful. Such uncertainty could lead to retargeting of targets that have 
already been destroyed or waiting some amount of time to retarget targets where strikes have 
failed.

Model uncertainties are summarized in Table B.4.
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Table B.4
Uncertainties Considered in the Analysis 

Uncertainty Procedure Input Comments

1. Security environment Choose one of the predetermined 
SEs

SE is an integer 
between 1 and 20 
(first phase) and 
between 1 and 25 
(second phase)

2. GPS technology Adjust Pk of GPS weapons: If GPS < 
0, Pk × (1 + GPS), else, Pk + (1 – Pk) 
× GPS

GPS is number,  
± 0.50

3. Blinding (B) Adjust Pk of PGMs with seeker 
heads: Pk × (1 – B)

B is number, 0 to 
0.75

(1 – B) is the chance 
weapon is not blinded

4. Adversary’s air-defense 
capability (PERM)

Adjust the number of SAMs for each 
campaign: Original number of SAMs 
× (1 + PERM)

PERM is a 
percentage,  
± 75%a

Will not affect campaigns 
without SAMs or those 
that begin as permissive

5. Adversary’s political will 
(WILL)

Adjust the percentage of targets 
necessary to destroy to end the 
campaign: 80% + WILL

WILL is percentage, 
± 20%

6. Delivery rate (DR) Adjust delivery rates (both surge 
and steady-state) by DR

DR is percentage, 
± 50%

Accounts for 
uncertainties in such 
factors as geography

7. Munitions funding (MF) Adjust funding as a percentage of 
defense budget: 0.85% × MF

MF is percentage, 
± 50%

Not implemented in 
Analytica

8. Enhanced camouflage, 
concealment, and deception 
(FOG)

TBD TBD Not implemented in WoT

NOTE: Italics indicate model parameters not yet considered as uncertain in WoT.
a In the second phase, the range used was ± 75 percent.

Experimental Design

The first uncertainty is an unordered integer parameter with 20 (or 25) possible values. Uncer-
tainties 2 to 6 are real numbers. We can thus conduct a Latin Hypercube design over the entire 
set of six parameters. Latin Hypercube is a commonly used method for generating a sample of 
futures to run in computational experiments. In a Monte Carlo design, futures are chosen ran-
domly over the full range of uncertainties. Latin Hypercube also chooses futures randomly but 
in such a way that no two futures can have values for any uncertain parameter too close to one 
another. (The technical term is that Latin Hypercube uses a quasi-random design.) Thus, for 
any finite set of futures, a Latin Hypercube design ensures a more complete and more uniform 
sampling than a Monte Carlo design.  

In the first phase of the analysis, we constructed a 1,000 future sample (20 security envi-
ronments with 50 futures each).14 We consider 10 weapons acquisition strategies. Therefore, we 
ran 10 strategies × 1,000 futures/strategy = 10,000 cases.

In the second phase of the analysis, we conducted a Latin Hypercube design over uncer-
tainties 2 to 6, resulting in 50 futures. We repeated each set of 50 futures across all 25 security 

14  In the first phase, we constructed a Latin Hypercube of 1,000 cases, which allowed the 50 cases associated with each 
security environment to be different. To improve statistical comparisons across security environments in the second phase, 
we constructed a Latin Hypercube of 50 cases that were repeated in each of the 25 security environments.
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environments for a total of 1,250 futures per strategy. We considered 12 weapons acquisition 
strategies, i.e., 12 strategies × 1,250 futures/strategy = 15,000 cases.

The inputs (Xs and Ls) for each case are then run through the simulation model to cal-
culate the corresponding values of measures. The resulting set of model inputs and outputs are 
then gathered together in a database of the form shown in Table B.5, where each entry repre-
sents one case. Such a database can then be used to support the analyses presented in Chapter 
Three.

Lessons Learned

In regard to methodological lessons learned during the research project, one particularity 
stands out. We might have been able to run more iterations if we had started the RDM process 
with an analytical model instead of the WoT model. Starting with the WoT model had two 
significant costs that slowed down our development and analysis. First was the time and effort 
it took to develop WoT and program the integration between WoT and the CG. The second 
cost was the large amount of computational time it took to run WoT and later debug the inte-
gration between WoT and the CG. These delays significantly slowed down the iterations.

An analytical approach, similar to Loeb’s, might have estimated sufficiency of different 
portfolios of weapons using relatively simple formulas that considered Pks, target inventories, 
and weapons portfolios, while sacrificing some fidelity. Such an approach might have been 
easier to integrate with the CG and might have taken much less time to compute.

Table B.5
Example Form of Results Database Used in the Analysis

Xs Ls Ms

0.38 0.14 0.01 0.54 0.75 0.14 0.01 0.68 0.34 0.28

0.56 0.72 0.29 0.07 0.34 0.90 0.52 0.54 0.66 0.51

0.27 0.19 0.51 0.46 0.59 0.79 0.05 0.92 0.04 0.97

0.65 0.57 0.86 0.75 0.67 0.91 0.50 0.68 0.45 0.44

0.31 0.60 0.93 0.23 0.61 0.19 0.46 0.22 0.49 0.31

0.00 0.93 1.00 0.20 0.95 0.11 0.36 0.27 0.21 0.62

0.67 0.38 0.67 0.99 0.28 0.11 0.18 0.39 0.25 0.23

0.92 0.39 0.33 0.72 0.41 0.53 0.98 0.81 0.08 0.13

0.86 0.48 0.40 0.63 0.32 0.01 0.11 0.39 0.32 0.99

0.65 0.40 0.82 0.22 0.80 0.67 0.55 0.48 0.39 0.02

0.36 0.03 0.30 0.11 0.74 0.85 0.21 0.02 0.39 0.68

0.55 0.11 0.42 0.61 0.50 0.81 0.87 0.84 0.17 0.02

0.33 0.61 0.00 0.09 0.07 0.78 0.15 0.04 0.89 0.43

0.08 0.85 0.41 0.65 0.28 0.75 0.89 0.37 0.27 0.19

0.99 0.45 0.73 0.91 0.36 0.05 0.38 0.61 0.08 0.90

0.20 0.51 0.16 0.15 0.69 0.78 0.39 0.49 0.46 0.41
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APPENDIX C

