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Preface 

In 2015, the U.S. Department of Defense participated in a federal interagency disease- 
forecasting challenge to help identify suitable forecasting models for dengue fever, a debilitat-
ing mosquito-borne infectious disease that is common across the tropics and subtropics and 
thus highly relevant to military medical readiness. As a result of that disease-forecasting chal-
lenge, Department of Defense leaders recognized the need to better connect modeling to the 
policy context, and that need gave rise to the present report.

Thus, this report describes models and other decision-support tools that can help provide 
answers to real-world questions about infectious disease prevention and response. The intended 
audience includes technical experts and the policymakers whom those experts can support. 
This overview should help modelers with the critical task of understanding both the questions 
that policymakers want answered and when those answers are needed. Similarly, as we explain, 
policymakers can benefit from a basic understanding of the capabilities and limitations of the 
different tools that may inform their decisions. This report describes five classes of models and 
other nonmodeling decision-support tools, then aligns those classes with the policy questions 
that they are best suited to address. We selectively use previous RAND Corporation work as 
illustrative examples, not intending to suggest that these sources represent the only or the best 
examples of the tools’ applications. Finally, we offer nine recommendations that suggest pos-
sible ways forward to best develop and use different decision-support tools. 

This research was conducted within the Forces and Resources Policy Center of the National 
Defense Research Institute, a federally funded research and development center sponsored by 
the Office of the Secretary of Defense, the Joint Staff, the Unified Combatant Commands, 
the Navy, the Marine Corps, the defense agencies, and the defense Intelligence Community. 

For more information on the Forces and Resources Policy Center, see www.rand.org/
nsrd/ndri/centers/frp or contact the director (contact information is provided on the web page).

http://www.rand.org/nsrd/ndri/centers/frp
http://www.rand.org/nsrd/ndri/centers/frp
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Introduction 

Infectious disease outbreaks present a challenge to nations and the interconnected global com-
munity. As evidenced by the outbreaks of severe acute respiratory syndrome (SARS) in 2003, 
influenza in 2009, Ebola and Middle East respiratory syndrome (MERS) in 2014, and the 
Zika virus in 2016, infectious diseases can spread rapidly within countries and across national 
borders. Policymakers are responsible for decisions about the nature and timing of appropri-
ate courses of action to prevent, detect, and respond to an infectious disease outbreak. They 
need answers to questions about when, where, how fast, and how widely disease will spread; 
about the availability, effectiveness, cost, and potential unintended consequences of interven-
tions; and about how to assess performance during and after an outbreak response. The poli-
cymakers’ decisions must be made at different points as an outbreak emerges and spreads and 
with varying degrees of warning or available data to support those decisions. Evidence-based 
 decision support can play a crucial role in informing these decisions, even taking critical uncer-
tainties into account. However, modeling for decision support has not always been entirely 
satisfying. For example, many analyses of the 2009 influenza pandemic,1 as well as other 
outbreaks,2 have revealed failures to use models properly. Although there has been notable 
success and progress since then, further work is needed—for example, to clearly define expec-
tations and to improve coordination among modelers and between modelers and clinicians, 
epidemiologists, and policymakers.3 

Joseph Califano, Secretary of Health, Education, and Welfare in the late 1970s, raised 
a key question from the policymaker side: “How shall top lay officials, who are not [neces-
sarily] themselves expert, deal with fundamental policy questions that are based, in part, on 
highly technical and complex expert knowledge?”4 The intention of this report is to offer some 
guidance for how technical experts can provide appropriate information to policymakers to 

1 B. Y. Lee, L. A. Haidari, and M. S. Lee, “Modelling During an Emergency: The 2009 H1N1 Influenza Pandemic,” 
Clinical Microbiology and Infection, Vol. 19, No. 11, November 2013. 
2 Richard E. Neustadt and Harvey V. Fineberg, The Swine Flu Affair: Decision-Making on a Slippery Disease, U.S. Depart-
ment of Health, Education, and Welfare, 1978.
3 Maria D. Van Kerkhove and Neil M. Ferguson, “Epidemic and Intervention Modelling—A Scientific Rationale for 
Policy Decisions? Lessons from the 2009 Influenza Pandemic,” Bulletin of the World Health Organization, Vol. 90, No. 4, 
2012.
4 Joseph Califano, Jr., “Introduction,” in Richard E. Neustadt and Harvey V. Fineberg, The Swine Flu Affair: Decision-
Making on a Slippery Disease, U.S. Department of Health, Education, and Welfare, 1978.
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help them make decisions on issues that are complex and that require significant technical 
understanding.5 

Specifically, this report focuses on decision support—which encompasses the data and 
information that models or other approaches can provide to guide policymakers and inform 
decision processes6—related to preventing, detecting, and responding to infectious disease 
 outbreaks. We describe models and other relevant approaches that can be used to answer 
policymakers’ questions in this area, and we draw on previous RAND Corporation work as 
illustrative examples of the applications of such tools.7 With this report, we aim to frame and 
respond to policymakers’ information needs and consider possible ways forward to best develop 
and use various decision-support tools. In doing so, we hope to increase technical modelers’ 
appreciation of the contexts in which their models are being used and broaden policymakers’ 
understanding of the tools that may inform their real-world decisions.8

5 These technical experts may include policymakers’ own analytic staff, modelers, experts associated with the various non-
modeling tools discussed later in this report, and subject-matter experts, such as infectious disease specialists.
6 The formalization or categorization of methods for problem-solving has its own extensive literature. There are many in-
depth works on this topic that are beyond the scope of this report. For an approach for policy analysis, see Eugene Bardach, 
A Practical Guide for Policy Analysis: The Eightfold Path to More Effective Problem Solving, 4th ed., Thousand Oaks, Calif.: 
CQ Press, 2012. For a more lighthearted and generally accessible approach to the process, see Ken Watanabe, Problem Solv-
ing 101: A Simple Book for Smart People, New York: Penguin Group, 2009. 
7 Our selective use of sources from RAND researchers is not intended to suggest that these reflect the only or the best 
examples of applications of the various models.
8 We have aimed to provide a relevant level of technical detail, trying to avoid both too much simplification (e.g., for mod-
elers) and too much technical complexity (e.g., for policymakers).
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Decision Support: A Collaborative Endeavor

When policymakers must make decisions about uncertain events and want to understand the 
potential impact of different actions, they often draw on modeling and other methods created 
by technical experts (e.g., modelers). However, it becomes problematic when policymakers 
misunderstand or misuse models. This can occur because of incorrect assumptions, inappro-
priate use of models, failure to understand model limitations, or bad communication. Deci-
sion support involves providing evidence to guide decisions. Both policymakers (including 
analysts on their staff) and modelers benefit from a clear understanding of the capabilities, 
limitations, processes, and issues involved in constructing and using these tools. By under-
standing the different approaches to providing evidence-based decision support, policymak-
ers can draw on the appropriate decision-support tools, and modelers can ensure that their 
contributions are useful. 

Decision support should be a collaborative endeavor; ideally, modelers should understand 
the needs of policymakers and policymakers should understand the capabilities and limitations 
of modelers and their tools. In general, some models are well suited to assess the relative merits 
of different interventions but face challenges when required data are not available in time to 
make real-time decisions (rendering early data collection especially critical). In some instances, 
models cannot be built, modified, or run quickly enough to provide needed answers in a timely 
fashion. Other models are useful for rapid forecasting, even with limited data, but they cannot 
easily be used to compare potential interventions. Still other, nonmodeling approaches, such 
as exercises (i.e., gaming), can be useful for training or facilitating coordination of outbreak 
preparedness and response, but they are not useful for forecasting disease spread. Ideally, both 
policymakers and modelers should have a common understanding of this range of capabili-
ties and limitations. In addition, modelers should have a broad understanding of the decision-
support process itself and an appreciation for the information needs of policymakers and the 
decisions to be made.1 This allows the modelers to suggest what aspects of the problem they are 
equipped to handle, when an approach or combination of approaches is warranted, and when 
they should defer to others. 

At its best, collaboration between modelers and policymakers can make the decision-
support process easier and more helpful for all parties. Policymakers provide clear statements 

1 While this report focuses on describing decision-support tools, there is an extensive literature on the decision-support 
process itself. For an excellent high-level overview for policy decisionmaking that may be useful for modelers who are 
unfamiliar withi it, see Bardach, 2012. For more depth about the modeling process for policy, see E. S. Quade, Analysis for 
Public Decisions, New York: Elsevier, 1975, which focuses on models that support policy. See also M. Granger Morgan and 
Max Henrion, Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge, UK: 
Cambridge University Press, 1990, which focuses more on technical details.
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of their needs and goals, as well as continuing guidance on what will or will not be useful to 
them. Meanwhile, technical experts tailor the tools they use and their policy advice to address 
these stated needs and goals, and they use a combination of methods to provide more-complete 
answers and ensure that the policymakers have a robust understanding of the limitations of 
those answers.

The Decision-Support Process

The decision-support process begins with defining the questions to be answered and the out-
comes of interest to both the policymakers who need to answer these questions and the pro-
gram managers who implement the decisions.2 The values, criteria, and alternatives considered 
by policymakers must be defined at an early stage in the process (before choosing or creating 
the model); otherwise, as explained by Morgan and Henrion, “the result can be an analytic 
muddle that no amount of sophisticated analysis . . . can help to unscramble.”3 Thus, it is 
important to have a clear sense of the types of questions that policymakers responsible for 
infectious disease prevention, detection, and response might ask. Similarly, their goals must be 
well understood by those who will provide decision support. We categorize an illustrative list of 
questions in Figure 1, grouped by when they would be raised and what concerns they address. 

2 Terminology for the decision-support process differs greatly. For example, Quade (1975) calls this “initiating the ana-
lytic process” and “objectives and criteria,” and Bardach (2012) calls it “defining the problem” and “select[ing] the criteria.”
3 Morgan and Henrion, 1990, p. 30.

Figure 1
Questions for Infectious Disease Policy Decisions
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How likely is it that the disease will come to my country or community? 
How fast will the disease spread? 
How extensively will the disease spread?

Across how large an area?
When will the incidence and medical demand peak?
How serious will an outbreak be? 

How many people will be infected? How many will die?
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s What interventions are possible? 

What is the range of intervention choices?
What effect will interventions have?
What are the costs and benefits or cost-effectiveness of intervention(s)?
What intervention(s) should be undertaken?

What effect can we realistically expect to achieve?
How prepared are we? 

What medical capacity and capabilities are needed? How well are key (medical, emergency, public 
health) actors prepared and coordinated? How can we improve our preparedness? What will facilitate 
or impede effectiveness (e.g., timing, coverage, uptake or acceptance of intervention)?

How cost-beneficial is preparedness?

R
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What is going on (i.e., situational awareness)? 
What medical capacities and capabilities are needed? 

How much? Where? Do we have enough of them when and where they are needed?
How well are we doing (during a response)?

What can we fix or do better? What can or should we replicate?
How did we do (after a response)?

What are the implications for next actions in this response or future responses?
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This list will later guide the discussion between technical experts (modelers and others) and 
policymakers of how evidence-based decision support can be used to answer the questions. 

As the figure illustrates, policymakers and program managers have a variety of concerns 
and many potential future decisions to make about infectious disease prevention, detection, 
and response. It is important to understand which types of information, coming from models 
or other decision-support tools, are suited for which types of decision (that is, to answer which 
questions). 

After defining the policy questions, the next step in the decision-support process is to 
select or develop models, or apply other techniques appropriate to address those questions. How-
ever, doing so intelligently requires understanding existing models and techniques. The next 
section presents a general overview of five classes of models and nonmodeling approaches; the 
appendix includes more technical details on those tools. 

