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1 Introduction

The motivation behind this article is the hypothesis that postponing action

against climate change will have as a consequence that action has to be more

pronounced when it is eventually implemented. It is assumed that in�nite post-

ponement is simply not an option. By action is primarily meant a cap on total

emissions. This cap can be enforced either as an emissions tax or through a

scheme of tradeable quotas. This implies that there will be trade-o¤s between

what we save by not paying taxes and the higher consumption of fossil fuel

products during the period of postponement on one hand, and the damaged

caused by increased aggregate emissions plus the higher tax we will eventu-

ally have to pay, on the other hand. In particular it will be interesting to see

how much higher an emission tax will have to be for each additional period of

postponement and business as usual. In other words, starting early on climate

change mitigation results in lower carbon price in the future than postponing

mitigation.

In this article a dynamic optimization model in continuous time is applied.

An optimal carbon tax beginning in year 2000 is calculated and compared with

an optimal tax starting in each consecutive year up to 2070. As the applied

model is a closed loop (feedback) model, it is assumed that if the tax is not

implemented in 2000, then the aggregated GHG level will increase according

to business-as-usual until a tax eventually is implemented. The year when it

�nally is implemented the GHG level will necessarily be higher than if a tax

had been implemented in 2000, and the initial optimal tax will therefore also

be higher compared to the optimal path of a tax implemented in 2000. The

longer implementation is postponed the higher the initial tax must be. This

may result in one of two things, either the initial tax becomes so high that it is

politically impossible to implement or the tax that is �nally implemented is far
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too low and hence suboptimal. This way the di¤erence between the two curves,

one showing the optimal tax following a scheme implemented in 2000 and the

other showing the optimal initial tax implemented in some later year, measures

the cost of postponing implementation. This cost will necessarily increase over

time as there becomes more catching-up to do.

Given various assumptions about demand and supply of fossil fuel, decay

of GHG in the atmosphere and disutility associated with GHG concentration,

a model designed to calculate the optimal tax under uncertainty is developed.

The latter point is important as the various geophysical processes involved are

highly stochastic, in particular the natural decay of GHG over time.

The higher this di¤erence is, the less likely it is that mitigation will be

undertaken. In other words, although we may save ourselves many years of

not incurring climate change mitigation, it increases the likelihood of future

inaction (hysteresis) because it raises mitigation costs in the future to achieve

a given concentration target. Thus the longer we wait the greater the chance

that the action will be insu¢ cient. Further, it is also our aim to show how

much a future tax will have to increase, year by year, for each year that it is

not implemented. This will also illustrate the additional cost of each failure of

�nding an agreement at present and future climate summits.

The present study is in many ways similar to Keller et al. (2007) who made

an attempt at putting value on the regrets of procrastination in climate policy.

Whereas economic models recommend a reduction in the �ow of emissions of

about ten to twenty per cent current abatement is only a few per cent and

therefore highly suboptimal. Over time the economic cost due to this suboptimal

policy may amount to trillions of dollars.

Yohe et al. (2004) take closer look at the argument that near-term action

is unwise as it imposes immediate costs whereas the bene�ts are uncertain and
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long-term. They take the view that action will sooner or later be necessary and

therefore the wait-and-see attitude may not be the optimal one. They ask the

question whether we should intervene now as a hedge against the expected cost

of meeting an unknown future target. The conclusion is that not only is hedging

wise compared to the wait-and-see alternative, it is only a relatively cheap and

robust insurance against extreme future events. According to them the best

alternative is to introduce an immediate tax at 10 $ per tonne carbon increasing

at the rate of interest. Similar results are derived here, but the magnitude of

the optimal tax rate and the cost of postponing implementation depends heavily

upon the assumptions made about various economic parameters.

2 The conceptual model

In this section the basic model is described. The notation is as follows: x

is production of fossil fuel, which also is equivalent to the emission rate as

production is measured in emission units, a is concentration of GHG in the

atmosphere and � is the associated ad valorem carbon tax. Concentration a is

measured in p.p.m. and emission x is measured in p.p.m. per time unit. The

optimal tax is derived starting with the basic variables supply and demand, and

then maximizing welfare over time. Welfare is de�ned as the sum of consumers�

and producers� surplus corrected for externalities. The demand function for

fossil fuel is denoted by p(x); and the supply function, derived from marginal

cost, denoted by c(x):

Welfare, de�ned as the �ow of utility, U , minus the running damage, D,

caused by accumulated GHG emissions is given by:

W =

1Z
0

e��t [U(x)�D(a)] dt
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where a(t) and x(t) are themselves functions of time. Time, t, is usually sup-

pressed as an argument in the equations for simplicity. Utility, U , de�ned as

the sum of consumer and producer surplus, is formulated a follows:

U(x) =

xZ
0

[p(y)� c(y)] dy

where y is used as a dummy variable. Damage, D, is a convex function given

by:

D(a) = 
 � ([a� ad]+)2 (1)

where [x]+ � max(0; x). Here ad represents the level of GHG below which no

damage can be detected.