Data

This appendix details the data that we used to populate the CG (in Analytica), which is used 
to construct campaign datasets that are simulated within the WoT model.

For the most part, the data we used are based on educated guesses, research on open 
sources, and simplifying assumptions, since the real data are unavailable, classified, or more 
complicated.

For easy reference, this appendix is ordered in the same way as data in the WoT input file.

Security Environments, Security Conditions, and Campaigns

Each two-year period of the model is defined by a security condition. Table C.1 shows the 
names of the six security conditions. Each security condition lasts a minimum length of time, 
between one and three two-year periods. 

During each security condition, we assume that a mix of campaigns occurs. Table C.2 
shows the relationship between each two-year period of a security condition and the cam-
paigns conducted. The CG generates campaign data for each campaign to pass to the WoT 
model. If there are multiple campaigns within a security condition, the CG assumes that the 
campaigns occur in succession, and the munitions depleted in one campaign are removed from 
inventories for later campaigns.

Security environments are a time line of ten two-year security conditions. There is a very 
large number of possible security environments; the security environments that occur are an 
uncertainty. In earlier stages of the project, we developed nine representative security environ-
ments. We supplemented these with 11 additional security environments in the first phase of 

Table C.1
Security Conditions and Minimum Durations

Security Condition Duration

A Quiescent 1

B Deterrent 3

C Long major regional 2

D Major regional campaign 2

E Multiple major regional 1

F Global war 2
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the analysis, which attempt to maximize the variability of all of the security environment in 
terms of their magnitude, variability, and trend. In the second phase, we added a security envi-
ronment that approximated the past 20 years (SE 21) and an additional four randomly gener-
ated SEs with lower severity. The resulting 25 security environments are shown in Figure 2.3.

Permissiveness and Nonpermissiveness

In a permissive environment, all weapons can be used. In a nonpermissive environment, only 
certain weapons can be used (see weapons attributes, below). We assume that all of the cam-
paigns except major regional and COIN begin in a nonpermissive environment. To achieve a 
permissive environment, all targets at or above the cutoffs in Table C.3 need to be destroyed. 
(See also Table C.8, below.)

Table C.2
Campaigns Conducted Within Each Two-Year Period of a Security Condition

Campaign

Security Condition Incident
Global 

Incident Deterrence
Short 

Campaign

Major 
Regional  
and COIN

Major 
Regional

Massive 
Regional

A Quiescent 1 1 0 0 0 0 0

B Deterrent 0 0 1 0 0 0 0

C Long major 
regional

0 0 0 0 1 0 0

D Major regional 
campaign

0 0 0 1 0 1 0

E Multiple major 
regional

0 0 0 0 0 2 0

F Global war 0 0 0 0 0 1 2

Table C.3
Permissiveness Target Priority Cutoffs

Campaign Cutoff

Incident 5

Global incident 7

Deterrence 14

Short campaign 5

Major regional and COIN N/A

Major regional 5

Massive regional 7

Global war 14
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This method of determining permissiveness is relatively simplistic. Future development 
efforts might want to differentiate specific, air-defense targets that create a nonpermissive envi-
ronment. Such an effort is not trivial because it would require a relaxation of the implicit 
assumption that the highest-priority targets are also the targets that create a nonpermissive 
environment.

Maximum Number of Days for Campaigns

We assume that all campaigns must be completed in 200 days to be successful. If campaigns 
last longer than 200 days, they are considered to have failed, the campaign stops, and no addi-
tional weapons are expended.

Future extensions may modify the maximum number of days to be different for each type 
of campaign. For example, it is likely that 200 days would be politically unacceptable for an 
incident, but more than 200 days might be necessary for a massive regional campaign.

Weapons Groups and Weapons Delivery Rates

WoT assumes that each weapon belongs to a single weapons group. Each weapons group has 
a maximum delivery rate (both a maximum surge delivery rate and a maximum steady-state 
delivery rate). Table C.4 shows the maximum weapons delivery rates for each of the four weap-
ons groups. All of the weapons groups are assumed to have seven days of surge, except for the 
Naval weapons group, whose surge rate and steady-state rates are the same. These data are 
highly uncertain, which is why we allow ± 50 percent uncertainty in these rates.

WoT’s treatment of weapons delivery is currently highly simplified from reality, where 
weapons can be delivered from many different platforms. Future extensions may allow this 
many-to-many relationship (instead of the current many-to-one relationship) and model each 
weapons group as a single platform. Such an extension would be much more computationally 
complex than the present model.

Weapons delivery rates are customized for each type of campaign to be some percentage 
of the maximum delivery rate based on the severity of the campaign. Table C.5 assumes that 
more stressful campaigns are provided with more delivery platforms.