Selecting the type of model or tool, typically the task of a technical expert (e.g., modeler 
or other analyst), also requires an understanding of and planning for how model outputs will 
be used. As Van Kerkhove and Ferguson note, “Modelling provides a means for making opti-
mal use of the data available and for determining the type of additional information needed to 
address policy-relevant questions.”4 However, policymakers cannot always decipher the struc-
ture and assumptions of the models used, which was one of the problems observed during 
the 2009 influenza pandemic.5 As a result, some of the most-useful models employed in out-
break preparedness and investigation are not operated in real time to inform policy decisions; 
instead, analysts rely heavily on classical statistical models during an outbreak to understand 
the data coming in.6 This is partially a strength of statistical models,7 but it is also a failure in 
preparedness to not have responsive systems in place to address these needs using other classes 
of models.8 

After selecting and implementing an appropriate model or other decision-support tool, 
the next step in the decision-support process is to communicate results. Modeling is a process 
of approximating reality, which is limited by uncertainties about relationships and parameter 
values, among other factors. These limitations mean that the decisionmaking process requires 
both an understanding of the different types of uncertainty present in the analysis and an 
expertise in communicating such uncertainties. 

At the most basic level, technical experts, especially modelers, distinguish between two 
types of uncertainty: (1) model and parameter uncertainty (that is, the model is inexact—for 
example, because of simplifications or uncertain assumptions) and (2) stochastic or aleatory 
uncertainty (that is, even if the model is correct, the predictions are inexact because of inher-
ent randomness in the system being modeled). Modelers can describe and quantify these types 
of uncertainty through a variety of different means. They then must ensure that policymakers, 
with or without technical backgrounds, and their analytic staff understand the uncertainties 

4 Van Kerkhove and Ferguson, 2012, p. 307. 
5 Lee, Haidari, and Lee, 2013.
6 Van Kerkhove and Ferguson, 2012.
7 Martin Meltzer, “What Do Policy Makers Expect from Modelers During a Response?” presentation, CDC Grand 
Rounds, January 19, 2016.
8 Modelers who provide much of the modeling resources are not necessarily available on an ad hoc basis, so preexisting 
networks of practitioners and responders rely only on models they can build, modify, and run themselves.
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and limitations. An extensive and complex literature addresses the critical issues related to 
modeling uncertainties, most of which are beyond the scope of this discussion.9

The final step in the decision-support process is to make and implement the decisions. 

9 For a useful introduction, see Morgan and Henrion, 1990. See also M. Brugnach, C. Pahl-Wostl, K. E. Lindenschmidt, 
J. A. E. B. Janssen, T. Filatova, A. Mouton, G. Holtz, P. van der Keur, and N. Gaber, Complexity and Uncertainty: Rethink-
ing the Modelling Activity, Lincoln, Neb.: U.S. Environmental Protection Agency Paper 72, 2008. There is also extensive 
work relevant to different model types; see further discussion in the appendix.
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Decision Support Using Models

As noted earlier, models constitute a large part of the decision-support tools used in public 
health. As Tom Frieden, director of the Centers for Disease Control and Prevention, noted, 
“Modeling has demonstrated its value and will continue to grow as a vital tool for public health 
decision making.”1 Responsible use of model-driven analysis can inform policy decisions and 
prevent such problems as overconfidence in models, insufficient attention to uncertainty, and 
lack of awareness of the difficulty of implementation.2 Therefore, the capabilities and limita-
tions of models and modeling should be understood before decisions are made about taking a 
specific approach. Investments of time and resources for building models should target their 
ultimate users and uses—to answer relevant questions and examine actionable alternatives. 
This report follows that orientation by focusing on the strengths, weaknesses, and practical 
applications of different types of models and, following this, discusses some of the other tools 
that have been, or could be, used to inform public health decisions.

While disease models can play a key role in addressing the types of policy questions dis-
cussed in Figure 1, a single model may be insufficient on its own to answer all questions, or 
even one question. Combinations of different model types, or of models and other decision-
support tools, are often employed. Within a decision-support process, many decisions require 
modeling both the disease and related phenomena, such as economic impacts, or using models 
in conjunction with other decision-support tools, such as exercises or exploratory modeling. 
For example, decisions about preparedness for a disease outbreak may require a model that 
includes the health care system’s capabilities, and decisions about the impact of a disease may 
require an economic model to project outcomes. 

Overview of Infectious Disease Models and Their Uses

In general, a model is any simplified representation of reality that is intended to answer 
 questions.3 This general definition includes a diverse range of possible approaches. In our dis-
cussion, we limit our definition of models to techniques that represent the progression of infec-
tious diseases in a population, all of which are mathematical or computational, although we 

1 Tom Frieden, “Staying Ahead of the Curve: Modeling and Public Health Decision-Making,” presentation, CDC Grand 
Rounds, January 19, 2016.
2 We draw from both Neustadt and Fineberg’s work and more-recent work, which has developed clearer frameworks for 
understanding various communication failures and how they can be remedied.
3 Quade, 1975.
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note examples in which other types are used. Even within the somewhat limited scope of 
decision support related to infectious disease outbreaks, a wide variety of models are available. 
Understanding different model types and alternative approaches for supporting decisions is 
important for anyone intending to use them to support policy decisions and for anyone whose 
 decisions are supported by such tools.

In this section, we establish a practical “taxonomy” of models relevant to infectious dis-
ease decisionmaking and provide a brief overview of each model type, including the basic 
design, typical uses, and limitations. This necessarily simplifies the complexity of how these 
models can overlap, be used together, or use hybrid approaches, but it should provide a reason-
able initial overview.4 In the appendix, we provide more details about how each model works, 
the requirements to build and use one, its limitations, and examples of how it has been used to 
support policy decisions related to infectious diseases. 

Models of the progression of infectious diseases in a population can be divided into two 
broad categories. Those in the first category—theory-based models—use theoretical under-
standing of biological and social processes to represent the clinical and epidemiological course 
of a disease. Those in the second category—statistical models—bypass the details of disease and 
population and use statistical patterns of disease to represent disease occurrence. 

Theory-Based Models

Theory-based models use scientific knowledge—drawing from biology, demography, sociol-
ogy, and social psychology—to model how a disease progresses through populations and how 
population behavior and characteristics affect disease transmission. In general, theory-based 
models are more useful for examining and comparing potential interventions (some better 
than others within this class of model) than for forecasting future disease occurrence. This 
class of model requires a theoretical understanding of the pathogen, how it causes disease in 
a person, factors involved in disease transmission, and clinical outcomes in order to represent 
how much and why a disease spreads. These models therefore require an understanding of the 
scientific variables associated with disease spread. The detailed understanding required to build 
such models can be daunting, and precise models that fully represent different aspects of the 
disease can sometimes be impractical because scientific resources are limited. Theory-based 
models can be categorized into population models, which represent large, aggregated groups of 
people, and simulation models, which represent smaller-scale groups or individuals. 

Population Models

Population models, also known as compartmental models or stock-and-flow models, divide 
the human population into “compartments” that represent people at different clinical stages, 
including susceptible (pre-infection), infected, and recovered.5 Because population models are 

4 Any categorization of models is rough, but this categorization, we hope, provides a useful overview. For decision sup-
port, the model types can be, and frequently are, used in combination with one another. Given these caveats, we acknowl-
edge that some models may not easily fit this taxonomy exactly but will share characteristics with the model types they 
incorporate.
5 For a comprehensive introductory treatment, see R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynam-
ics and Control, Oxford, UK: Oxford University Press, 1991.
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structured around scientific parameters that capture the flow of disease transmission, they are 
among the best available modeling tools for understanding the dynamics of disease spread. 
This is partly because their requirements and complexity are less demanding than other theory-
based models (described later) and partly because of their speed and flexibility. Specifically, 
they can be used to explore potential effects of untested interventions by comparing predicted 
model results assuming no intervention (“baseline”) with results that introduce the interven-
tion into model inputs. The relative simplicity in building the basic model (less-challenging 
data requirements, time requirements, and complexity than other types of models, includ-
ing other theory-based models) and the speed and ability to represent changes in the disease 
dynamics make population models particularly useful for exploring different features of dis-
ease dynamics. On the other hand, the simplifications make them more limited in predictive 
ability, and they are less useful for modeling heterogeneous population groups. One such sim-
plification is that simple compartmental models are deterministic and, therefore, do not cap-
ture uncertainty resulting from chance variation well. The appendix provides more technical 
detail and an example of using a compartmental model to understand the spread of the human 
immunodeficiency virus (HIV).

Simulation Models

Simulation models, broadly, represent individuals or small groups and track their status over 
time. Various types of simulation models use a similar modeling approach but different com-
putational methods. They are higher fidelity than population models.6 Simulation models 
expand on the scientific theory basis that underpins population models by explicitly includ-
ing processes that are only approximated in an aggregated fashion in population models. The 
appendix discusses the advantages and disadvantages in more detail, but the obvious advantage 
of simulation models is their added flexibility and precision, albeit at the cost of more complex-
ity when building the models and slower speed when running them. Simulation models can be 
further categorized as either microsimulation models or agent-based models. 

Microsimulation models for infectious diseases represent individuals explicitly and define 
events that individuals may experience, instead of defining a fixed set of possible compartments 
or states the way that theory-based population models do. They use empirically derived data 
about disease spread to more accurately represent the spread of the disease over time, allowing 
a much richer, dynamic evolution of the disease spread. The empirical data can be derived from 
statistical regression or from other traditional statistical models using available data (discussed 
in the appendix).7 For example, a microsimulation model may include a variable for how infec-
tious an individual is, instead of assigning the individual to the category of “infectious,” as in 
a population model, or representing the number of people with whom the person interacts, as 
in an agent-based model (see below). This means, for instance, that the model can represent 
disease  progression in more detail. 

Like population models, microsimulation models can be used to compare potential inter-
ventions and, to a somewhat lesser degree, to forecast disease. They are much more flexible 
in what they can represent than population models, because they allow understanding the 

6 The methods for solving or simulating the different types of models can differ greatly, but for our purposes, these are 
computational, rather than modeling, concerns.
7 For a more complete overview of these models in a variety of areas, see Cathal O’Donoghue, Handbook of Microsimula-
tion Modelling, Bingley, UK: Emerald Group Publishing, 2014.
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interactions between different parts of an entire policy system, including representation of 
medical care, economic factors, and many other important features for modeling complex 
interventions. Compared with population models, however, microsimulation models require 
more data, a more complex build process, and much more computational work to represent 
individuals (versus the aggregated populations represented in a population model).

Agent-based simulation models describe the interplay between the behavior of individu-
als and their disease status. While these models can be considered a special case of micro-
simulation models, the typical focus of agent-based models is different. They represent the 
behaviors of individuals instead of the types of empirically derived data about disease spread 
used by microsimulation models. Individuals’ behaviors follow predefined rules and can be 
functions of different endogenous factors. For example, people may avoid other people when 
they observe that many others are infected, thereby slowing the spread of disease. Similarly, 
they may be more likely to seek immunization if they see that many people were infected 
the previous year. This can create “emergent” properties of a system—those that are caused 
by the combination of factors—and these properties evolve over time. This model capability 
allows complex disease dynamics to result from relatively simple rules. Representations of the 
individual behaviors can lead to complex patterns of disease spread, and the resulting simu-
lation can be analyzed to track the spread of disease that emerged from individuals’ actions. 
As a consequence, agent-based models can show when rapidly spreading diseases may be less 
damaging as a result of behavioral changes that blunt the spread of the disease, or they may 
exhibit complex multiyear patterns. 

Agent-based models are well suited for comparing potential interventions and not as 
well suited for forecasting disease. They require several different types of inputs, more than 
most other model types, and are generally more expensive to create and evaluate than popula-
tion models. Data requirements are moderate—more than for population models and differ-
ent from the empirical data for microsimulation models. Similar to that of microsimulation 
models, the complexity of agent-based models is also greater and the computational speed 
slower than other model types described in this report.

One example of a policy application of an agent-based model comes from a project led by 
one of the authors of this report (Raffaele Vardavas) on behaviors toward vaccination based on 
different features of individuals’ social networks.8 Such modeling can be used to determine the 
extent to which interventions to influence social networks would be successful. The appendix 
provides further details of this illustrative example. 