Demand is assumed to be given by a non-linear function with variable elas-

ticity:

p(y) = p0 � e�p1�y:

The parameter p0 represents the maximum price; prices higher than this choke

all demand whereas the parameter p1 is an elasticity parameter. The demand

elasticity is given by

ElD(y) = �
1

p1 � y
:

The supply function, on the other hand, is assumed to be linear:

c(y) = c0 + c1 � y

where c0 and c1 are supply parameters. The supply elasticity is given by

ElS(y) = 1 +
c0
c1 � y

:

The elasticities will be used to calibrate the demand- and supply parameters.
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This speci�cation of demand and supply implies that the utility �ow can be

written explicitly:

U(x) =
p0
p1
(1� e�p1x)� 1

2
c1x

2 � c0x: (2)

The ad valorem tax is the di¤erence between the consumer- and producer-price

divided by the producer-price:

�(x) =
p0 � e�p1x
c0 + c1x

� 1: (3)

The equation (3) is not explicitly solvable with respect to x, as it would have

been if, e.g., supply and demand had been linear. However, as the dynamic

optimization problem is solved numerically, this is of minor importance. The

dynamic optimization in this model is subject to a dynamic constraint governing

the change in aggregated emissions. The change in aggregated emissions is

determined by the �ow of emissions subtracted natural assimilation. As natural

assimilation is subject to uncertainty, it is modelled as a stochastic process.

Production is measured in emission units, and hence the two are equivalent.

The dynamic constraint can then be written

da = [x� f(a)] dt+ �dB (4)

where f(a) is the deterministic term in the assimilation (or natural adjustment)

process. The term da is is an incremental change in the CO2 concentration level,

and x the emission rate as earlier. The term �dB represents an increment of a

Brownian motion with variance �2. Further it is assumed that the deterministic
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term, f(a), can be speci�ed as

f(a) =

8><>: 0 if a � a0

f1 � f1
1+f2(a�a0)2 if a > a0

: (5)

Here f1 and f2 are parameters to be estimated and a0 is by de�nition the

preindustrial CO2 level as this is the level to which a will converge without any

anthropogenic emissions. Based on the data the preindustrial level is assumed

to be 280 p.p.m. If, on the other hand, anthropogenic emissions go to in�nity

f(a) converges to f1 and f(a) < f1 for all a. Further, the derivative f 0(a) > 0

for a � a0. The parameters f1 and f2 are estimated using the ensemble Kalman

�lter, a method described in a separate section.

2.1 The numerical model: Speci�cation.

In this section the numerical speci�cation of the model is outlined, and each

input-function is described step by step. All units are measured in p.p.m.

whether it is accumulated GHG, consumption, production or emissions. Present

refers to 2007 and the applied discount rate is 2 per cent.

2.2 Demand and supply

The numerical parameters in the demand- and supply functions are speci�ed

as follows. The price is normalized such that the present market equilibrium

yields a price equal to one, and the present consumption and production are

equal to 3.9 p.p.m.. These assumptions combined with assumptions about long-

run demand- and supply elasticities yield the parameters in the demand- and

supply functions.

The assumption about the demand elasticity is taken from Flood et al.

(2010): "While a range of estimates is found, the consensus is that the long-run
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price elasticity of demand is around - 0.8,...". Regarding supply elasticities of

fossil fuel the range is even wider, ranging from almost zero to highly positive

depend on which product is in question and whether emphasis is put on short

or long term. And there is less consensus. Supply is naturally more elastic

in the long run than in the short run, and given the wide range of estimates

to choose from in the literature, a long-run supply elasticity of about 1.65 is

chosen here as this seems to fall in the middle of this wide range. This is e.g.

in accordance with e.g. Dahl & Duggan (1996), but sensitivity analysis with

respect to this parameter will be performed later. These assumptions yield the

parameters reported in Table 1.

Table 1. Parameters in the supply and demand functions

Parameter Value

p0 3.5

p1 0.32

c0 0.39

c1 0.1525

2.3 Damage function

The damage function represents a mapping between the aggregated level of GHG

and current damage measured in monetary units. This relationship is fairly

vague and associated with a high degree of uncertainty. There is some consensus

that the annual cost of climate change and global warming in the future probably

will range between one and four percent of global gross domestic product (GDP).

There is still no consensus that this damage has already started, and therefore

parameters are chosen such that total damage varies from 0.2 percent to 4.6

percent of global GDP. Global GDP is calculated as follows: The contribution of
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fossil energy to the world�s domestic product is simply the quantity in the market

equilibrium multiplied by the market price. As the market price is normalized

to one, and the quantity is 3.9 p.p.m., this contribution is 3.9 in monetary units.

Further, fossil energy accounts for approximately 12 - 15 percent of the world�s

GDP, see BP Statistical Review of World Energy (2010). In the present analysis

12 percent is applied as an estimate implying that the world�s gross product is

32.5 measured in the units applied here with 2007 as base year.