Table C.4
Maximum Weapons Delivery Rates

Group Group Name
Surge 
Days

Surge Rate 
(Maximum Daily)

Steady-State Rate 
(Maximum Daily)

0 Nonstealth 7 2,500 1,500

1 Stealth 7 500 300

2 Naval 999 100 100

3 Land 7 50 40
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Munitions Attributes

We selected 30 types of weapons that are currently in stockpiles of U.S. conventional weapons. 
Table C.6 lists these 30 weapons and their attributes. Each weapon is assigned to one weapons 
group (as detailed above). 

Designation as a PGM weapon or a GPS weapon is important for applying the weapons 
effectiveness uncertainties. Weapons that use lasers, radars, or video for seekers are designated 
as PGMs. Weapons that use GPS for navigation and targeting are designated as GPS weapons. 
A future extension may also incorporate inertial and terrain navigation, which is incorporated 
into some types of missiles and may make them less susceptible to degradations in GPS.

The models assume that weapons cannot be used in nonpermissive conditions unless 
they are designated as nonpermissive weapons. Eleven of the 30 weapons are designated as 
nonpermissive.

Portfolio baselines and unit costs were found by looking at estimates in open sources or 
by making our own estimates. There are likely to be uncertainties in these numbers, especially 
with the unit costs. For example, many reported unit costs appear to be average costs for weap-
ons programs. For ongoing weapons procurements, marginal costs are likely to be lower than 
average costs. However, unit costs for older weapons might require restarting production lines, 
which could increase the unit costs. A future extension could incorporate uncertainty into 
weapons costs; however, the key uncertainties are relative costs, which would be more difficult 
to incorporate because of the large number of weapons.

Days Between Replenishments

WoT has the ability to replenish weapons at specified time intervals. At present, the model 
assumes that there are no replenishments.

Two future extensions may necessitate the use of the replenishment feature. First, logistics 
could be incorporated into the models, which would account for the fact that munitions must 
be moved into theater, so the munitions available to a campaign may grow over time. Such an 

Table C.5
Adjustments to Weapons Delivery Rate for  
Each Campaign Type

Campaign

Adjustment  
(% of Maximum 

Daily)

Massive regional 100

Major regional 90

Major regional and COIN 80

Short campaign 70

Deterrence 60

Global incident 50

Incident 40
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Table C.6
Weapons Used in the Models and Their Attributes

ID Weapon
Weapons  

Group PGM GPS
Nonpermissive 

Weapon?
Unit Cost  

($ Thousands)

W00 AGM-130C (BLU 109) Nonstealth Yes Yes 450

W01 AGM-130A (Mk 84) Nonstealth Yes Yes 450

W02 AGM-154 (JSOW) Nonstealth Yes Yes 719

W03 AGM-158 (JASSM-ER) Nonstealth Yes Yes 1512

W04 AGM-64 (Maverick) Nonstealth Yes 158

W05 AGM-84H (SLAM/ER) Nonstealth Yes Yes 1,200

W06 AGM-86 (CALCM) Nonstealth Yes Yes 1,160

W07 AGM-88E (HARM/AARGM) Stealth Yes Yes Yes 200

W08 BGM-109E (TLAM) Naval Yes Yes 1,576

W09 GBU-10 Paveway II (BLU 109) Nonstealth Yes 24

W10 GBU-10 Paveway II (Mk 84) Nonstealth Yes 24

W11 GBU-12 (Paveway II) Nonstealth Yes 19

W12 GBU-15 (BLU-109) Nonstealth Yes 28

W13 GBU-15 (Mk 84) Nonstealth Yes 28

W14 GBU-24 Paveway III (BLU-109) Nonstealth Yes 55

W15 GBU-24 Paveway III (BLU-116) Nonstealth Yes 55

W16 GBU-24 Paveway III (Mk 84) Nonstealth Yes 55

W17 GBU-28 Bunker Buster Stealth Yes 145

W18 GBU-31 JDAM (2,000 lb) Stealth Yes 62

W19 GBU-32 JDAM (1,000 lb) Stealth Yes 62

W20 GBU-36/37 (GAM) Stealth Yes Yes 231

W21 GBU-38 JDAM (500 lb) Stealth Yes 62

W22 GBU-39 SDB Nonstealth Yes 29

W23 GBU-53B SDB II Nonstealth Yes Yes 40

W24 GBU-54 (Laser JDAM) Stealth Yes Yes 21

W25 GBU-57B MOP Stealth Yes Yes 4,000

W26 MGM-168 ATACMS Land Yes Yes 820

W27 Mk-82 Nonstealth 5

W28 Mk-83 Nonstealth 10

W29 Mk-84 Nonstealth 15
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extension would require some additional modifications to the models to ensure that weapons 
use never exceeded global munitions inventories. The second type of extension is weapons 
production during a campaign. Currently, the CG assumes that weapons will be produced 
instantly when acquisition funding is spent. In reality, some weapons will be delivered during 
a campaign. Although a 200-day campaign is probably too short to order and produce a sig-
nificant number of new weapons (with a possible exception of dumb bombs, which we assume 
are virtually unlimited in number because of their high baseline numbers), history has shown 
that new weapons can be designed, tested, and produced in a short amount of time.1

Target Attributes

Thirty types of targets were chosen for these models. The 30 were chosen for being representa-
tive of the diversity of targets that may be found in actual conflicts. Table C.7 lists the targets 
and their attributes. Most of the attributes in Table C.7 are not used directly in the models but 
were used as guides for choosing weapons with a diverse set of attributes and for developing 
estimates of Pk values. 