Statistical Models 

Statistical models are distinct from theory-based models. They use mathematical relationships 
to directly represent quantities of interest, such as using past observed data to forecast future 
events (e.g., disease occurrence), relying on mining large amounts of data. Statistical models 
can reproduce dynamic real-world relationships by learning trends from empirical data and 
encoding these dependencies in a mathematical model, without directly representing the causal 

8  Raffaele Vardavas and Christopher Steven Marcum, “Modeling Influenza Vaccination Behaviour Via Inductive Reason-
ing Games,” in Piero Manfredi and Alberto D’Onofrio, eds., Modeling the Interplay Between Human Behavior and the Spread 
of Infectious Disease, New York: Springer-Verlag, 2013.
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scientific factors involved. These models use real-world outputs (i.e., the empirical “training” 
set of observed data), which allows the statistical method to learn the correct behavior (e.g., 
disease occurrence). 

In other words, the learned mathematical relationships, or patterns, are applied to fore-
cast future disease occurrence. Statistical models of all types enable this data-driven, induc-
tive prediction under limited model assumptions, despite potentially limited exact theoretical 
understanding. Because of this, practically all inductive learning includes an implicit assump-
tion of invariance,9 meaning that the past relationship between the disease characteristics and 
occurrence continues to tell us about future outbreaks. 

We can take this further in the context of decision support for infectious diseases: Models 
should be used to inform decisions only in scenarios similar to the model-building context; to 
the extent that the scenarios differ, any inference is less valid. For example, if a model uses data 
from only one location, or with just one type or intensity of intervention, using that model to 
make similar forecasts in a different location or under different conditions can be problematic. 

Statistical models are especially susceptible to this kind of problem because of their strong 
dependence on the training data. Additionally, there is a related, but more fundamental, prob-
lem specific to typical applications of statistical models. This is the problem of inferring causal-
ity: How can we infer a causal link between two events using statistical methods? This is often 
critical for questions of the relative merits of interventions (alternative pasts or future forecasts). 
Statistical models used for forecasting (as opposed to econometric statistical models used for 
evaluation) have difficulty answering such questions.

We describe two general classes of statistical models for representing diseases— traditional 
regression-based models and modern machine-learning models.10

Regression-Based Models

Regression-based models have been extensively used to model the real-world course of a disease 
and consequently can be considered a standard or traditional statistical approach.11 Through 
mathematical formulas, they seek to produce an optimal fit between input variables (potential 
predictors) and observed outcomes. These learned mathematical relationships do not require 
specification or even understanding of underlying theory—for example, related to spread of a 
specific pathogen. They are predictive models, not explanations, so they may not tell the full 
story. Regression-based statistical methods can also be limited in the range of relationships that 
they can model. Despite these limitations, such models are very computationally fast and can 
be used to model and understand relationships in the data even when the scientific relation-
ships are unknown. This means that quick and roughly accurate models can predict outcomes 
even when the causes are not known or understood, or when the scientific theory is insufficient 
for representation.

9 Leslie Valiant uses this term, which, in our setting, says that the dynamics and natural processes behind the disease being 
modeled do not change radically. See Leslie Valiant, Probably Approximately Correct: Nature’s Algorithms for Learning and 
Prospering in a Complex World, New York: Basic Books, 2013.
10 These categories overlap in many ways, and our explanation is again simplified. Many machine-learning models are gen-
eralizations (or simplifications) of traditional models, and so-called traditional regression-based models are able to represent 
much more-complex dynamics than our simple examples might otherwise suggest.
11 We exclude from our discussion the use of these models to evaluate randomized clinical trials or trial interventions, 
because those are applications for evaluating an intervention, not modeling the disease progression.
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Machine-Learning Models

Machine-learning models examine observed input and output data and use algorithmic sta-
tistical techniques to mathematically “learn” structured relationships in the data. Modern 
machine-learning methods extend the expressive range of traditional regression-based statisti-
cal methods to include more-complex dynamics. They can use more-complex adaptive math-
ematical structures to represent arbitrarily complex relationships. Therefore, their usefulness 
for disease-forecasting decision support is unsurprising. The basic approach is to use sample 
input-output data to learn complex relationships with the goal, in this context, of predicting 
future outputs. The complexity of the relationships makes machine-learning models more pre-
dictive but often harder to understand or explain. There are several powerful, versatile, and 
robust families of such models (see the appendix for more details). 

Comparison of Theory-Based and Statistical Models and Their Limitations

As a very high-level overview, we now compare the key characteristics of the three theory-
based and two statistical models described earlier (see Table 1). The relative utility and degree 
of challenge for each model type are based on the judgment of the project team and are 
intended as a rough overview, not an authoritative conclusion. The information in the table 
represents the typical case of each model, and specific techniques that exist for building dif-
ferent models can change the relative rankings. As discussed, theory-based models differ from 
statistical models in the way that they handle causality: Theory-based models incorporate 
causality; statistical models do not.12 Model specifications in theory-based models encode 

12 D. Lewis, “Causation,”  Journal of Philosophy, 1973, pp. 556–567; J. Pearl, Causality, Cambridge, UK: Cambridge 
 University Press, 2009.

Table 1
Comparison of Model Characteristics

Theory-Based Models Statistical Models

Characteristic Population
Micro-

simulation
Agent-Based 
Simulation

Regression 
Based

Machine 
Learning

Usea

Forecast disease

Compare interventions

Challengeb

Data 

Theory

Time (speed)

Modeling complexity

Communicating results

a Scale for use: Dark green = very useful; light green = useful; yellow = somewhat or possibly useful; red = 
typically difficult or not used.
b Scale for challenge: Dark green = least challenging; light green = only somewhat challenging; yellow = 
challenging; red = very challenging or most challenging.
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causal chains, or “laws,” for the modeled phenomena. In population models, for example, the 
coupled differential equations will specify scientific facts, such as “an increase in the suscep-
tible population causes an increase in the rate of infection.” We can infer an explanation of 
observed model outputs directly from the model. Such explicit specifications (when they are 
accurate) allow for robust simulations of what-if or counterfactual scenarios. Such scenarios 
are important for informing decisions about interventions. Statistical models do not naturally 
distinguish events in a causal chain from events that are merely correlated. Inferring causality 
using statistical models on observational data requires extra machinery.13 James Heckman,14 
Judea Pearl,15 Paul Rosenbaum and Donald Rubin,16 and others17 have proposed alternative 
approaches to causal inference.18

As a general overview, theory-based models work well when there is sufficient under-
standing and information on the disease dynamics to inform models meaningfully and when 
the models are sufficiently validated in the context considered. They are generally excellent for 
comparing potential interventions but less useful than statistical models for forecasting disease 
incidence. Of the five models compared in Table 1, population models are a good approach 
when used for qualitative understanding of disease outbreaks. In particular, they are excellent 
for comparing potential future interventions. They also run rapidly, they require less input 
data, and their results and structure are most easily communicated. However, they are harder 
to tune to match observed outbreak statistics or to give accurate quantitative predictions. On 
the other hand, regression-based and machine-learning statistical models can match observed 
statistics and give more-accurate forecasts without a full accounting of underlying disease char-
acteristics. But they require considerably more data to be useful.

In general, theory-based models provide a good qualitative description of how outbreaks 
evolve and what their dependencies are. Because of the models’ generality and requirements 
for underlying scientific information, they can be difficult to train for accurate prediction 
with limited resources. Within the larger group of theory-based models, population models 
provide a moderately useful level of understanding across a range of problems both rapidly 
and at low cost, but their limited accuracy can prove problematic. Simulation models can 

13 Identifying causal links between events involves building support for two related hypotheses: the conditional hypothesis 
(“If A, then B”—for example, if the susceptible population increases, then the rate of infection increases) and its counter-
factual hypothesis (“If not A, then not B”). Observational data (i.e., data recording observed events) can provide statistical 
support only for the conditional hypothesis because it accounts only for observed scenarios, not unobserved scenarios. This 
amounts to establishing correlations between observed events. Accordingly, observational data cannot directly support 
counterfactual hypotheses because counterfactuals involve unobserved, nonoccurring events. The goal of experimental 
design for randomized controlled trials is to observe data that address counterfactuals. Such trials remain the gold-standard 
approach to causal inference in spite of more-recent advances in quasi-experimental methods.
14 J. J. Heckman, “Econometric Causality,” International Statistical Review, Vol. 76, No. 1, 2008.
15 Pearl, 2009.
16 P. R. Rosenbaum and D. B. Rubin, “The Central Role of the Propensity Score in Observational Studies for Causal 
Effects,” Biometrika, Vol. 70, No. 1, 1983.
17 L. Bottou, J. Peters, J. Quinonero-Candela, D. X. Charles, D. M. Chickering, E. Portugaly, D. Ray, P. Simard, and 
E. Snelson, “Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising,” Journal of 
Machine Learning Research, Vol. 14, No. 1, 2013.
18 The methods of Heckman and Pearl are based on structural-equation models, directed acyclic graphs, and special opera-
tors for evaluating interventions. Rubin avoids structural-equation models and simulates randomized controlled trial condi-
tions using a family of matching methods. This allows for some limited evaluation of treatments or interventions.
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address some of these limitations (especially for understanding interventions) but not all of 
them, and the models are slower and more expensive to construct. They are constrained by 
uncertainty, limited knowledge, and the difficulty of fully modeling the scientific processes 
involved in disease spread.

Statistical models can make useful inferences and predictions when we do not have a full 
understanding of the constituent processes of the phenomenon of interest—that is, data inputs 
do not require an understanding of underlying causal mechanisms. But the use of statistical 
models comes at a price: higher sensitivity to violations of the invariance assumption (which 
is especially true when modeling complex phenomena with limited data19) and difficulty rep-
resenting the underlying causal relationships. Within the larger group of statistical models, 
traditional regression-based statistical models are easy to explain and are used widely to under-
stand relationships between individual variables for use in other models, as well as for rapid 
and simple approximations of trends or relationships. In contrast to this, machine-learning 
models are most useful for forecasting disease (i.e., prediction before an event), although, as 
noted earlier, data limitations are critical. Such models are also typically harder to explain to 
a nontechnical audience because the basis is mathematical instead of related to the origins of 
the disease. Both machine-learning and regression-based statistical models depend heavily on 
sufficient data; thus, additional data sources can make them more powerful, more useful, and 
applicable to more purposes. They can be used for intervention analysis, although only in cases 
in which there is a history of the intervention with sufficient high-quality data, which is rare 
given the significant data requirements.

Nonmodeling approaches (which are described in the next section) are typically more 
valuable for real-time decisions. They are informed by modeling, which is best undertaken 
before real-time decisions are needed. Most modeling processes outside of government agencies 
are not well adapted to this type of work.

Theory-based models and statistical models are sensitive to different types of errors. Con-
sider, for example, factors commonly responsible for inaccuracies in models of real-world phe-
nomena, such as disease incidence. One factor is the use of incorrect or improper parameters 
in models. The use of more data, more support from experts, and robust optimization methods 
can address this factor. Another factor is the use of models constructed under an imperfect or 
incomplete understanding of the causative links producing the phenomenon. This problem, 
termed model inadequacy, encapsulates the idea that most models are just approximations of 
real dynamics, and some approximations are too rough to capture dynamics of interest. 

Alleviating the model-inadequacy problem requires refining the model with further sci-
entific understanding or using more-expressive mathematics, but this solution assumes that 
there is relevant information or data to augment the model. Thus, model inadequacy can be 
tough to address in theory-based models. However, statistical models provide an alternative 
approach to addressing the problem. The supervision or machine-learning approach makes the 
effects of model inadequacy directly diagnosable in training. The downside is that final-tuned, 
data-driven statistical models are often difficult to interpret.

19 Complex phenomena demand complex models, and complex models have large numbers of parameters. The number of 
data samples needed to tune the model increases exponentially with the number of model parameters (the curse of dimen-
sionality; see the appendix).
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Nonmodeling Decision-Support Approaches

While models are useful heuristic tools to support policy decisionmaking, they are not the 
only tools in a policymaker’s repertoire. Outside of mathematical modeling, there are many 
useful tools for structuring decisions, simulating decision contexts, and synthesizing expertise 
for systematic application. These require different types of technical experts (that is, typically 
not modelers) but are also complex and need to be used carefully. Below, we outline several 
approaches or tools that are relevant to policy questions about infectious disease prevention, 
detection, and response. 