With the speci�cation given by (1), it is assumed that an aggregated GHG

level below ad corresponds to zero damage. Here ad is chosen somewhat ar-

bitrarily to be 350, which was the level around 1960. Implicitly it is assumed

that there were no trace of damage associated with GHG prior to 1960. Various

values for 
 and the corresponding share of GWP (Gross World Product) that

the damage accounts for are reported in Table 2.

Table 2. Parameters in the damage function.

Case 
 % of GWP in 2007

1 4.4�10�5 0.2 %

2 2.64�10�4 0.9 %

3 7.92�10�4 2.8 %

4 9.69�10�4 3.4 %

5 1.3�10�3 4.6 %

ad = 350

.

2.4 Natural assimilation

The natural assimilation or decay is a very important function in the model, but

at the same time characterized by a high degree of uncertainty. The way it has

8
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been formulated here, see eq. (5), it is assumed that a0 represents the level of

aggregated GHG corresponding to the preindustrial level. In other words, this

is the natural steady state level of GHG without any anthropogenic emissions.

The parameter values in the assimilation function are:

Table 3. Parameters in the natural decay function.

Parameter Value

f1 2.8797

f2 1.378�10�4

�20 0.0428

a0 280

3 Carbon data assimilation

The ensemble Kalman �lter is used to estimate model parameters of the carbon

assimilation function (sometimes called the carbon decay function). A range of

di¤erent speci�cations were tried; most had the following characteristics. No

(net) assimilation at the preindustrial concentration level (280 p.p.m.). Assim-

ilation increases with the concentration level above the preindustrial level, but

after some concentration level, assimilation tapers o¤. The numbers of parame-

ters in the model is reduced as much as possible as there is limited variation in

the data.

3.1 Data

The data on CO2 emissions (1751 �2007) were collected from the Carbon Diox-

ide Information Analysis Center at Oak Ridge National Laboratory (Boden &

Marland 2008). Unfortunately, observation uncertainty was not provided.
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Figure 1: CO2 concentrations (solid line, left axis) and emissions data (dotted
line, right axis).

The atmospheric concentration of CO2 has been measured at Mauna Loa,

Hawaii since 1959 (see Tans and Keeling 2011). Measurements are made with

high accuracy. In the assimilation exercise it is assumed more uncertainty in

the concentration data as they are regarded as globally representative.

CO2 concentrations data prior to 1959 were collected from the Law Dome At-

mospheric CO2 data, that is, observations made from ice core samples (Etheridge

et al. 2001, the data was �rst published in Etheridge et al. 1996). The ice core

data contains yearly concentration observations for the years 1832 �1978 and

�ve year averages for the years 1010 �1975. As the yearly observations stretched

into the preindustrial period, we chose not to use the long time series. In the

years where the Mauna Loa and Law Dome data overlapped, the Mauna Loa

data were used. Using the Law Dome data would not make much of a di¤erence

as they coincide to a large degree. Data are shown in Figure 1.
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3.2 The Model

The carbon assimilation model is the one described by eq.(5). It is readily seen

that f(x) < f1 for all a and that f(a) converges to f1 when a goes to in�nity.

The �rst derivative is always positive when a � a0. The parameters in equation

(5) are estimated with the ensemble Kalman �lter. How the concentration level

changes is given by eq. (4).

In (4), da is an incremental change in the CO2 concentration level, x is the

emission rate (see Figure 1), dt is the incremental time step, and �dB describes

an increment in Brownian motion process with variance �2.

3.3 The Ensemble Kalman Filter

The ensemble Kalman �lter is used to estimate the carbon assimilation function

in equation (5). The �lter is a data assimilation method which is widely used

in physical applications like meteorology and oceanography, where phenomena

typically have a chaotic nature. It has structural relationships to the classical

Kalman �lter, but extends to a large class of nonlinear models (see Burgers et

al. 2008 and references therein). The method was �rst suggested by Evensen

(1994), while Burgers et al. (2008) provided a theoretical clari�cation. Evensen

(2003) reviews both theoretical developments and survey applications of the

ensemble Kalman �lter and related techniques. Evensen (2009) discuss more

recent developments.

The ensemble Kalman �lter use a Markov Chain Monte Carlo approach to

solve the Fokker-Planck equation which governs the time evolution of models

like the model in (4). The method applies to state space models with the dy-

namic equation (the state or model equation) written as a stochastic di¤erential

equation (see equation (4)). In addition, the measurement equation relates ob-

servations to model states. In many applications, ours included, the observed
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phenomena is observed directly and the measurement equation becomes trivial:

z =Ma+ " (6)

where z is the observed concentration, a is the modeled concentration, and " is a

normal distributed error term with known variance. M is called the observation

or measurement operator and is in our case simply the identity operator. The

�lter procedure works as follows: An ensemble of model states; a cloud of points

in the state space, is integrated forward in time according to the stochastic model

dynamics. Error terms are simulated. Each point in the forward integrated

cloud represents model forecasts. At observation times, the Kalman gain is

calculated using ensemble moments instead of the unknown true moments. The

integrated ensemble is then updated with the gain matrix which de�nes how

much weight to assign to observations and to forecasts. It can be shown that the

mean of the updated ensemble converges to the classical Kalman �lter solution

asymptotically in the ensemble size (Evensen 2009). Usually, a limited size of

the ensemble is su¢ cient for reasonable statistical convergence. The ensemble

size necessary to represent the density will depend on the application. If the

ensemble mean is treated as the best estimate, it can further be shown that the

second moment of the ensemble is the best estimator of the error covariance

(Burgers et al. 1998).