The first two target attributes are mobility, which is differentiated between mobile (Mb) 
targets and fixed (Fx) targets (if the target’s aimpoint is a latitude/longitude), and hardness, 
which is differentiated between hard (Hd) targets requiring a blast warhead, soft (Sf) targets 
better suited for fragmenting warheads, and buried (Br) targets requiring penetrating war-
heads. This gives six possible classes of targets.

Another attribute that was created but was not used is the permissiveness attribute, which 
designates whether a target can be targeted in a nonpermissive environment. Instead, WoT 
assumes that all targets can be targeted in nonpermissive environments. The addition of per-
missive (Pm) targets and nonpermissive (Np) targets gives 12 possible classes of targets. 

The dispersion attribute addresses the number of target aimpoints: This differentiates 
between single point (Pt) targets and area (At) targets. The dispersion attribute is based on 
whether the target can be serviced with a single weapon or needs multiple weapons to cover 
it. In other words, a target requiring four weapons would need to have four individual suc-
cessful hits to kill the target. Area targets might come in a variety of sizes (e.g., four weapons 
needed for a barracks, eight weapons needed for a factory, 16 weapons for an airfield, and 32 
for a supply depot). Therefore, there are four classes of area targets (At4, At8, At16, and At32, 
respectively), the addition of which gives 60 possible classes of targets. An extension to the 
WoT model is being developed that accounts for dispersed targets.

The collateral damage attribute addresses the target’s proximity to entities that are pro-
tected by the laws of international armed conflict or political considerations—places that it 
would be counterproductive to hit. This attribute differentiates between sensitive (Cs) tar-
gets and nonsensitive (Ns) targets. The collateral damage attribute is based on the size of the 
weapon that can be used on the target. For targets in a congested urban environment, only 
250 lb warheads might be allowed, otherwise the Pk would be 0 for larger warheads. Similarly, 
some targets would have upper limits of 500 lb or 1,000 lb (2,000 lb would, by definition, be 

1  For example, the GBU-28 Bunker Buster was initially conceived, designed, built, tested, and used following the onset of 
Operation Desert Storm when existing weapons were revealed to be insufficient for targeting Iraq’s underground bunkers.
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NOTES: Mb = mobile; Fx = fixed; Sf = soft; Hd = hard; Br = buried; Pm = permissive; Np = nonpermissive; Pt = point; 
At = area targets (not implemented in this study); Ns = nonsensitive collateral damage; Cs = sensitive collateral 
damage; It = invariant targets; Ft = fleeting targets (not implemented in this study).

Table C.7
Classes of Targets and Their Attributes

Domain Real World Targets
Mobility

(Mb or Fx)

Hardness
(Sf, Hd, or 

Br)

Permissive-
ness

(Pm or Np)

Dispersion
(Pt, At4, At8, 
At16, or At32)

Collateral 
Damage
(Cs250, 
Cs500, 
Cs1000,  
or Ns) 

Time 
Criticality 
(Ft or It)

Air Aircraft on the ground Mb Sf Np At16 Ns Ft50%

Air Aircraft shelters Fx Br Np At16 Ns It

Air Airfields Fx Hd Np At16 Ns It

Ground Barracks Fx Hd Pm At4 Cs250 It

Ground Bunkers Fx Br Np Pt Ns It

C2 C2 headquarters Fx Br Np Pt Cs1000 It

Comm Comms RF systems Fx Sf Np Pt Cs250 It

Comm Comms satellite downlinks Fx Sf Np Pt Cs1000 Ft50%

Comm Communication equipment Fx Sf Np Pt Cs250 It

Comm Communication facilities Fx Hd Np At4 Cs250 It

Logistics Depots Fx Hd Np At32 Ns It

Comm Fiber optic systems Fx Br Np At8 Ns It

C2 Intelligence processing center Fx Hd Np At4 Cs500 It

Sensor Land-based passive detection Mb Sf Pm At4 Ns It

Sensor Land-based radar Fx Sf Pm At16 CS1000 It

Ground Personnel carrier formation Mb Sf Pm At32 Ns Ft05%

Logistics POL refinery Fx Hd Np At4 Ns It

Naval Port infrastructure Fx Hd Np At8 Ns It

Naval Port systems Mb Sf Np At4 Ns It

Naval Ships at sea Mb Hd Np At32 Ns Ft50%

Naval Ships in port Mb Hd Np At4 Ns It

Naval Submarine pens Fx Br Np At4 Ns It

Ground Surface-to-air missiles Mb Sf Np Pt Ns Ft20%

Ground Surface-to-surface missiles Mb Sf Pm Pt Ns Ft01%

Ground Tank—individual Mb Hd Pm Pt Ns Ft20%

C2 Terror cell meeting place Mb Sf Pm Pt Cs250 Ft05%

Ground Troops in the field Mb Sf Pm At32 Cs500 Ft20%

Logistics Weapon transport—systems Mb Sf Pm At8 Ns Ft50%

Logistics Weapon transport 
infrastructure Fx Hd Pm Pt Ns It

Logistics WMD storage sites Fx Br Pm Pt Ns Ft05%
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an Ns target). Therefore, there could be up to three sensitive target attributes (Cs250, Cs500, 
Cs1000), the addition of which gives 240 possible classes of targets.