One of the most widely used nonmodeling approaches is public health surveillance, which 
refers to “the ongoing systematic collection, analysis, interpretation, and dissemination of data 
regarding a health-related event for use in public health action to reduce morbidity and mor-
tality and to improve health,”1 or, more simply, “systematic information for public health 
action.”2 Public health surveillance monitors disease occurrence to discern trends and detect 
anomalies, including rare events. The design and capabilities of a particular surveillance system 
determine the likelihood and timeliness of detecting a disease and the accuracy of reporting.3

The expert elicitation approach uses subject-matter expertise drawn from those with a deep 
understanding of the problem at hand, either to directly advise on a decision or to estimate 
particular inputs or values that can be used in decisionmaking. As a method, expert elicitation 
is capable of avoiding many pitfalls that can accompany the use of complex models, but it has 
significant drawbacks as well. 

As explained by Sutherland and Burgman, “The accuracy and reliability of expert opin-
ions [are] compromised by a long list of cognitive frailties,” but structured methods “alleviate 
the effects” of biases and the overreliance on individual opinion.4 For example, the Delphi 
method developed at the RAND Corporation in the 1950s,5 RAND’s online ExpertLens™ 
tool,6 and similar methods are capable of systematically capturing and then utilizing expert 

1 S. Thacker, “Historical Development,” in Steven Teutsch and R. Elliot Churchill, eds., Principles and Practice of Public 
Health Surveillance, New York: Oxford University Press, 2000. 
2 Melinda Moore, Edward Chan, Nicole Lurie, Agnes Gereben Schaefer, Danielle M. Varda, and John A. Zambrano, 
“Strategies to Improve Global Influenza Surveillance: A Decision Tool for Policymakers,” BMC Public Health, Vol. 8, 2008. 
3 Moore et al., 2008.
4 William J. Sutherland and Mark Burgman, “Policy Advice: Use Experts Wisely,” Nature, Vol. 536, October 2015, p. 317. 
5 RAND Corporation, “Delphi Method,” web page, undated c. 
6 S. Dalal, D. Khodyakov, R. Srinivasan, S. Straus, and J. Adams, “ExpertLens: A System for Eliciting Opinions from 
a Large Pool of Non-Collocated Experts with Diverse Knowledge,” Technological Forecasting and Social Change, Vol. 78, 
No. 8, 2011.
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opinion while mitigating these biases. One example of the modified Delphi process in use for 
public health emergencies was conducted in the mid-2000s. It was motivated by recent experi-
ences with the West Nile virus and SARS, as well as preparedness for potential outbreaks, such 
as monkeypox. This expert elicitation focused on evaluating a logic model and associated ques-
tionnaire designed to measure preparedness for infectious disease outbreak decisionmaking in 
the United States. The resulting 37-item performance measurement tool was found to reliably 
measure public health functional capabilities in a tabletop exercise setting, with preliminary 
evidence of a factor structure consistent with the original conceptualization and of criterion-
related validity.7

Exercises, also sometimes called games or gaming, include a variety of activities, such as 
tabletop exercises and drills. These activities place a range of key actors, from high-level policy-
makers to implementers on the ground, in a simulated emergency. The intensity of the exercise 
depends largely on the stage of planning (early or advanced) and the resources available. 

Exercises can range from a meeting with structured content intended to elicit thoughtful 
decisionmaking through conversation (that is, a tabletop exercise) to small-scale operational 
drills or full-scale simulated emergencies in which actors play victims and actual responders 
must participate. Exercises are carefully designed to target particular decisionmaking audi-
ences (e.g., policymakers, hospital administrators, emergency room physicians, military logis-
tics officers) and can be used to inform their planning and future decisions, elicit concerns in 
a structured way, find and explore alternatives that were not previously considered, or train 
participants. For example, between 2004 and 2007, RAND researchers designed and con-
ducted several tabletop exercises on pandemic influenza preparedness, both in the United 
States and internationally. At the state level, this was done to understand capabilities and to 
train participants,8 while, at the international level, similar exercises were used to practice, test, 
and evaluate responses to facilitate further planning.9

Policy analysis frameworks use best practices from policy analysis research to describe and 
consider the merits of a potential decision or intervention or to compare alternative interven-
tions. These frameworks can help policymakers to answer some of the key questions that arise 
quickly with an infectious disease threat and to assess the value of new or existing interventions 
for current and future threats. They can answer a question about a particular  intervention (is it 
a good idea?) or help policymakers compare alternative interventions (which one is best?). An 
example of such a policy analysis framework was developed by RAND researchers as a proof of 
concept in response to the 2014 Ebola outbreak.10 This tool is flexible enough to allow evalua-
tion of a single intervention, a few interventions with the same aim, or an entire landscape of 

7 E. Savoia, M. A. Testa, P. D. Biddinger, R. O. Cadigan, H. Koh, P. Campbell, and M. A. Stoto, “Assessing Public Health 
Capabilities During Emergency Preparedness Tabletop Exercises: Reliability and Validity of a Measurement Tool,” Public 
Health Reports, Vol. 124, No. 1, 2009.
8 D. J. Dausey, J. W. Buehler, and N. Lurie, “Designing and Conducting Tabletop Exercises to Assess Public Health 
Preparedness for Manmade and Naturally Occurring Biological Threats,” BMC Public Health, Vol. 7, 2007; and N. Lurie, 
D. J. Dausey, T. Knighton, M. Moore, S. Zakowsky, and L. Deyton, “Community Planning for Pandemic Influenza: Les-
sons from the VA Health Care System,” Disaster Medicine and Public Health Preparedness, Vol. 2, No. 4, 2008.
9 D. J. Dausey and M. Moore, “Using Exercises to Improve Public Health Preparedness in Asia, the Middle East and 
Africa,” BMC Research Notes, Vol. 7, 2014.
10 Margaret Chamberlin, Shira Efron, and Melinda Moore, A Simple Approach to Assessing Potential Health Emergency 
Interventions: A Proof of Concept and Illustrative Application to the 2014–2015 Ebola Crisis, Santa Monica, Calif.: RAND 
Corporation, PE-148-RC, 2015. 
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interventions. It defines several criteria against which an intervention can be judged—efficacy, 
ease of intervention, cost, risk of unintended consequences, political viability, social and cul-
tural viability, equity, and time frame. It then provides a real-world example of a single inter-
vention and an example that compares two alternative interventions, populating data for each 
criterion based on information from published papers and the media and color-coding each 
criterion using a simple green/yellow/red scheme. This illustrative example provides a simple, 
practical, proof-of-concept policy analysis tool that aims to fill potential gaps in a policy-
maker’s ability to systematically assess potential interventions. 

Even though the illustrative application of that tool is focused on Ebola, the conceptual 
approach and types of decisions are not unique to this public health emergency. Tools of this 
kind could be particularly useful in planning for or making decisions during response to 
different kinds of disasters, including both naturally occurring and manmade. In addition, 
the tools are flexible enough to accommodate policymakers’ time constraints: They could be 
successfully used to help policymakers decide quickly when needed on the basis of a swift 
review of published reports and consultation with just a few people in a short meeting, or 
they could be applied more rigorously using in-depth data collection, consultation, and 
analysis, if time permits.

An intra-action report is a practical, visually simple proof-of-concept tool also developed 
by RAND researchers in response to the 2014 Ebola outbreaks.11 It provides a systematic way 
to capture and communicate progress over the course of an emergency response to inform 
modifications to that response. This is a useful addition to traditional after-action reports, 
which are assessments of disaster response and recovery that are typically undertaken after 
an event to inform response to a future emergency. After-action reports typically focus on 
cataloging failures, often not capturing things that were done well. The intra-action report 
makes a clear distinction between simply documenting a success or failure and capturing a 
“lesson learned”—which is when action is taken to mitigate a problem or replicate a success. 
This tool provides a framework to track, synthesize, evaluate, and communicate the problems 
and successes identified or the lessons that are being learned during an ongoing public health 
emergency or disaster response and recovery effort and apply them during that same effort. An 
intra-action report also enables the capture of actions to successfully address initial negative 
experiences (i.e., lessons learned from initially doing things wrong) and replication of initial 
successes (i.e., lessons learned from doing things right—the “positive deviance” approach12).

11 Margaret Chamberlin, Adeyemi Okunogbe, Melinda Moore, and Mahshid Abir, Intra-Action Report—A Dynamic Tool 
for Emergency Managers and Policymakers: A Proof of Concept and Illustrative Application to the 2014–2015 Ebola Crisis, Santa 
Monica, Calif.: RAND Corporation, PE-147-RC, 2015. 
12 Richard T. Pascale, Jerry Sternin, and Monique Sternin, The Power of Positive Deviance: How Unlikely Innovators Solve 
the World’s Toughest Problems, Boston: Harvard Business Press, 2010.
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Alignment Between Policy Questions and Decision-Support 
Approaches 

Now that we have described several modeling and nonmodeling approaches, we can begin to 
align these with the expected policy questions (see Figure 1) that the approaches can support. 
Table 2 summarizes this alignment. Similar to in Table 1, the ratings here are based on our 
judgment and are intended as a rough overview, not an authoritative conclusion. In this case, 
they also assume sufficient theoretical understanding to create population models, as well as 
sufficient data to train the statistical models. 

In general, the theory-based models excel at addressing questions about understanding the 
phenomenon being modeled (e.g., What interventions are possible? How great is the threat?). 
The statistical models excel at mechanistic quantitative predictions concerning the phenom-
enon of interest (e.g., How fast will it spread? How many resources do we need to respond?). 
Both modeling approaches benefit greatly from data obtained from public health surveillance 
systems. Such data sources help anchor the models to the realities on the ground. 

In addition to their standard functions, policy analysis frameworks and intra-action 
reports can contribute to modeling—for example, to help shape the basic questions that the 
modeler should address. Using such tools to support modeling ensures that the results of mod-
eling efforts can lead more naturally to actionable recommendations. The theory-based models 
can be useful for analyzing potential interventions in this context. As described in the appen-
dix, developing hybrids of theory-based and statistical methods can improve the estimation 
accuracy of hypothetical intervention effects (e.g., to give high-accuracy estimates of the rela-
tive effects of interventions A and B).
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Table 2
Applicability of Models and Nonmodeling Approaches to Policy Questions

Questions for Infectious Disease Policy 
Decisions

Applicability of Approacha

Theory-Based Models Statistical Models

Nonmodeling ApproachesPopulation
Micro-

simulation
Agent-Based 
Simulation

Regression 
Based

Machine 
Learning

D
is

ea
se

 O
cc

u
rr

en
ce

How great a threat is the disease to a 
region, a population, or military forces?

Public health surveillance, expert elicitation  
(combined with modeling)

How fast will the disease spread? * Public health surveillance

How extensively will the disease spread? Expert elicitation (e.g., for model assumptions)

When will the incidence and medical 
demand peak?

Expert elicitation

How serious will an outbreak be? Expert elicitation

Pl
an

n
in

g
 a

n
d

 P
re

p
ar

ed
n

es
s What interventions are possible? Review of published literature

What effect will interventions have? Review of published literature

What are the costs and benefits or cost-
effectiveness of intervention(s)?

Economic analyses (cost–benefit, cost-
effectiveness)

What interventions should be 
undertaken?

Best-practice documentation; policy guidelines

How prepared are we? Gaming, tabletop or full-scale exercises, drills

How cost-beneficial is preparedness? Cost-benefit analysis

R
es

p
o

n
se

 

What is going on (i.e., situational 
awareness)?

Public health surveillance (if suited for real-time 
data)

What medical capacities and capabilities 
are needed?

Local, state, and federal emergency operations 
centers, including Internet-based resource-

monitoring tools

How well are we doing (during a 
response)?