The ensemble Kalman �lter can be used for parameter estimation. Un-

known parameters are simply added to the state-space and treated as model

states (Evensen 2009, p. 101). When unknown parameters are present, some

adjustments of the observation operator and the Kalman gain matrix are nec-

essary, see Evensen (2009) for details. As for all Kalman �lter methods, one

must de�ne initial conditions; priors in a Bayesian framework. With unknown

parameters, initial conditions can be di¢ cult to specify, but usually one has

12
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theory or earlier work to rely on.

When ensemble members are integrated forward in time, one can in principle

use any forward integration method, like a Runge-Kutta or Euler method. Here,

however, equation (4) is discretized by setting dt = 1
10 (measured in years), and

the discretized equation is used directly. Errors are simulated. The method

requires observations to be treated properly as random variables, which in a

Monte Carlo approach implies that measurement errors in equation (6) have to

be simulated as well; once for each observation for each state ensemble member

(Burgers et al. 1998). The approximation introduced with the ensemble repre-

sentation of observation errors does not in�uence the state estimate and can be

made less than the true observation uncertainty with a large enough ensemble

size (Evensen 2009, pp. 41-42). Let  denote the state vector extended with

the unknown parameters; 	 denotes the ensemble of states.  f denotes the

forecasted state vector, similarly for the ensemble matrix; 	f . The Kalman

gain matrix is given by

K = (C		)
fMT (M(C		)

fMT + CEE)
�1 (7)

where (C		)f = cov(	f ;	f ) is the covariance in the ensemble of forecasted

states, MT is the transpose of the measurement operator, and CEE denotes the

covariance in the ensemble of simulated measurement errors E. The expression

for the Kalman gain is similar to the expression in the standard Kalman �lter,

but the generally unknown covariances are replaced by ensemble moments. The

forecasted ensemble member j is updated in what is known in the technical

literature as the analysis step, where the Kalman gain acts as a weight between

the forecasted state and the observation:

	(j) = 	(j)f +K(d+ E(j)�M	(j)f ): (8)

13
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With the identity operator as the measurement operator, one readily sees that

withK = 0, no weight is given to the perturbed observation d+E(j). WithK =

1, no weight is given to the forecast. The mean of 	 is then the ensemble Kalman

�lter estimate of the state vector contingent on the observation d. Usually, one

has a time series of observations; the ensemble of states is then forecasted until

the next observation time, a new gain matrix is calculated, and the ensemble is

updated in a new analysis step. The sequential nature of the method improves

e¢ ciency of the numerical implementation. It also means that estimates are

conditional only on observations up until a given time. If estimates conditioned

upon all available observations are desired, estimates can be smoothed (Evensen

2009).

3.4 Results

The analysis is done for the years where there are observations of both emissions

and concentration levels; 1832 �2007. Parameter f2 is assumed lognormal dis-

tributed (thus nonnegative). Initial conditions, used to generate the randomly

drawn initial ensemble, are given in Table 4. Further, 500 ensemble members

are used, and observation uncertainty (variance of error term in equation (6))

is 0.12 (see Tans and Keeling 2011).

Table 4. Initial conditions.

mean st. d.

x 284.3 10

p1 3 1

ln p2 -9.21 3

Figure 2 shows the estimated concentration level and demonstrates that the
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Figure 2: Estimated carbon dioxide atmospheric concentration level. Dashed
lines show 95% con�dence limits.
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Figure 3: Parameter estimates, see equation (1). Dashed lines show 95% con�-
dence limits.

model to a large extent explains the observed levels. The �gure also shows

con�dence limits of the estimate, and they are quite narrow as a result of the

small observation uncertainty. It could be argued that while the Mauna Loa

observations are highly precise, uncertainty should be added when they are

treated as representative of the global concentration level. However, it is not

obvious how much uncertainty to add, and it is therefore left for future research.

Figure 3 shows parameter estimates. The �nal estimates, which are con-

tingent on all data, are f1 = 2:88, and f2 = 1:38 � 10�4. The parameters are

highly signi�cant, but it is worth noting that if the sample had lasted only to

around 1960, the estimate for f1 would be much higher. As f1 is the upper

bound for the yearly assimilation rate of carbon, it is an important parameter

when forecasting emissions and discussing mitigation. Thus, if one wants to be
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SNF Report No. 16/11



optimistic when it comes to the potential for natural cleaning of atmospheric

carbon dioxide, and at the same time is willing to overlook the last 50 years of

observations, one could argue that the parameter should be around 6.2.