The time-criticality attribute addresses the target’s temporal availability; this differen-
tiates between fleeting (Ft) targets and invariant (It) targets. The time-criticality attribute  
is based on how long the target would be available for striking. The time-criticality attribute is 
based on whether the target is available when the launch platform is at its launch point, result-
ing in a binary 1 or 0 Pk, similar to permissiveness. Each fleeting target is distinguished by the 
percentage of days the target is revealed and can be targeted. There are four possible percent-
ages, Ft50, Ft20, Ft05, and FT01, the addition of which gives 1,200 possible classes of targets. 
We are currently developing an extension to WoT that incorporates fleeting targets, but it has 
not yet been tested sufficiently to include it in the runs reported here. Initial testing suggests 
that fleeting targets will extend the length of campaigns substantially—it may be difficult to 
destroy an entire class of targets that is exposed 1 percent of the time in 200 days.

To choose 30 target classes from the 1,200 possible target classes, we selected representa-
tive targets and used guidance produced by the Chief of Naval Operations for Air-Sea Battle 
(Greenert, 2012).

Each campaign type has a unique subset of included targets with a unique distribution 
and prioritization of those targets. Tables C.8a and 8b show this information for all 30 target 
classes. 

Each target is assigned a priority, between 1 and the number of targets within the cam-
paign. When WoT decides which targets to strike in each period, it starts with the highest-
priority target (e.g., a target with a priority of 1) and works its way down the priority list until 
all targets have been considered for targeting or until all weapons have been expended or all 
delivery vehicles have been committed. 

The shading of target priorities indicates whether a target is above or below the permis-
siveness cutoff for that campaign. If targets remain with priorities shaded in white, they cause 
the campaign to remain in a nonpermissive state. Targets with priorities shaded in green do not 
affect the permissive state of the campaign.

Target prioritization relied on reasoning from team members and the Air-Sea Battle guid-
ance produced by the Chief of Naval Operations that was used to select the 30 target classes 
(Greenert, 2012). Priorities in the incident/minor campaign were set so that WoT first sup-
presses enemy air defenses then targets command and control (C2), then WMD capability, 
and finally warfighting capability. In global incident, WoT first eliminates the WMD threat, 
then targets near-term threatening terrorist nodes, then the leadership cadre, then communica-
tions, and finally foot soldiers. The Deterrence campaign is a rehearsal for a massive regional 
campaign, except with a higher prioritization of decapitation. The short campaign has a similar 
prioritization to the incident campaign but with a slightly higher emphasis on aircraft on the 
ground. Major regional and COIN has the same prioritization as the global incident, except 
it includes some additional conventional forces. Priorities in major regional are designed to 
represent total, conventional war, except some elements of adversary infrastructure and indus-
trial capability are left intact to lessen the reconstruction burden. Finally massive regional is a 
similar total, conventional war with more targeting of adversary infrastructure; however, some 
leadership is left intact to avoid precipitating the campaign to nuclear.

The second column for each campaign in Tables C.8a and C.8b shows the share of the 
total targets that each target type represents in the campaign. The total number of targets 
for each campaign is shown at the bottom of the table. Incident/minor campaign and global 
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Table C.8a
Priorities and Distribution of Targets Within Campaigns

Domain Real World Targets

Incident/ 
Minor 

Campaign 
(Desert Fox/

Somalia/ 
Tanker War)

Global  
Incident  

(GWoT-Like)
Deterrence  
(Cold War)

Short Campaign 
(Grenada/ 

Panama/Kosovo/
Libya)

Priority % Priority % Priority % Priority %

Air Aircraft on the ground 15 3 16 2 14 3

Air Aircraft shelters 20 3

Air Airfields 9 8 11 2 9 10

Ground Barracks 11 4 6 20 25 2 11 3

Ground Bunkers 5 10 27 1

C2 C2 headquarters 6 5 3 10 1 15 6 5

Comm Comms RF systems 3 3 8 1 3 3

Comm Comms satellite downlinks 9 4

Comm Communication equipment 12 3 6 2 12 3

Comm Communication facilities 7 5 4 5 7 1 7 4

Logistics Depots 28 3

Comm Fiber optic systems 4 3 10 3 4 5

C2 Intelligence processing center 13 5 2 7 13 5

Sensor Land-based passive detection 1 3 5 1 1 3

Sensor Land-based radar 2 15 4 3 2 12

Ground Personnel carrier formation 18 3

Logistics POL refinery 29 3

Naval Port infrastructure 26 1

Naval Port systems 22 2

Naval Ships at sea 23 5

Naval Ships in port 21 2

Naval Submarine pens 12 2

Ground Surface-to-air missiles 5 15 14 7 5 16

Ground Surface-to-surface missiles 8 10 15 6 8 13

Ground Tank—individual 19 5

C2 Terror cell meeting place 2 35

Ground Troops in the field 7 15 24 2

Logistics Weapon transport—systems 17 5

Logistics Weapon transport 
infrastructure

14 3 13 2 15 5

Logistics WMD storage sites 10 15 1 5 3 5 10 10

Target totals for each campaign type 340 750 1,500 3,000
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Table C.8b
Priorities and Distribution of Targets Within Campaigns

Domain Real World Targets

Major Regional 
and COIN 

(Afghanistan)

Major Regional 
(Korea/Vietnam/ 

Desert Storm/
Operation Iraqi 

Freedom)

Massive 
Regional 

(WWI)