** Intra-action report

How well did we do (after a response)? *** After-action report

a Scale for applicability: Dark green = very applicable; light green = applicable; yellow = somewhat or possibly applicable; white = not typically applicable. 
* Population modeling could be used to estimate R0, for example. See the appendix for more information on R0.
** Traditional regression-based modeling could be used for understanding real-time data, for example. 
*** Traditional regression-based modeling could be used for econometric evaluation, for example.
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Recommendations and Discussion

To enable better use of decision-support tools to inform infectious disease prevention, detec-
tion, and response, we offer several recommendations. These recommendations derive from the 
literature that we reviewed and our assessment of the characteristics and applicability of dif-
ferent types of models and nonmodeling approaches. They also reflect earlier discussion of the 
decision-support process, the ideally collaborative nature of decision support (i.e., collaboration 
between policymakers and modelers or other technical experts), and the roles of each side. We 
organize the first eight recommendations based on whose action is required and then conclude 
with a ninth recommendation about the modeling ecosystem as a whole. The discussion that 
follows elaborates on each of these recommendations.

For modelers and policymakers, collectively:

1. Establish partnerships and communications with one another before an emergency 
arises.

2. Coordinate at multiple levels, including with program managers responsible for imple-
menting actions and interventions.

3. Ensure the timely availability of data needed for modeling.

For policymakers (including their analytic staff):

4. Clarify priority policy questions and ensure that modelers understand them.
5. Use relevant nonmodeling approaches to provide decision support. 

For modelers or policymakers’ analytic staff:

6. Use the most-appropriate models and other approaches to meet specific real-world needs.
7. Set appropriate expectations for the use of models. 

For modelers:

8. Improve models and modeling approaches. 

For organizations involved in policymaking and technical support, including modeling:

9. Improve the modeling ecosystem. 
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Establish partnerships and communications before an emergency arises. We have emphasized 
that the decision-support process is a collaborative endeavor between policymakers (who might 
not be technical experts) and the technical experts on whom they rely for decision support. 
In the interest of time and efficiency, it is important to have partnerships and bureaucratic 
structures in place before an emergency arises. This can “be facilitated by the establishment of 
national and international modelling networks such as those that were created in 2009.”1 These 
networks can then be used for planning beforehand and then for sharing data and collaborat-
ing on responses as planned once an emergency arises. Modelers and other technical experts 
are found in academic institutions, other research institutions, government, and the private 
sector. Those who will be most useful for supporting public-sector policy decisions understand 
the policy context and needs of policymakers and can select the most-appropriate model(s) to 
use for a specific question or set of questions. 

As the influenza pandemic emerged in the spring of 2009, officials within federal govern-
ment and state and local health departments used a variety of data types to inform key deci-
sions. In the aftermath of the pandemic, a symposium was held to evaluate how effectively the 
data derived from a variety of biosurveillance sources were used for analysis and decisionmak-
ing during the event.2 Although generally successful, data-sharing was ad hoc and not utilized 
fully; as a result, symposium participants identified improved partnerships as a key need going 
forward. To address this need, health agencies that have used particular modeling institutions 
opportunistically in the past can leverage them in the future, both for sharing data and for 
coordinating action. In addition, agencies that have not previously leveraged modeling or deci-
sion support can work to set up partnerships in advance of an emergency to better facilitate 
their use in the future. 

We echo several past authors in emphasizing the critical importance of honest reciprocal 
communication between policymakers and all relevant technical experts, such as modelers, 
data managers, evaluation experts, program managers, and infectious disease specialists. Not 
only must expectations from and limitations of modeling be clear, but data should be shared 
collaboratively once available, and the preliminary modeling results should be made available 
rapidly to policymakers and others who may need to act on results, such as program managers 
in the field.3 If the uses for models can be specified or planned in advance, this can provide an 
excellent opportunity for trial runs and ensuring that communications are clear. 

Coordinate at multiple levels. Any coordination between technical experts and policy-
makers should involve all relevant parties. Depending on the context, this may include U.S. 
and foreign government policymakers (local, state, or national), technical experts in research 
institutions (academic and other), nongovernmental organizations, the private sector, and any 
others with a stake in the issues and decisions to be addressed. Even though international 
cooperation is not new, there are significant disparities across countries and at various levels 
of government in the ability to provide data, perform modeling, and use the results for plan-

1 Van Kerkhove and Ferguson, 2012, p. 308. 
2 M. Lipsitch, L. Finelli, R. T. Heffernan, G. M. Leung, and S. C. Redd, “Improving the Evidence Base for Decision 
Making During a Pandemic: The Example of 2009 Influenza A/H1N1,” Biosecurity and Bioterrorism: Biodefense Strategy, 
Practice, and Science, Vol. 9, No. 2, June 2011. 
3 At times, there is a conflict between policymakers, who expect data (or modeling outputs) to be quickly available, and 
modelers or other technical experts, who may be reluctant to share preliminary results that they consider to be insufficiently 
validated.
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ning. Communication of limitations and uncertainties is even more difficult across these 
diverse groups. 

Ensure the timely availability of data needed for modeling. Modeling always benefits from 
having more data available when needed, especially when the data are high quality and well 
documented.4 It is important to keep in mind that “modeling cannot substitute for data,”5 and 
modelers typically are not the source or owners of data used in their models. All model types 
rely on some amount of data, and, to the extent that the model can be built knowing what data 
will be available during a crisis, the model itself can be better adapted for the needs of policy-
makers. This requires both planning before a crisis and collaboration during it.

During the 2009 influenza pandemic, appropriate real-time data were not always read-
ily available despite being collected, and, thus, modeling results were not generated, shared, 
or disseminated in a timely manner.6 This report has described that various kinds of models 
differ in the amount and types of data needed. If modeling infrastructure is established in 
advance of an emergency (for example, if influenza modeling efforts are planned in advance to 
incorporate anticipated biosurveillance and other data), modelers and policymakers can deter-
mine the nature and timeliness of data that are needed for the most-appropriate model types. 
Policymakers can then ensure that these data will be available for modeling before and as an 
emergency unfolds, allowing the modelers to generate, validate, and share results more quickly. 

Clarify the priority policy questions and ensure that modelers understand them. As part of the 
partnerships with modelers, it is helpful for policymakers to articulate the questions for which 
they seek answers from models. Despite the fact that we are unsure exactly what will occur, 
and when, there are a variety of questions that policymakers know will need to be answered. 
It is equally important for modelers to have a clear understanding of the real-world decisions 
that the policymakers they are supporting will need to make. This enables selection of the right 
technical experts to provide the most-appropriate decision support. In some instances, models 
can be built before an outbreak emerges, or the needs can at least be discussed. Ideally, to 
ensure that communication is clear, the dialogue between modelers and policymakers should 
start well in advance of the decision process, not after an infectious threat emerges.

Use relevant nonmodeling approaches to provide decision support. In this report, we have 
described several useful nonmodeling approaches and tools that can help answer policy ques-
tions. Different approaches are pertinent to different sets of questions. For example, public 
health surveillance and expert elicitation can help us understand disease occurrence. A litera-
ture review and exercises or gaming can contribute to preparedness and system improvements. 
Public health surveillance, intra-action reports, and after-action reports can help address policy 
questions during and following an outbreak response. 

Use the most-appropriate models and other approaches to meet specific real-world needs. As we 
have emphasized throughout this report, each type of tool has its own unique profile of capa-
bilities, limitations, and applicability. In addition, combining models together or with non-
modeling approaches is often appropriate. Our policy-oriented approach has aimed to place 
modeling within the context of real-world questions that need real-world decisions and actions. 

4 Lauren Ancel Meyers, “Modeling to Support Outbreak Preparedness, Surveillance and Response,” presentation, CDC 
Grand Rounds, January 19, 2016.
5 Van Kerkhove and Ferguson, 2012. 
6 Lee, Haidari, and Lee, 2013.
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Modelers deploy their technical expertise to produce models that can usefully inform such 
decisions. A critical part of that process is to select the most appropriate model, nonmodeling 
approach, or combination for the policy questions at hand.

Set appropriate expectations for the use of models. It is important for modelers to understand 
and clearly communicate the capabilities and limitations of each type of model and the policy 
questions that models can help address.7 We have emphasized the importance of understand-
ing these details, and we describe several examples in this report (see the appendix for more 
detail). This level of understanding of different models and tools and their alignment with 
policy questions can help policymakers and technical experts select the most-appropriate tools 
to inform critical policy decisions in the future. This, in turn, can help set realistic expectations 
and avoid the problem of unmet expectations during the “fog of war.” 

Improve models and modeling approaches. Models and modeling approaches can be improved 
to some degree to address policy questions. Once a decision-support system is defined, it is pos-
sible to understand what key limitations exist and the relative importance of alleviating them. 
Some model improvement can be achieved through investment in computational tools and 
better understanding and representation of diseases; this is important ongoing work, although 
it falls well outside the immediate scope of most policymakers’ work. And because much work 
has already been done, attempts to improve models are subject to diminishing returns. In con-
trast, improving processes and protocols for using such models and providing improved sup-
port are often within the control of policymakers—and provide larger potential gains. 

 Improve the modeling ecosystem. Disparate systems used to inform policymakers often end 
up providing confusion instead of insight, and complex models are ignored if the implications 
are unclear. To ameliorate this problem, specific groups or centers can be formed to interpret 
information and model results from various teams and data sources and to ensure that these 
teams all have access to the appropriate data. With sufficient funding and a change to how 
modeling is used in government, this could resemble the way in which the National Oce-
anic and Atmospheric Administration runs the National Hurricane Center, which provides 
resources for predictions of hurricanes and functions as the key provider of hurricane data. 
While ambitious, a properly considered and well-implemented center for infectious diseases 
and modeling would be able to coordinate and implement many of the steps recommended 
here. Additionally, this type of infrastructure could coordinate to ensure that policymakers 
understand the implications of the complex models being used and that modelers understand 
the ways in which the models will support policymaker decisions. 

7 It is especially important to communicate limitations because those limitations may have policy solutions. Significant 
future uncertainty is a modeling drawback, but it also strengthens the argument for more-robust, rather than more-pre-
scriptive, approaches in policymaking.
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Conclusions 

This report seeks to fill a gap in the decision-support literature by raising and answering key 
questions to inform the best use of models and nonmodeling approaches to answer relevant 
real-world policy questions. With the continuing threats posed by infectious diseases world-
wide, it is important to understand the models and other approaches available to inform deci-
sions about prevention, detection, and response and to use these decision-support tools appro-
priately. As suggested by others,1 there is a need for further coordination with data, models, 
and planning. We can and should learn from recent experiences, such as the 2009 influenza 
pandemic, Ebola and MERS in 2014, and the Zika virus in 2016. Review of such past experi-
ences and the recommendations described in this report suggest opportunities to make opti-
mal use of these tools.

1 See, for example, Van Kerkhove and Ferguson, 2012.
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APPENDIX 

An In-Depth Look at Theory-Based and Statistical Models

Theory-Based Models

As described in the report, theory-based models,1 also known as mathematical models,2 use 
scientific knowledge to model how a disease progresses through populations and how popu-
lation behavior and characteristics affect disease transmission. This class of model requires a 
theoretical understanding of the pathogen, how it causes disease in a person, factors involved 
in disease transmission, and clinical outcomes in order to represent how and why a disease 
spreads. These models therefore require an understanding of the scientific variables associated 
with disease spread. Theory-based models can be categorized into population models, which 
represent large, aggregated groups of people, and simulation models, which represent smaller-
scale groups or individuals. 