The size of the noise term, governed by �, in equation (4) is also estimated.

The estimate is shown in Figure 4. The �nal estimate is at 7.7�10�3. The

estimate is, however, biased downward. A more appropriate estimate is shown

in Figure 5. The estimate is very volatile, and, further, only an estimate of

the noise in each period. The nature of the noise process makes the estimate

valid only locally in time. As seen in equation (4), we are interested in a time-

independent estimate. Here the average of the estimate shown in Figure 5 is

used, which is 0.0428. Another alternative would be to use a moving average,

but the size of the window would matter. A ten year window at least seems

to capture the main features of the yearly estimate, see Figure 5. The average

for the last ten year window is 0.0764. The time structure of the curves in

Figure 5 is interesting in itself. Historically, two periods had increased noise

in the atmospheric carbon dioxide concentration; the periods around 1880 and

1940. Both periods corresponds to when concentration levels started to increase

faster than before (see Figure 1) and to when parameter estimates changed (see

Figure 3). After 1960, the noise has increased steadily; again, it seems that

concentration levels has increased faster and faster, and parameter estimates

are less stable.

With the interpretation of the Kalman gain as a weight in equation (8),

it could be of interest to study the gain itself. Figure 6 shows the Kalman

gain for all state variables. It can be shown that with the observation equation

(6), where the observation operator M is the identity, the gain is bounded by

zero and one. Most of the time, the gain for the carbon dioxide concentration

level is slightly above 0.5; the estimate is thus approximately the average of

17
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Figure 4: Estimated noise level, see equation (4).

the forecasted estimate and the observed state. The bounds on the gain do

not hold for parameter states, however. For parameter states, the observation

operator is the zero operator. Thus, the Kalman gain scales the in�uence of the

observed state on the estimated parameter. The in�uence can be both positive

and negative, as seen in Figure 6. Compared to the events observed in Figure

5, there seems to be little connection to the Kalman gain apart from generally

larger in�uences approximately after 1960.

Finally, in Figure 7 the estimated assimilation function is presented, see

equation (5). Missing emissions, emissions minus the yearly increase in at-

mospheric concentration, are also plotted. The estimated function seems to be

a reasonable approximation, but possibly overestimated at low concentrations.

18
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Figure 5: Model error.

3.5 Alternative Model

An alternative model, which links the concentration of carbon dioxide to the

global average temperature, is also developed and estimated. The idea is that

damages might be closer linked to increases in temperature rather than the level

of carbon dioxide concentrations.

For the alternative model, a slight variation to the carbon assimilation func-

tion discussed above is chosen, see equation (4):

f(a) =

8><>:
0 if a � a0

f1 � f1

1+f2(a�a0)
3
2

if a > a0
(9)

The dynamic model consists of equation (4) in addition to an equation which

links temperature (b) to the carbon dioxide concentration:

19
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Figure 6: Kalman gain for all state variable

da = [x� f(a)] dt+ �adBa (10)

db =

�
f3
ln 2

1

a

�
da+ �bdBb

The system (10) is inspired by Sche¤er et al. (2011) and references therein.

The interpretation of the parameter f3 is relatively simple; it measures the

increase in the mean global average temperature with double the carbon dioxide

concentration. See Sche¤er et al. (2011) for further discussion of the carbon-

temperature model.

Data on the global average temperature was collected from National Aero-

nautics and Space Administration (2011), which provides updates to Hansen

et al. (2006). Temperature data was available from 1881 to 2010. Note that
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Figure 7: Estimated assimilation and data di¤erences.
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Figure 8: Estimated global average temperature anomaly (blue curve). Dashed
curves show 95% con�dence intervals, while x-marks show the observed anom-
alies.

temperature is measured as anomalies relative to the average temperature in

1951 �1980; see Hansen et al. (2006) for details.

Figure 8 shows the estimated temperature anomaly. The estimated carbon

dioxide concentration is as least as good as the estimate in Figure 2. Figure 9

shows parameter estimates.

The results from the alternative model holds promise for further research.

A challenge is then to utilize (10) in an integrated economic model.
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Figure 9: Parameter estimates, see equations (6) and (7). Dashed curves show
95% con�dence limits.
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Figure 10: Damage equal to 0.2 % of GWP in the initial year 2000.
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Figure 11: Damage equal to 0.2 % of GWP in the initial year 2000.
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Figure 12: Damage equal to 0.2 % of GWP in the initial year 2000.
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4 Model results

In this section some results based on this model are presented. The cases out-

lined here are the �ve cases suggested in Table 2 where the damage coe¢ cient,


, is the only factor that varies. The variation in 
 corresponds to a variation of

the damage relative to GWP from 0.2 per cent to 4.6 per cent, in other words a

fairly large range of possible outcomes. This parameter is regarded as, perhaps,

the most uncertain parameter in the model, and hence the large variation.