Priority % Priority % Priority %

Air Aircraft on the ground 18 3 22 3

Air Aircraft shelters 23 3 11 2

Air Airfields 9 5 10 3

Ground Barracks 6 20 11 3 12 2

Ground Bunkers 5 10 27 5

C2 C2 headquarters 3 10 6 2 16 2

Comm Comms RF systems 10 2 3 2 15 3

Comm Comms satellite downlinks 14 2 1 1

Comm Communication equipment 9 5 12 1 14 2

Comm Communication facilities 4 5 7 1 4 2

Logistics Depots 24 3 28 2

Comm Fiber optic systems 4 1 5 1

C2 Intelligence processing center 8 5 13 2 6 2

Sensor Land-based passive detection 1 1 2 1

Sensor Land-based radar 2 2 3 3

Ground Personnel carrier formation 11 3 21 5 25 5

Logistics POL refinery 29 1

Naval Port infrastructure 26 1

Naval Port systems 19 3

Naval Ships at sea 17 5 21 5

Naval Ships in port 15 3 18 3

Naval Submarine pens 17 4

Ground Surface-to-air missiles 5 10 7 10

Ground Surface-to-surface missiles 8 15 9 10

Ground Tank—individual 22 5 13 3

C2 Terror cell meeting place 2 20

Ground Troops in the field 7 15 19 15 23 10

Logistics Weapon transport—systems 20 3 24 3

Logistics Weapon transport infrastructure 16 5 20 3

Logistics WMD storage sites 1 5 10 3 8 5

Target totals for each campaign type 6,000 20,000 60,000
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incident each have a relatively small number of targets. Deterrence has more targets, but the 
emphasis of deterrence is provide a show of force across the variety of target types that might 
be found in much greater numbers in a major regional campaign. Short campaign has 3,000 
targets, which is similar in magnitude to the campaign in Kosovo. Major regional and COIN 
has twice as many targets (6,000). Major regional has 20,000 targets, which was designed to 
be about two-thirds the size of Operations Desert Storm and Iraqi Freedom. Finally, massive 
regional was chosen to have three times as many targets (60,000) as major regional.

Pk Table

The Pk tables (Tables C.9a, b, and c) were constructed to show the probability of kill when 
matching any of the 30 weapons to any of the 30 target types.

The first step in creating the Pk table was setting Pk values to 0 for any combination of 
weapon and target that was inappropriate based on the attributes of the weapons and targets. 
For example, Tables C.9a and C.9b say that collateral damage is an issue when targeting bar-
racks, so no weapon with a warhead bigger than 250 lb (CS250) may be used; therefore, all Pks 
for weapons with a warhead over 250 lb are 0 for the Barracks row.

The second step in creating the Pk was setting nonzero Pk values. Theses Pk values were 
chosen by making educated guesses, taking into account the attributes of each weapon and 
target. These guesses were made in part by setting relative Pk values taking into account expec-
tations about the relative effectiveness of weapons, for example, by different weapons across a 
target class or different targets for a type of weapon. A future extension is to use classified Pk 
values, which should be more accurate than these estimates. 

Defense/Munitions Funding Levels

Unlike the previous data in this appendix, data used for munitions funding are used entirely 
within the CG, which selects the munitions that it purchases based on the strategy (e.g., the 
portfolio goals) and the funding available to purchase munitions.

To simulate defense funding levels, the team looked at historic defense funding levels. 
Figure C.1 shows that the pattern of defense funding as a share of the GDP has historically 
spiked depending on the severity of conflicts.

Munitions funding is assumed to be capped at 0.85 percent of the DoD budget, as con-
firmed through CAPE. The DoD budget is assumed to be set for each two-year period depend-
ing upon the security environment in the previous two-year period, as shown in Table C.10. 
Therefore, there will be a lag in funding.2

Gross domestic product (GDP) is expressed in fiscal year (FY) 2013 dollars (i.e., in the 
same units as the estimated costs of munitions) and is assumed to grow steadily as shown in 
Table C.11.

2  Because the initial period of each security environment is not preceded by another security environment, we assume that 
the share of GDP in the first period is 3.0 percent of GDP for all security environments.
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Table C.9a
Pk Table for Weapons 0–9

Real World Targets

W00: 
AGM-
130C 
(BLU 
109)

W01: 
AGM-
130A 

(Mk 84)

W02: 
AGM-154 
(JSOW)

W03: 
AGM-158 

(JASSM-ER)

W04: 
AGM-64 

(Maverick)

W05: 
AGM-84H 

(SLAM/
ER)

W06:  
AGM-86 
(CALCM)

W07: 
AGM-88E 
(HARM/ 
AARGM)

W08: 
BGM-
109E 

(TLAM)

W09:  
GBU-10 

Paveway II 
(BLU 109)