Population Models

Population models, also known as compartmental models or stock and flow models, divide the 
human population into “compartments” that represent different clinical stages, including pre-
infection, infection, and recovery.3 As a simple example, “SIR” models represent everyone as 
initially belonging to one of three populations: susceptible, infected, or recovered (the last of 
these is considered immune from further infection). The subpopulations, or compartments, 
represent the flow of disease transmission through a population. The aggregated totals in each 
subpopulation evolve over time as determined by the model, so that susceptible people exposed 
to the disease get infected, then recover. More-complex variants of this type of model can have 
compartments representing more-detailed breakdowns of the disease progression as well, such 
as “SEIR” models (which include a stage of exposure before infection); can represent multiple 
strains of a disease agent in a population (e.g., multiple strains of the influenza virus or dengue 

1 The theory in theory-based models refers to the underlying theory of the scientific disciplines relevant to the phenomena 
being modeled—in this instance, infectious diseases. It does not refer to the theory underlying the formulation, training, 
and representative power of the models. All models have significant theory behind their structure. The theories underly-
ing theory-based infectious disease models are primarily causal and structural laws established in the natural sciences. In 
contrast, the theory behind statistical models is concerned primarily with the representation and algorithmic learning of 
observed natural behavior. Similarly, operational exercises and other nonmodel-based approaches described in this report 
also have significant theory behind them.
2 M. Choisy, P. Sitboulang, M. Vongpanhya, C. Saiyavong, B. Khamphaphongphanh, B. Phommasack, F. Quet, 
Y.  Buisson, J.-D. Zucker, and W. van Pahuis, “Rescuing Public Health,” in Serge Morand, Jean-Pierre Dujardin, Régine 
Lefait-Robin, and Chamnarn Apiwathnasorn, eds., Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia, 
Springer-Verlag, 2015.
3 For a comprehensive introductory treatment, see Anderson and May, 1991.
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fever—a mosquito-borne viral disease that is common in the tropics and subtropics around 
the world); and can include vector population dynamics (e.g., mosquito vectors for dengue, 
chikungunya, Zika, or malaria; rat vectors for plague or hantavirus).

The inputs used for basic population models include transmissibility,4 population contact 
rates,5 R0,6 incubation period, period of infectiousness, duration of illness, and fatality rate. 
One of these factors (R0) is especially important in infectious disease modeling, especially 
for population models. R0 refers to reproduction rate, or contagiousness, of a disease. It is the 
expected number of infections caused by a single sick individual in a population otherwise free 
of the disease (i.e., at the time of disease introduction, when no one has yet been exposed). R0 
can be understood as a product of the disease transmissibility and the population contact rates. 
For example, rural populations may have a lower R0 than city dwellers for influenza because 
population contact rates are lower. A disease with R0 > 1 can spread through the population 
rapidly (because each infection leads to more than one additional infection, on average) but 
may affect some areas or ages more than others, while if R0 < 1, the disease will not continue 
to spread through that population. For example, pinkeye (also called conjunctivitis) may infect 
an entire preschool but is unlikely to spread to, or at least beyond, the parents or caretakers of 
those children. This means that the overall R0 may be close to 1, but the R0 for young children 
is much higher. A very contagious disease, such as measles, has a relatively high R0 (12 to 18), 
which can lead to extensive spread in an unvaccinated population. Ebola is far less contagious, 
with an R0 of approximately 2. Even less-contagious pathogens, such as seasonal influenza 
most years or even pandemic influenza, have R0 values just slightly above 1. In contrast to 
entirely new pandemic influenza strains, seasonal influenza spreads less extensively because 
many people are immune by virtue of vaccination. 

Estimating and using R0 is also a helpful example of how models use different informa-
tion. The appropriate R0 value can be found algebraically given the relevant component data, or 
it can be estimated in a variety of ways. For instance, statistical methods can be used to find the 
number of secondary cases based on averages from detailed data, while epidemiological models 
can estimate it based on population spread rates, such as simulating population models to find 
the value that best fits the data.7 Different models use R0 as an input in two fundamentally 
different ways: Some use it as a parameter in modeling the disease spread, and others use it as 
a threshold that determines whether an outbreak will propagate or stall. 

The dynamics among the various modeling inputs are represented as a system of (ordi-
nary8) differential equations in which each compartment is represented by a number of people 

4 Transmissibility is usually expressed in units of rate (e.g., 1/time). R0, which is unitless, is computed from this rate and 
the progression rates.
5 Population contact rates are how often the members in a pair of compartments interact with each other. The population 
contact rate is expressed in interactions per unit of time for each pair, forming a contact matrix.
6 R0 is typically pronounced “R-naught” or “R-zero.”
7 Klaus Dietz, “The Estimation of the Basic Reproduction Number for Infectious Diseases,” Statistical Methods in Medical 
Research, Vol. 2, No. 1, 1993.
8 There is a distinction between so-called “ordinary” differential equations and more-complex partial differential equa-
tions, stochastic differential equations, and so on. This topic has a rich literature. See, for example, Robert Smith?, Model-
ling Disease Ecology with Mathematics, American Institute of Mathematical Sciences, Series on Differential Equations and 
Dynamical Systems, Vol. 2, December 15, 2008; Emilia Vynnycky and Richard G. White, An Introduction to Infectious 
Disease Modelling, Oxford, UK: Oxford University Press, 2010; Avner Friedman and Chiu-Yen Kao, Mathematical Modeling 
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with the indicated status at each point in time. In a simple case, the model shows that, as the 
number of infected individuals (I) increases, the rate at which new individuals are exposed goes 
up by a rate determined by transmissibility, and these exposed individuals become infected at a 
rate determined by the incubation rate. These infected individuals then drive further exposure 
of susceptible people, leading to disease spread.

Ordinary differential equation (ODE) population models are manageable from a math-
ematical perspective and computationally fast to run because they use computational tech-
niques that represent large groups of people (compartments) compactly, simplify the  disease 
transitions, and, in their simple form, do not account for uncertainty. Population models 
with very few compartments allow modelers to obtain an initial approximation of the disease 
dynamics. However, their computational speed and simplicity can sometimes come at a cost of 
being less accurate. Single runs of an ODE population model are deterministic, meaning that 
the same inputs always produce the same outputs. ODE models cannot represent or accom-
modate uncertainty. They implicitly assume homogeneous mixing, meaning that all people are 
equally likely to interact with any other individual, across geography, groups, and other classi-
fication categories. The disease transitions are exponential, which simplifies the disease process 
in ways that distort the timing of the disease progression, leading to situations where parts of 
the population transition from susceptible to exposed to infected in near-zero time. Last, ODE 
models typically use static parameters, which do not include, for example, seasonal compo-
nents or behavioral change over time; however, such models can take seasons into account—
for example, by varying the transmissibility parameter for different time periods.

Modern population models have addressed each of these limitations in different ways,9 
though at a cost, with higher complexity and greater computation requirements, among other 
factors. For example, to add uncertainty to deterministic results, analysts can use such tech-
niques as sampling model input parameter values within a given estimation range. By run-
ning the model many times instead of just once, analysts can use these techniques to show 
how the results change if the inputs are varied slightly. Sensitivity analyses can then determine 
the leverage of each input parameter on the model outputs. The most obvious cost of any of 
these techniques is that they take more time—although they are usually still fast compared 
with most other modeling approaches. Some more-complex models also sacrifice some of the 
simplicity of the system by replacing ODEs with (more-complex) stochastic (chance-driven, 
rather than deterministic) differential equations. These equations eliminate the assumption of 
exponential transition rates and allow for the relationship between compartments to include 
random effects. In order to relax the simplification of homogeneous mixing, additional com-
partments can be used to represent the groups with different characteristics, and this can also 
account for other factors affecting the likelihood of a person contracting or spreading the dis-
ease, such as age, profession, and geographical location. 

Modeling a more diverse population accurately requires that the population be subdi-
vided into smaller groups of common key characteristics that are relevant to the infection 
under consideration. This accuracy comes with an additional cost: Models with more compart-
ments to represent detailed population and disease dynamics require more-detailed inputs that 

of Biological Processes, New York: Springer, 2014; and Morris W. Hirsch, Stephen Smale, and Robert L. Devaney, Differen-
tial Equations, Dynamical Systems, and an Introduction to Chaos, Waltham, Mass.: Elsevier, 2013.
9 For more on many of the topics of sensitivity analyses, stochastic differential equations, or forcing, see Smith?, 2008; 
Vynnycky and White, 2010; Friedman and Kao, 2014; and Hirsch, Smale, and Devaney, 2013.
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can be harder to estimate.10 As a simple example, extending an SIR model to represent multiple 
population segments (e.g., different age groups or geographic regions) requires estimating the 
different susceptibility of each group and the contact frequencies between the groups; doubling 
the number of compartments would square the number of contact frequency estimates needed. 
Nonstatic parameters are commonly implemented using “forcing” from external variables, so 
that the (previously static) relationships depend on (are “forced by”) externally provided fac-
tors (e.g., temperature for a mosquito-borne disease) in order to represent the spread of diseases 
more accurately. 

Population models are the best available tool for understanding the dynamics of disease spread. 
They can also be used to explore potential effects of untested interventions by comparing pre-
dicted model results that assume no intervention (“baseline”) with results that introduce the 
intervention into model inputs. The relative simplicity in building the basic population model 
and the speed and ability to represent changes in the disease dynamics make these models par-
ticularly useful for exploring different features of disease dynamics. On the other hand, as we 
discussed, the simplifications make them more limited in predictive ability, and they are less 
useful for modeling heterogeneous population groups.

One example of a population model used for a policy investigation is a RAND model 
for HIV, used in a prospective evaluation of a test-and-treat policy for testing men who have 
sex with men in Los Angeles County and treating those who are infected at a much earlier 
clinical stage.11 The study explored the likely effects of the policy before it was implemented by 
using a population model in which the effect of interventions was clearly represented. Because 
the model was flexible, the model could be run quickly, and the population being studied was 
mostly homogenous because the scope was limited, relatively compact compartmental model-
ing allowed exploratory modeling along several potential future paths. Using historical data 
from 2000 to 2009 and known epidemiological characteristics of HIV to calibrate the model, 
the study compared future disease spread under the status quo with the future under a test-
and-treat policy. It also explored such strategies as increasing testing or treatment individually. 
This approach was able to estimate the approximate effect of different interventions without 
waiting for the types of comparison data needed for postimplementation evaluation. In addi-
tion, the large-scale, longer-term impacts discussed made exact predictive accuracy—which is 
difficult to achieve with population models—less critical. 

Simulation Models

Simulation models for infectious disease are higher fidelity than population models, but they 
use a related set of conceptual models.12 These models expand on the scientific theory basis 
that underpins population models by explicitly including processes that are only approximated 
in population models. Simulation models represent individuals or small groups and track their 

10 This is a general phenomenon in modeling, frequently called the “curse of dimensionality”; that is, more dimensions and 
options make the number of variables and cases expand exponentially or combinatorially.
11 Neeraj Sood, Zachary Wagner, Amber Jaycocks, Emmanuel Drabo, and Raffaele Vardavas, “Test-and-Treat in Los 
Angeles: A Mathematical Model of the Effects of Test-and-Treat for the Population of Men Who Have Sex with Men in 
Los Angeles County,” Clinical Infectious Diseases, Vol. 56, No. 12, June 15, 2013.
12 The methods for solving or simulating the different types of models can differ greatly, but for our purposes, these are 
computational, rather than modeling, concerns. For this reason, stochastic population models may be solved via math-
ematical simulation, but we do not consider them simulation models.
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status over time. We discuss the advantages and disadvantages in more detail, but the obvi-
ous advantage of simulation models is their added flexibility and precision, albeit at the cost of 
more complexity when building the models and slower speed when running them.

Simulation models can be further categorized as microsimulation models or agent-based 
models. The difference is subtle, but in general, microsimulation models use “top-down” exog-
enous factors (e.g., contact rates, social structures), while agent-based models generally use 
“bottom-up” endogenous factors (e.g., how people’s contact frequency or behavior responds to 
the disease outbreak).13 These models, particularly microsimulation models, are heavily used 
in health research outside the context of communicable disease—for example, in research on 
health system capacity,14 health behaviors,15 insurance,16 mental health in the military,17 and 
noncommunicable diseases.18 With our present focus on infectious diseases, we do not attempt 
to address the full range of ways in which the models described here are used. 