Case 1 is depicted in Figures 10, 11 and 12. In this case the damage due to

climate change accounts for only 0.2 per cent of GWP at the current level. Fig-

ure 10 illustrates emission as a function of the aggregated CO2- level. Business

as usual will be around 3.9 and increasing (red curve). The downward-sloping

blue curve is the optimal emission level and the green curve represents natural

assimilation with zero drift. The intersection between the blue and green would

then be the long-term steady state if the model had been deterministic. This

level would then be 536 p.p.m. with emissions equal to 2.6 p.p.m..

Figure 11 illustrates the optimal tax against aggregated CO2 - level. It starts

at some 10 per cent and hits the maximum level 800 per cent at an aggregated

GHG level of almost 1200 p.p.m.. The reason why 800 per cent tax is a "ceiling"

is that this tax level will curb all demand and is therefore the highest tax level

needed. Figure 12 shows the increment in the optimal ad valorem tax for each

year implementation of the tax is postponed compared to if it was implemented

in year 2000 right after the �rst Kyoto-meeting. If, e.g. implementation is

postponed until 2070 it must be more than 35 per cent higher than the one

implemented in 2000. This corresponds to an increase of about 0.5 per cent per

year. This may not sound too scary, but it is calculated for a case with almost

negligible damage caused by global warming, in other words the most optimistic

case.
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Figure 13: Damage equal to 0.9 % of GWP in the initial year 2000.
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Figure 14: Damage equal to 0.9 % of GWP in the initial year 2000.
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Figure 15: Damage equal to 0.9 % of GWP in the initial year 2000.

Figures 13, 14 and 15 depict case 2 where the damage accounts for 0.9 per

cent of world GDP at the current level. Figure 13 corresponds to Figure 10,

Figure 14 corresponds to Figure 11, etc. The deterministic steady state would

be 412 p.p.m. with an emission equal to 2 p.p.m.. From Figure 14 it is seen

that the optimal tax hits the "ceiling" already at about 550 p.p.m.. Figure 15

shows the increase in the tax implied by postponing implementation. Here it is

seen that by waiting 70 years from year 2000, the initial tax must be increased

by more than 200 per cent or around three per cent per year.

In Figures 16, 17 and 18 Case 3 is depicted where the damage accounts for

2.8 per cent of GWP at current levels. The �gures appear in the same order

as earlier. In this case it would be optimal to stabilize GHG concentration at

about 380 p.p.m. which is close to the present level and only emit 1.7 p.p.m.

per year from now on. This would require an ad valorem tax starting at more

than 200 percent as of year 2000 and increasing fairly rapidly for each year it is

postponed. As seen from Figure 18, if implementation of the tax is postponed

until the late 2030s for example, the initial tax must be around 275 per cent
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Figure 16: Damage equal to 2.8 % of GWP in the initial year 2000.
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Figure 17: Damage equal to 2.8 % of GWP in the initial year 2000.
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Figure 18: Damage equal to 2.8 % of GWP in the initial year 2000.

higher than a tax starting in year 2000 equivalent to an increase of about 7-8

per cent per year. The reason why the curve �attens out after some time is

that the tax after that must be su¢ ciently high to choke all emissions. And

from Figure 17 it is seen that the optimal tax increases rapidly also with GHG

concentration itself and hits the ceiling for a concentration level which is not

much higher than 400 p.p.m..

Case 4, illustrated in Figures 19, 20 and 21, represents a case where the

current damage relative to GWP is 3.4 per cent. The deterministic steady state

goes down to 376 p.p.m. with an emission rate equal to 1.6 p.p.m.. From Figure

21 it is seen that the tax must be increased by 260 per cent if it is postponed

until 2030, which on average is 8 - 9 per cent for every year it is postponed.

In Figures 22, 23 and 24 Case 5 is depicted where the current damage is

as high as 4.6 per cent of GWP. The deterministic steady state is down to 370

p.p.m. and the corresponding steady state emission 1.5 p.p.m. which is less

than 40 per cent of today�s actual emissions. The optimal tax hits the ceiling

at 400 p.p.m., which is approximately the same as in Case 4. In Case 5 it is
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Figure 19: Damage equal to 3.4 % of GWP in the initial year 2000.
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Figure 20: Damage equal to 3.4 % of GWP in the initial year 2000.
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Figure 21: Damage equal to 3.4 % of GWP in the initial year 2000.
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Figure 22: Damage equal to 4.6 % of GWP in the initial year 2000.
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Figure 23: Damage equal to 4.6 % of GWP in the initial year 2000.
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Figure 24: Damage equal to 4.6 % of GWP in the initial year 2000.
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seen that only by postponing the introduction of a tax further than 2020 means

that it must be 230 per cent higher than if it had been introduced in year 2000

or increase by 11 - 12 per cent per year.