Aircraft on the ground 0.1 0.95 0.95 0.98 0.8 0 0 0 0.5 0.05

Aircraft shelters 0.95 0.9 0 0 0 0 0 0 0 0.3

Airfields 0.98 0.98 0.1 0.05 0.5 0 0.98 0 0.9 0.98

Barracks 0 0 0.4 0.4 0.2 0.4 0 0 0 0

Bunkers 0.9 0.95 0.5 0.95 0 0.4 0 0 0 0.3

C2 HQ/one-story 
building

0 0 0.4 0.4 0.2 0.4 0 0 0.5 0

Comms RF systems 0 0 0.4 0.4 0.2 0.4 0 0 0 0

Comms satellite 
downlinks

0 0 0.4 0.4 0.2 0.4 0 0 0 0

Communication 
equipment

0 0 0.4 0.4 0.2 0.4 0 0 0 0

Communication 
facilities

0 0 0.4 0.4 0.2 0.4 0 0 0 0

Depots 0.05 0.05 0 0.05 0 0 0 0 0 0.05

Fiber optic systems 0.7 0.95 0.4 0.4 0.2 0.4 0.6 0 0.5 0.6

Intelligence processing 
center

0 0 0.4 0.4 0.2 0.4 0 0 0 0

Land-based passive 
detection

0.9 0.95 0.4 0.4 0.2 0.4 0.6 0 0.5 0.6

Land-based radar 0 0 0.1 0.98 0.8 0 0 0.9 0.95 0

Personnel carrier 
formation

0.05 0.1 0.4 0.05 0.7 0 0 0 0 0

POL refineries 0.98 0.98 0.8 0.98 0.98 0 0.95 0 0.8 0.9

Port infrastructure 0.4 0.95 0.95 0.1 0.05 0.1 0.4 0 0 0.2

Port systems 0.1 0.1 0.2 0.05 0.8 0 0 0 0 0

Ships at sea 0.25 0.5 0.5 0.98 0.4 0.4 0 0 0 0

Ships in port 0.5 0.5 0.4 0.9 0.5 0.4 0 0 0.5 0

Submarine pens 0.9 0.1 0.5 0.95 0.2 0.4 0 0 0 0.4

Surface-to-air missiles 0.05 0.1 0.05 0.05 0.8 0 0 0 0 0.8

Surface-to-surface 
missiles

0.5 0.98 0.95 0.98 0.8 0 0 0 0 0

Tank—individual 0.05 0.05 0.3 0 0.8 0 0 0 0 0

Terror cell meeting 
place

0 0 0.95 0.4 0.2 0.4 0 0 0 0

Troops in the field 0 0 0.95 0.05 0 0 0 0 0 0

Weapon transport—
systems

0.9 0.95 0.5 0.7 0.05 0 0 0 0 0.3

Weapon transport 
infrastructure

0.9 0.95 0.95 0.95 0.4 0.2 0 0 0 0

WMD storage sites 0 0 0 0 0 0 0 0 0 0
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Table C.9b
Pk Table for Weapons 10–19

Real World Targets

W10:  
GBU-10 

Paveway  
II  

(Mk 84)

W11: 
GBU-12 

(Paveway  
II)

W12: 
GBU-15 

(BLU-109)

W13: 
GBU-15 
(Mk 84)

W14:  
GBU-24 

Paveway  
III  

(BLU-109)

W15:  
GBU-24 

Paveway  
III  

(BLU-116)

W16: 
GBU-24 

Paveway  
III  

(Mk 84)

W17: 
GBU-28 
Bunker 
Buster

W18: 
GBU-31 
JDAM 

(2,000 lb)

W19: 
GBU-32 
JDAM 

(1,000 lb)

Aircraft on the ground 0.8 0.8 0.95 0.95 0.5 0.95 0.95 0 0.98 0.98

Aircraft shelters 0.2 0 0 0.7 0.6 0 0.7 0.95 0.95 0.5

Airfields 0.98 0.7 0.98 0.05 0.05 0 0.05 0 0.05 0.98

Barracks 0 0 0 0 0 0 0 0 0 0

Bunkers 0.5 0 0.9 0.95 0 0 0.6 0 0.6 0.2

C2 HQ/one-story 
building

0 0.5 0 0 0 0 0 0 0 0.4

Comms RF systems 0 0 0 0 0 0.4 0 0 0 0

Comms satellite 
downlinks

0 0 0 0 0 0.4 0 0 0 0.4

Communication 
equipment

0 0 0 0 0 0.4 0 0 0 0

Communication 
facilities

0 0 0 0 0 0.4 0 0 0 0

Depots 0.05 0 0.05 0.05 0.05 0 0.05 0 0.05 0.05

Fiber optic systems 0.8 0.4 0.8 0.7 0 0 0.9 0 0.95 0.4

Intelligence processing 
center

0 0.4 0 0 0 0.4 0 0 0 0

Land-based passive 
detection

0.8 0.4 0.8 0.95 0.7 0.4 0 0 0.95 0.3

Land-based radar 0 0.8 0 0 0 0.95 0 0 0 0.1

Personnel carrier 
formation

0.5 0.5 0.95 0 0 0.95 0.05 0 0.95 0.8

POL refineries 0.9 0.95 0.98 0.98 0.98 0 0.98 0 0.98 0.98

Port infrastructure 0.7 0 0.1 0.95 0.4 0 0.8 0 0.9 0.4

Port systems 0.4 0.7 0 0 0 0 0.9 0 0.1 0.05

Ships at sea 0.4 0.1 0 0.6 0 0 0 0 0 0.1

Ships in port 0.4 0.1 0 0.9 0 0.95 0.5 0 0 0.1

Submarine pens 0.5 0.5 0.9 0.95 0.5 0 0.6 0 0.6 0.2

Surface-to-air missiles 0.8 0.8 0 0 0.9 0.95 0.95 0 0.05 0.05

Surface-to-surface 
missiles

0.8 0.8 0.95 0.95 0.5 0.95 0.95 0 0.98 0.98

Tank—individual 0.2 0 0 0 0 0 0.8 0 0.05 0

Terror cell meeting 
place

0 0 0 0 0 0 0 0 0 0

Troops in the field 0 0.4 0 0 0 0 0 0 0 0

Weapon transport—
systems

0.4 0.05 0.4 0.98 0.05 0 0.8 0 0.9 0.8

Weapon transport 
infrastructure

0.2 0 0 0.9 0.5 0 0.4 0 0 0.1

WMD storage sites 0 0 0 0 0 0 0 0 0 0



82    Defense Resource Planning Under Uncertainty

Table C.9c
Pk Table for Weapons 20–29

Real World Targets

W20: 
GBU-
36/37 
(GAM)