Microsimulation models typically represent individuals explicitly and differ from agent-
based models in using mainly exogenous rather than endogenous factors. They use empiri-
cally derived data about disease spread to more accurately represent the spread of the disease 
over time, allowing a much richer, dynamic evolution of the disease spread. The empirical 
data can be derived from statistical regression or from other traditional statistical models 
using available data.19 

Microsimulation models for infectious diseases define events that individuals may experi-
ence, instead of defining a fixed set of possible compartments or states, the way theory-based 
population, or compartmental, models do. This allows for the representation of a state space 
that is not limited by compartmental considerations. For example, a microsimulation model 
may include a variable for how infectious an individual is, instead of assigning the individual 
to the category of “infectious” (as in a population model) or representing the number of people 
with whom someone interacts (as in an agent-based model). The value can be a function of 
how long it has been since the individual was exposed to the disease, as well as other individual 
characteristics, such as antiviral drug usage, adherence to therapy, age, and social or sexual 

13 The terms exogenous (literally, generated externally) and endogenous (generated internally) are heavily used in economics 
and the literature about modeling. How the different types of inputs are important in these models is explained more later. 
14 See, for example, Dana P. Goldman, David M. Cutler, Paul G. Shekelle, Jay Bhattacharya, Baoping Shang, Geoffrey 
F. Joyce, Michael D. Hurd, Dawn Matsui, Sydne Newberry, Constantijn (Stan) Panis, Michael W. Rich, Catherine K. 
Su, Emmett B. Keeler, Darius N. Lakdawalla, Michael E. Chernew, Feng Pan, Eduardo Ortiz, Robert H. Brook, Alan M 
Garber, and Shannon Rhodes, Modeling the Health and Medical Care Spending of the Future Elderly, Santa Monica, Calif.: 
RAND Corporation, RB-9324, 2008. 
15 See, for example, Jonathan P. Caulkins, Rosalie Liccardo Pacula, Susan M. Paddock, and James Chiesa, School-Based 
Drug Prevention: What Kind of Drug Use Does It Prevent? Santa Monica, Calif.: RAND Corporation, MR-1459-RWJ, 2002. 
16 See, for example, RAND Corporation, “Comprehensive Assessment of Reform Efforts (COMPARE),” web page, 
undated b. 
17 See Beau Kilmer, Christine Eibner, Jeanne S. Ringel, and Rosalie Liccardo Pacula, “Invisible Wounds, Visible Savings? 
Using Microsimulation to Estimate the Costs and Savings Associated with Providing Evidence-Based Treatment for PTSD 
and Depression to Veterans of Operation Enduring Freedom and Operation Iraqi Freedom,” Psychological Trauma: Theory, 
Research, Practice, and Policy, Vol. 13, No. 2, June 2011. 
18 See, for example, Sarah Nowak and Andrew M. Parker, “Social Network Effects of Nonlifesaving Early-Stage Breast 
Cancer Detection on Mammography Rates,” American Journal of Public Health, Vol. 104, No. 12, December 2014, 
pp. 2439–2444. 
19 For a more complete overview of these models in a variety of areas, see O’Donoghue, 2014.
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behavior; such rates can be derived from medical research or clinical data. This allows for indi-
viduals to have a range of characteristics without explicitly modeling compartments for each 
combination, although it does require much more computational work to represent individuals 
(in a microsimulation model) than aggregated populations (in a population model).

In order to represent these characteristics, a large number of (possibly correlated) vari-
ables are needed, and these different variables can be difficult to collect, making these models 
difficult to parameterize—although the simplistic assumptions used in population models are 
hiding, not solving, this problem. These models are considered more predictive, but even in 
the best case, they require simplifications because of limited knowledge about the population 
and disease. 

Because of the richness of the representation, microsimulation models are relatively com-
putationally complex and slow. They are also expensive to build because there are so many 
individuals or agents included, and each one requires data collection or programming. Such 
models also do not always scale up in size easily, because the number of individuals increases 
linearly, but the computational work frequently increases nonlinearly. Thus, this type of model 
is frequently run on supercomputers when representing larger scales, especially for modeling 
entire countries or systems that have complex interactions between individuals. These factors 
can make exploratory work and uncertainty quantification more difficult. 

As an example of the microsimulation modeling approach for infectious disease, research-
ers considered different scenarios reflecting a potential bioterrorist attack using smallpox virus, 
including patient isolation and different options related to targeting and timing of the  smallpox 
vaccination (all aimed at preventing further spread of the virus).20 The study used an event-
driven simulation to track individuals in each disease generation. The microsimulation model 
considered prior vaccination of health workers and the general public and assessed the degree 
of disease spread and number of expected deaths under each smallpox scenario. The model 
represented the early spread, which enabled a small scope and therefore reduced computational 
needs. This initial microsimulation model was then used to build and validate a much sim-
pler population model, which enabled more-rapid exploration of the policy options available. 
The modeling analyses favored prior vaccination of health workers under most scenarios, but 
the analyses favored prior vaccination of the general public only if the likelihood of an attack 
or multiple attacks was high. These analyses were instrumental in U.S. disaster preparedness 
planning in terms of both vaccine stockpiling and likely responses in the event of a smallpox 
emergency.

Agent-based simulation models, also sometimes called individual-based models, represent 
the behavior of individuals and their disease status as it results from this behavior. Early work 
on agent-based models occurred outside the realm of disease modeling, specifically in econom-
ics and ecology, but this modeling approach has proven fruitful in a wide variety of contexts.21 
Agent-based models can be considered a special case of microsimulation models, but the typi-

20 S. A. Bozzette, R. Boer, V. Bhatnagar, J. L. Brower, E. B. Keeler, S. C. Morton, and M. A. Stoto, “A Model for Smallpox-
Vaccination Policy,” New England Journal of Medicine, Vol. 348, 2003.
21 For a more complete introduction to agent-based modeling in general, see Joshua M. Epstein, Generative Social Sci-
ence: Studies in Agent-Based Computational Modeling, Princeton, N.J.: Princeton University Press, 2007; the book includes 
chapters on disease modeling and on the limitations and advantages of agent-based models in this and other contexts. 
See also S. F. Railsback and V. Grimm, Agent-Based and Individual-Based Modeling: A Practical Introduction, Princeton, 
N.J.:  Princeton University Press, 2012; and A. M. El-Sayed, P. Scarborough, L. Seemann, and S. Galea, “Social Network 
 Analysis and Agent-Based Modeling in Social Epidemiology,” Epidemiologic Perspectives and Innovations, Vol. 9, 2012.
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cal focus is different. In these models, instead of using the empirically derived data about 
disease spread used by microsimulation models, individuals change their behavior (referred to 
earlier as bottom-up or endogenous factors). This happens according to predefined rules fol-
lowed by the individuals, and the behaviors can be functions of different endogenous factors. 
For example, people may interact with other people less when they observe that many other 
people are infected, slowing the spread of the disease. Similarly, they may be more likely to seek 
immunization if they see that many people were infected the previous year. This can create 
“emergent” properties of a system—those that are caused by the combination of endogenous 
factors—and these properties evolve over time. This model capability allows complex disease 
dynamics to result from relatively simple rules. In the examples mentioned, changing individ-
ual behavior can lead to complex patterns of disease spread, and the resulting simulation can 
be analyzed to track the spread of disease that emerged from individuals’ actions. As a conse-
quence, agent-based models can show when rapidly spreading diseases may be less damaging as 
a result of behavioral changes that blunt the spread of the disease, or they may exhibit complex 
multiyear patterns. 

Generally, if the system modeled is not already well understood, agent-based models 
may help scientists explore how disease can spread and what behaviors could give rise to 
observed features of an epidemic. Therefore, a key component of an agent-based model is a 
description of the behaviors of individuals and how behaviors may evolve and diffuse in the 
population as a result of individuals’ (or agents’) interactions. If the systems are already well 
understood, this class of model can be a powerful policy tool for understanding behavior in a 
complex system that is otherwise hard to explore.22 Examples of the processes that the behav-
ioral module would describe include social distancing, sexual behaviors, propensity to seek 
vaccination, and treatment. 

Because of the strategy of representing sources (not results) of behaviors, agent-based 
models are sometimes referred to as “naïve” or “direct,” in the sense that fundamental charac-
teristics of the population’s behavior, such as their medical behaviors or the people with whom 
they interact, serve as model inputs. For example, if we model the locations and interactions of 
individuals based on their social networks and geography, an agent-based model can simulate 
disease spread based on the length or frequency of interactions with infectious individuals. The 
infectivity of an individual can fluctuate over time based on that individual’s behaviors, which 
can change based on his or her own disease status, social network, and perception of other 
factors.23 Changes in individual behavior give rise to changes over the course of the epidemic, 
without (directly) using observed changes in interaction frequency. Based on the simulation, 
such emergent properties as R0 (which are inputs to other types of models) can be calculated 
from the simulated history of a disease. This allows complex dynamic changes to factors that 
population models cannot easily represent as dynamically changing.

Generally, the approach taken by agent-based models is to formulate rules describing 
how behaviors change based on feedback at the population level (macroscopic) and at smaller 
levels (microscopic). An example of macroscopic feedback is the perceived prevalence of a dis-
ease by the individuals in the model who could, as a consequence, change their behaviors. For 

22 For example, it may be hard to observe the inputs needed to inform a microsimulation model, but the human behavior 
that leads to those hard-to-observe inputs may be understood.
23 The individual’s behaviors change endogenously, but the changes can be due to either exogenous factors (e.g., decisions 
made by policymakers) or endogenous factors (e.g., overall disease prevalence).
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example, they could increasingly engage in social distancing. An example of microscopic feed-
back is the perceived number of individuals who have been vaccinated in their social networks. 
In contrast to evidence-based microsimulation models, in which a limited set of individuals’ 
behaviors are included, agent-based models consider a more complete set of behaviors even 
if there are very limited data that can help precisely describe these processes. Instead, where 
data are limited, behavioral rules are formulated based on heuristics and informed guesses. 
Therefore, agent-based models formulate both the disease contagion dynamics and the indi-
viduals’ behaviors based on mechanistic rules rather than statistical regression models. The 
rules describing the contagion dynamics are based on known biological mechanisms. The 
rules describing the behavioral dynamics can often be based on postulated mechanisms or 
heuristics of how agents interact in the real world. For this reason, compared with evidence-
based microsimulation models, agent-based models are not very reliable at precisely forecasting 
dynamics under status quo conditions or under policies that make minor changes to the status 
quo. However, agent-based models are ideal to explore “what-if” scenarios whereby the policy 
is based on a behavioral response, including behavioral diffusion and policies that are different 
from the status quo. For example, incentive-based policies can be tested with an agent-based 
model precisely because the model encapsulates a behavioral model of the agents. 

In addition to many of the same computational considerations mentioned for microsimu-
lation models, key methodological challenges for agent-based models are validity (ensuring 
that conclusions from the model are correct or reasonable) and verification (ensuring that con-
clusions are accurate). Because these models are created to represent the process for the overall 
dynamics of the disease, not to replicate the observed behavior, the outputs of an agent-based 
model must be tested carefully to ensure that the model functions appropriately, especially out-
side of the range for which it was calibrated. This may mean that results should be compared 
with empirical data, if possible, or at least be assessed by experts to ensure that they are reason-
able. Another challenge is the correct specification of the ways in which individuals or agents 
interact. Missing features or incorrect simplifications can be critical in unanticipated ways, so 
that slight changes in behavior or the addition of new types of individuals or agents can com-
pletely change the dynamics of the system. 

One example of policy application of an agent-based model is an exploratory project led 
by one of the authors of this report (Raffaele Vardavas) on behaviors toward vaccination based 
on different features of individuals’ social networks.24 The project focused on understanding 
the interplay between the social network structure, agents’ yearly vaccination behaviors, and 
influenza epidemiology. The project modeled the coupled dynamics of influenza transmis-
sion and vaccination behavior to test the effects of different behavioral interventions. This 
required explicit modeling of social networks, which is ideally suited to agent-based simula-
tion modeling. By limiting the scale of the model to specific social networks—in which, for 
simplicity, the network links connecting individuals were assumed to be independent from 
socioeconomic, location, and demographic attributes—the model was able to explore these 
dynamics. This type of model does not claim to be predictive or accurate at a detailed level. 
However, it was able to reproduce stylized facts of influenza epidemiology, including observed 
U.S. levels of yearly vaccination coverage, the yearly cumulative incidence, and observed distri-
butions regarding the propensity to vaccinate. Results from the model provided initial insights 

24 Vardavas and Marcum, 2013.
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into the likelihood of success of incentive-based interventions to vaccinate that rely on social 
network  influences. This effort used a combination of models that facilitated a better under-
standing of relevant parameters; it used a social network of contact between agents for disease 
spread instead of making simplified assumptions about contact between large-scale popula-
tion groups (the latter typifying population models, as described earlier). The contact network 
was also used to model how people make choices about vaccination behavior. Those who are 
closely connected by their social networks to others who get vaccinated are more likely to get 
vaccinated. Collective decisions about vaccination drive influenza epidemiology that, in turn, 
affects future individual-level decisions. To support this work, many behavioral model param-
eters that are needed to characterize agent behavior—which are difficult to find in extant 
 literature—were quantified using results from a survey on influenza behavior run through the 
RAND American Life Panel.25

Statistical Models

Statistical models are distinct from theory-based models, although, in practice, they  may over-
lap or be used in combination with them. Statistical models are typically distinguished by use 
of mathematical relationships to directly represent quantities of interest, relying on mining 
large amounts of data. Statistical models can reproduce dynamic real-world relationships 
by learning trends from empirical data and encoding these dependencies in a mathematical 
model, without directly representing the causal scientific factors involved.26 These models use 
real-world outputs (i.e., the empirical “training” data set27), which allows the statistical method 
to learn the correct behavior (e.g., disease occurrence). 