5 Sensitivity analysis

In this section sensitivity analysis with respect to supply and demand is per-

formed. The values in the basic model were -0.8 for the demand elasticity and

1.65 for supply elasticity. The value of the supply elasticity is regarded more

uncertain than the demand elasticity. The sensitivity analysis is therefore per-

formed as follows: for the demand elasticity it is varied by +/- 0.1 and for the

supply elasticity by +/- 0.55. In all cases the intermediate case with respect to

damage is applied, that is case 3 in Table 2 where the damage accounts for 2.8

per cent of global gross product in 2007. This means that each of the �gures

in this section can be compared to one of the �gures 16, 17 or 18. The various

alternatives and their consequences for optimal tax and emissions will be dealt

with one by one.

5.1 Variation in supply elasticity

The results when the supply elasticity is reduced from 1.65 to 1.1 are illustrated

in �gures 25, 26 and 27. Optimal emissions are not a¤ected by a change in

supply elasticity but the optimal tax is heavily a¤ected. It hits the ceiling at

about the same level as earlier but the ceiling is much higher. In fact a tax of

some 3750 per cent is necessary in order to curb production and consumption.

As a consequence the increase in the tax resulting from postponing implemen-

tation must also be higher. If, for example, implementation is postponed until

2040, the tax must be 1200 per cent higher than if it was implemented in 2000.

This represents an increase in the tax by about 30 per cent for each year it is
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Figure 25: Supply elasticity equal to 1.1.

postponed.

The results when the supply elasticity is increased from 1.65 to 2.2 are illus-

trated in �gures 28, 29 and 30. Again optimal emissions are not a¤ected but,

just as tax rates increase when supply becomes less elastic, tax rates decrease

when supply becomes more elastic. The "ceiling" in Figure 29 is now reduced

from 800 per cent to some 550 per cent and from Figure 30 it is seen that by

postponing implementation of the tax until 2040 the tax must increase by about

220 per cent compared to 2000, or by about 5 per cent for each year it is post-

poned. The intuition behind these changes is fairly simple. The more inelastic

supply is, the more of the tax burden will be transferred to the producer. The

tax rate must be relatively high in order to have any e¤ect on production and

the environment. When supply is elastic a much lower tax rate is needed in

order to achieve the desired e¤ect which is to internalize the externality. These

qualitative results may come as no surprise but the purpose here is to investi-

gate numerically how much tax rates have to change when elasticities are varied.

The range of supply elasticities analysed here is quite wide as this is a fairly
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Figure 26: Supply elasticity equal to 1.1.
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Figure 27: Supply elasticity equal to 1.1.

35

SNF Report No. 16/11



400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

3

3.5

4
Emmision: Zero drift (green), myopic (red) and optimal (blue)

CO 2 level (ppm)

Em
m

is
io

n 
(p

pm
 / 

ye
ar

)

Figure 28: Supply elasticity equal to 2.2.

uncertain parameter, and therefore the e¤ect on the tax rates is also quite large.

The underlying physical emissions remain the same; it is only tax rates that are

a¤ected.

5.2 Variation in demand elasticity

The results when the demand elasticity is reduced (in absolute value) from -0.8

to -0.7 are illustrated in �gures 31, 32 and 33. When the demand elasticity is

reduced, the same qualitative e¤ects are expected as when the supply elasticity is

reduced. But as the reduction in the demand elasticity is less than the reduction

in the supply elasticity, the numerical e¤ect is less. The maximum tax rate

needed now increases from 800 per cent to almost 1000, and the relative increase

in tax caused by postponing implementation of the tax is now 160 per cent of

the tax in 2000 is implementation is postponed almost 40 years as compared

to the 280 per cent it must increase in the basic model, see Figure 18. This is

equivalent to about 4 per cent for each year it is postponed.

The results when the demand elasticity is increased (in absolute value) from
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Figure 29: Supply elasticity equal to 2.2.
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Figure 30: Supply elasticity equal to 2.2.
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Figure 31: Demand elasticity equal to -0.7.
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Figure 32: Demand elasticity equal to -0.7.
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Figure 33: Demand elasticity equal to -0.7.

-0.8 to -0.9 are illustrated in �gures 34, 35 and 36. As expected tax rates will

now decrease but not as much as they decrease when the supply elasticity is

varied simply because the variation in supply elasticity was larger. In this case

the maximum tax rate, which curbs all production, is just below 700 per cent

and a tax rate implemented in year 2040 must be about 150 per cent higher

than if the optimal tax had been implemented in year 2000.

6 Summary and conclusions

The main purpose of this report is to investigate the e¤ects of postponing imple-

mentation of a carbon tax assuming that externalities associated with climate

change and global warming is real and failing to internalize these externalities

will only lead to a suboptimal situation. The model applied to investigate these

externalities start with the basic relationships, namely supply and demand for

fossil fuel, and an added damage term that accounts for the externality. The

objective is then to maximize the sum of consumers�and producers�surplus ad-
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Figure 34: Demand elasticity equal to -0.9.
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Figure 35: Demand elasticity equal to -0.9.
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Figure 36: Demand elasticity equal to -0.9.

justed for the externality. This must be done subject to the dynamic constraint

derived from emissions of carbon associated with extraction and consumption of

fossil fuel and the natural assimilation of carbon in the atmosphere. The model

is solved as a closed loop feedback policy. First the optimal emission path is

calculated, then the corresponding tax path is found. As the externality dealt

with here is a pure stock externality it turns out that the optimal tax is equal

to the shadow cost of the pollutant.