W21: 
GBU-38 
JDAM 

(500 lb)

W22: 
GBU-39 

SDB

W23: 
GBU-53B 

SDB II

W24:  
GBU-54 
(Laser 
JDAM)

W25:  
GBU-57B 

MOP

W26: 
MGM-
-168 

ATACMS
W27: 

Mk-82
W28: 
Mk-83

W29: 
Mk-84

Aircraft on the ground 0.98 0.98 0.9 0.9 0.95 0 0.4 0.1 0.15 0

Aircraft shelters 0.6 0 0 0 0 0.98 0 0 0.2 0.4

Airfields 0.98 0.7 0 0 0.7 0 0 0.05 0.1 0.2

Barracks 0 0 0 0 0 0 0.8 0 0 0

Bunkers 0.3 0 0 0 0 0 0 0 0.1 0.25

C2 HQ/one-story  
building

0 0.4 0.2 0.2 0.4 0 0.2 0.1 0 0

Comms RF systems 0 0 0.1 0.1 0 0 0.2 0 0 0

Comms satellite  
downlinks

0 0.4 0.2 0.2 0.4 0 0.2 0.1 0.1 0

Communication 
equipment

0 0 0.1 0.1 0 0 0.2 0 0 0

Communication  
facilities

0 0 0.1 0.1 0 0 0.2 0 0 0

Depots 0.1 0.1 0 0 0 0 0 0 0.1 0.2

Fiber optic systems 0.4 0.4 0.2 0.2 0.9 0 0.2 0.1 0.2 0.2

Intelligence processing 
center

0 0.4 0.2 0.2 0.4 0 0 0 0 0

Land-based passive 
detection

0.4 0.4 0.2 0.2 0.4 0 0.4 0.1 0.15 0.2

Land-based radar 0 0.1 0 0 0 0 0.4 0.1 0 0

Personnel carrier 
formation

0.85 0.7 0 0 0.7 0 0.6 0 0 0

POL refineries 0.98 0.98 0.8 0.8 0.85 0 0.8 0.6 0.7 0.8

Port infrastructure 0.5 0.4 0.2 0.2 0.25 0 0 0.1 0.2 0.3

Port systems 0.1 0.1 0 0 0.1 0 0.1 0.1 0.15 0.3

Ships at sea 0.2 0.1 0 0 0 0 0 0 0 0

Ships in port 0.15 0.1 0 0 0 0 0 0 0 0

Submarine pens 0.4 0 0 0 0 0.98 0 0 0 0.1

Surface-to-air missiles 0.1 0.05 0.05 0.05 0.05 0 0.2 0 0 0

Surface-to-surface  
missiles

0.98 0.9 0.1 0.1 0.1 0 0.2 0 0 0

Tank—individual 0 0 0 0 0 0 0 0 0 0

Terror cell meeting  
place

0 0 0.5 0.5 0 0 0.9 0 0 0

Troops in the field 0 0.5 0 0 0 0 0.8 0 0 0

Weapon transport—
systems

0.95 0 0.4 0.4 0.5 0 0 0.1 0.2 0

Weapon transport 
infrastructure

0.15 0 0 0 0 0 0 0 0.1 0.25

WMD storage sites 0 0 0 0 0 0.9 0 0 0.1 0.1
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Table C.10
DoD Budget as a Percentage of GDP,  
Based on the Security Environment  
in the Previous Period

Security Environment % of GDP

Major regional campaign 7.0

Quiescent 3.5

Deterrent 4.0

Long major regional 6.0

Multiple major regional 13.5

Global war 20.0

Figure C.1
Historic Defense Spending as a Share of GDP

SOURCE: usgovernmentspending.com.
RAND RR1112-C.1
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Table C.11
Growth of GDP  
(Constant FY 2013 Dollars)

Year
GDP  

($ Thousands)

2014 15.7T

2016 16.0T

2018 16.4T

2020 16.9T

2022 17.3T

2024 17.7T

2026 18.2T

2028 18.6T

2030 19.1T

2032 19.5T
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Today’s defense resource planners face unprecedented uncertainty. The planning processes currently used to 
determine what forces and capabilities will be needed to address future threats to our national security and interests 
may be vulnerable to predictive failure. To manage these risks, a new approach to planning is needed to identify 
strategies that perform well over a wide range of threat and funding futures and thus are better able to manage 
surprise. This report describes how robust decision making (RDM) may help address this need. RDM, a quantitative 
decision support methodology for informing decisions under conditions of deep uncertainty and complexity, has 
been applied to many policy areas in the last decade. This document provides a proof of concept application of 
RDM to defense planning, focusing on the air-launched munitions mix challenge. The study embeds a fast-running 
“weapons on targets” allocation model within a “scenario generator” that explores many thousands of plausible, 
future 20-year series of military campaigns. The RDM analysis uses these simulation models to stress-test alternative 
munitions mix strategies against many plausible futures. The analysis then identifies a robust munitions mix strategy, 
which interestingly depends not only on the desired portfolio of alternative weapons types but also on the rules 
used to replenish depleted weapons stocks after each campaign. The study also suggests how RDM might best be 
integrated into current DoD planning processes and some of the challenges that might be involved.
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