The learned mathematical relationships, or patterns, can forecast disease occurrence. Statis-
tical models of all types enable this data-driven, inductive prediction under limited model 
assumptions, despite potentially limited exact theoretical understanding. Because of this, prac-
tically all inductive learning includes an implicit assumption of invariance,28 meaning that the 
past relationship between the disease characteristics and occurrence continues to tell us about 
future outbreaks. 

We can take this further in the context of decision support: Models should be used to 
inform decisions only in scenarios similar to the context in which the model was built. To the 
extent that the scenarios differ, any inference is less valid. For example, if a model uses data 
from only one location or with just one type or intensity of intervention, using that model to 
decide a more general question can be problematic. 

25 The RAND American Life Panel is a nationally representative, probability-based panel of more than 6,000 adults who 
are regularly interviewed for research purposes. For more information, see RAND Corporation, “American Life Panel,” web 
page, undated a.
26 Statistical models do not naturally distinguish events that are causally connected from events that are merely correlated. 
This is because the observational data (recording observed events) can account only for historically observed scenarios, not 
for scenarios that did not occur, such as what would have happened if a new intervention had been applied. Because of this, 
causality in statistical models requires econometric approaches to inferring causality from quasi-experimental data, and a 
large literature exists on how this is done. 
27 The use of example data to train models is referred to as supervised learning (especially in machine-learning literature). It 
is standard practice for many types of statistical models used for disease modeling.
28 See Valiant, 2013.
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Statistical models are especially susceptible to this kind of problem because of their strong 
dependence on the training data. Additionally, there is a related, but more fundamental, prob-
lem specific to typical applications of statistical models. This is the problem of inferring causal-
ity: How can we infer a causal link between two events using statistical methods? This is often 
critical for questions of the relative merits of interventions (alternative pasts or future forecasts). 
For example, would dengue incidence drop if citizens were fined for public health violations 
(e.g., harboring mosquito breeding sites in their yards during the rainy season)? If a public 
health media campaign had not been run, would vaccination rates for a vaccine-preventable 
disease, such as influenza, be different from what was observed? Statistical models have diffi-
culty answering these questions.

 We describe two general classes of statistical models—traditional regression-based models 
and modern machine-learning models.

Regression-Based Models

Regression-based models have been extensively used to model the real-world courses of dis-
eases and consequently can be considered as a standard or traditional statistical approach. An 
example of these is the common least-squares regression model, which Carl Friedrich Gauss 
introduced in the late 1700s while trying to predict a comet’s path.29 These models propose a 
specific mathematical formula that depends on a set of parameters for the relationship between 
the output variable and a set of potential input variables, or predictors. This formula accounts 
for noise or corruption in the data using statistical methods of analysis. Supervised learning 
methods select relevant predictors and produce an optimal fit for the proposed parametric 
form. Modeling skill and empirical or statistical constraints inform the choice of parametric 
forms and potential predictors. 

These learned mathematical relationships provide useful indications of the future course 
of the disease even if there is no underlying theory. They are predictions for the future, not 
explanations of the disease, so they may not tell the full story. For example, it is standard to 
use such regression-based models to build experimental support for new scientific hypoth-
eses.30 However, given the dependence on the invariance assumption, the relationships in these 
models may not have full explanatory power without established context-relevant scientific 
theory. Traditional regression-based methods can also be limited in the range of relationships 
they can model. Despite these limitations, such models are computationally very fast and can 
be used to model and understand the direction and magnitude of relationships in the data even 
when the scientific relationships are unknown. This means that quick and roughly accurate 
models can predict outcomes even when the causes are not known or understood or when the 
scientific theory is insufficient for representation.31

29 In least-squares regression, the “best” values are those that minimize the sum of the square of the differences between the 
actual value and the value output by the formula.
30 For example, the determination of half-lives and decay profiles for radioisotopes often involves a least-squares fit of 
observed decay data to statistical Poisson emission models. Pharmacokinetic analyses also use statistical models to model 
the bioavailability of drugs.
31 Early in the recent Ebola epidemic, the social factors leading to the spread of Ebola were only partially known (for 
example, the role of unsafe funeral practices and sexual contact), but predictive statistical models can be effective despite 
this gap in scientific knowledge. 
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Examples of this approach include using the Poisson regression32 and related regressions 
to predict mosquito populations and dengue fever incidence in tropical locations.33 These pre-
dictions are based on population-level models that mine data sets for statistical relationships 
between disease-relevant variables (e.g., environmental conditions, population factors, policy 
intervention) and disease incidence. 

Machine-Learning Models

Machine-learning models examine observed input and output data and use algorithmic sta-
tistical techniques to “learn” structured relationships in the data. Modern machine-learning 
methods extend the expressive range of regression-based statistical methods to include more-
complex dynamics. They can use more-complex adaptive mathematical structures to rep-
resent arbitrarily complex relationships.34 Therefore, their usefulness for disease forecasting 
and decision support is unsurprising. The basic approach is to use sample input-output data 
to learn complex relationships, often with the goal of predicting future outputs. The com-
plexity of the relationships makes them more predictive but often harder to understand or 
explain. There are several powerful, versatile, and robust families of machine-learning models. 
We recently demonstrated the use of one such model—an artificial neural network (ANN) 
model—for forecasting the incidence of dengue fever. Here, we use this as a single example 
of this class of model while noting the benefits and drawbacks of machine-learning methods 
more generally.

ANN models owe their inception to attempts in the past 80 years to understand and 
mimic information-processing in biological systems. Networks of biological neurons (e.g., the 
mammalian brain) have evolved the ability to learn patterns from examples in noisy, uncer-
tain environments.35 The artificial neurons (or nodes) and their interconnections of ANNs 
have vastly simplified dynamics compared with their biological counterparts (neurons and 
synapses, respectively). But ANN models have proven to be a versatile tool for learning statis-
tical patterns in many domains.36 For example, ANNs have found supervised learning appli-
cations in computer vision, speech recognition, economic prediction, and automated control, 
among others. 

32 The proposed parametric form for a Poisson regression is a Poisson distribution, in which the conditional mean is a 
polynomial function of the predictors. In simplified terms, it assumes that there is some linear relationship between the 
logarithm of the number of cases and the values of different environmental variables, and the method finds the relationship 
of available environmental variables that best predicts the local rate of dengue incidence.
33 See, for example, S. Wongkoon, M. Jaroensutasinee, and K. Jaroensutasinee, “Distribution, Seasonal Variation & 
Dengue Transmission Prediction in Sisaket, Thailand,” Indian Journal of Medical Research, Vol. 138, No. 3, 2013; and B. 
M. Althouse, Y. Y. Ng, and D. A. Cummings, “Prediction of Dengue Incidence Using Search Query Surveillance,” PLoS 
Neglected Tropical Diseases, Vol. 5, No. 8, 2011.
34 Model families that can represent relationships are termed universal approximators if they can learn any (arbitrarily com-
plex) statistical input-output relationship when given enough examples.
35 The ANN is a crude approximation of its biological counterpart. The mechanics of common ANN training algorithms 
may not be similar to the biological mechanics of learning in the mammalian brain. See Bart Kosko, Neural Networks and 
Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Vol. 1, Englewood Cliffs, N.J.: Prentice Hall, 1992.
36 ANN models are universal approximators, as defined earlier. See H. White, “Learning in Artificial Neural Networks: 
A Statistical Perspective,” Neural Computation, Vol. 1, No. 4, 1989; and K. Hornik, M. Stinchcombe, and H. White, 
“ Multilayer Feedforward Networks Are Universal Approximators,” Neural Networks, Vol. 2, No. 5, 1989.
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We recently demonstrated the use of an ANN modeling approach for forecasting the 
incidence of dengue fever based on historical training data from two cities—San Juan, Puerto 
Rico, and Iquitos, Peru. This exercise was in response to a joint epidemic-forecasting chal-
lenge from federal agencies, including the Centers for Disease Control and Prevention, the 
U.S. Department of Defense, and the National Oceanic and Atmospheric Administration.37 
Prior literature review and some exploratory data analysis indicated that temperature, rainfall, 
and recent incidence history were considered the primary factors predictive of future dengue 
incidence.38 

Back-propagation methods tune the ANN model to learn predictive statistical relation-
ships from past input-output examples.39 In our exploration of dengue in San Juan and  Iquitos, 
we configured our ANN models as a time-series predictor to forecast future dengue inci-
dence using a short-term history of recent incidence, temperature, and rainfall as inputs.40 We 
divided the environmental and (human case) incidence data into a collection of time windows. 
The ANN uses these historical examples to learn the relationship between input time windows 
(consisting of recent history of incidence, temperature, and rainfall) and the output (future 
dengue incidence over a window of two to six weeks). The model can also provide limited what-
if forecasts if we input hypothetical values for recent incidence and environmental variables. 
This means that we can simulate alternative futures by presenting the model with hypothetical 
input values. The main caveat here is that the model outputs will be unreliable if the hypotheti-
cal input values fall far outside the typical input range seen during training. The results of any 
type of model should be subject to skepticism when dealing with atypical inputs. 

The precise functional dependence in our dengue model was not easy to tease apart. 
This is a common feature in machine-learning models. As noted earlier, the model uses recent 
data on dengue incidence, local temperature, and local precipitation to forecast future dengue 
incidence. Such factors as mosquito spraying in some or all of one or both of these cities were 
not included and thus could easily mask more-fundamental underlying disease patterns. The 
historical input variables are lagged and truncated time-series vectors for the different predic-
tors. Back-propagation learning tunes the connections between the nodes to reproduce the 
relationship between the input variables (temperature, precipitation, incidence) and the output 
forecasts (future incidence) based on past examples in the data set. 

37 Centers for Disease Control and Prevention, “Combating Dengue with Infectious Disease Forecasting,” press release, 
June 5, 2015. 
38 See, for example, L. M. Rueda, K. J. Patel, R. C. Axtell, and R. E. Stinner, “Temperature-Dependent Development and 
Survival Rates of Culex Quinquefasciatus and Aedes Aegypti (Diptera: Culicidae),” Journal of Medical Entomology, Vol. 27, 
No. 5, 1990; and J. B. Siqueira, Jr., C. M. T. Martelli, G. E. Coelho, A. C. da Rocha Simplício, and D. L. Hatch, “Dengue 
and Dengue Hemorrhagic Fever, Brazil, 1981–2002,” Emerging Infectious Diseases, Vol. 11, No. 1, 2005.
39 Back-propagation is the standard supervised learning method for ANNs. In general, supervised learning algorithms for 
machine-learning models are similar in approach to those used in traditional statistical models (e.g., least-squares regres-
sion): They attempt to find a “best fit” for the model parameters based on errors between the model output and the actual 
value observed.
40 The model structure is a hybrid of time-series prediction and sensor fusion. The model’s time-series predictor structure 
generalizes simple time-series models common in econometrics. And the model’s use of different types of sensory inputs is 
reminiscent of information fusion methods, such as Kalman filters used in target-tracking and motion control for robots.
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