The dynamic equation for assimilation, or natural decay, of carbon is spec-

i�ed using a fairly sophisticated method, namely the ensemble Kalman �lter.

Given the relative simplicity of the model with only one type of production and

one type of pollutant, this method is supposed to give a best possible estimate

of the parameters in the assimilation function.

Regarding the damage term there is still no consensus among scientists about

the degree of the damage or the form of the damage function. In this report a

convex (quadratic) function is applied, but a large range of parameter values are

investigated to test for the sensitivity of the results to variation in the magnitude
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of the damage. Measured as a percentage of the world�s gross product this

variation corresponds to a variation from about 0.2 per cent to 4.6 per cent.

In other words, from almost nothing to up to almost �ve per cent. This range

ought to cover the beliefs of most scientists from the most optimistic to the most

pessimistic ones. Altogether �ve di¤erent cases were analysed. Here the main

results from three of them are summarized.

From the basic model it was seen that if the damage parameter is adjusted

such that the magnitude of the damage at present only accounts for 0.2 per

cent of the world�s domestic product (GWP) then it is not necessary to curb

all extraction of fossil fuel until the aggregated level of carbon has reached 1200

p.p.m. The optimal tax must increase by only 0.5 percent for each year it is

postponed. In other it must 35 per cent if it is implemented in 2070 than in

2000. The optimal steady state in the deterministic counterpart of the model

is an aggregated level of just above 500 p.p.m. with an annual emission around

2.5 p.p.m.

In the intermediate case the damage today is supposed to represent 2.8 per

cent of GWP today. Emissions must be choked already at an aggregated level

around 450 p.p.m., and the same tax rate as earlier, 800 per cent, is needed.

This does not change as the underlying economic parameters remain unchanged.

The tax must increase by almost 7 per cent for each year it is postponed until it

is 275 per cent higher in 2040 than the optimal tax would be if implemented in

2000. This tax rate will curb production, so it does not need to increase more

after that. The deterministic steady state in this case is an aggregated level of

about 400 p.p.m. with a production equal to 1.75 p.p.m.

In the "worst case" scenario where the damage already today represents as

much as 4.6 per cent of GWP, production must be curbed when the aggregated

carbon level reaches 420 p.p.m. If implementation is postponed, the optimal
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rate must be 225 per cent higher already in 2020, or it must increase by as

much as 11 per cent a year. A rate 225 per cent higher than the optimal rate

in 2000 will curb production and therefore does not need to increase any more.

The reason why this is lower than in the previous case, is that the optimal rate

in 2000 is higher when the damage is higher. The deterministic steady state is

now well below 400 p.p.m. and emissions must be reduced to 1.5 p.p.m. per year

in the optimal long run. In this worst case scenario there is a strong indication

that either the tax will not be introduced at all or an insu¢ cient tax will be

introduced. That is, either too little too late or, at worst, nothing at all.

As the basic assumptions about supply- and demand elasticities are some-

what uncertain, sensitivity analysis with respect to the parameters in the supply

and demand functions was performed. Supply elasticity is assumed to be more

uncertain than demand elasticity and is therefore varied to +/- 0.55 whereas de-

mand elasticity is varied by +/- 0.1. In this sensitivity analysis the assumption

about damage corresponds to the intermediate case above, namely that today�s

damage is equivalent to 2.8 per cent of GWP. As expected, it is found that opti-

mality regarding the physical variables, that is emissions and aggregated carbon

concentration, remain unchanged when the elasticities change. It is only the tax

rate that changes. The expected qualitative e¤ect of changing the elasticities is

that when supply and demand becomes less elastic this means that producers

and consumers are less responsive to changes in price. The tax in this model is

a corrective tax designed for the purpose of internalizing an externality where

the objective is to achieve a certain goal given in physical units. When the

agents in the economy become less responsive to changes in price, a higher price

(or tax) is needed to achieve the goal. The results from the sensitivity analysis

con�rm this expectation, and it is also seen that tax rates are quite sensitive

to changes in the elasticities. Only by changing the demand elasticity by +/-

43

SNF Report No. 16/11



0.1, the tax needed to curb all emission increases from 800 to almost 1000 with

reduced elasticity and to less than 700 when the elasticity increases. In other

words, the relative change in the tax rate is 15 - 25 percent. When the supply

elasticity is changed by +/- 0.55 the e¤ect is even more pronounced. Then the

maximum tax rate goes up to 3750 per cent (when the supply elasticity is 1.1)

and down to 225 per cent (when the supply elasticity is 2.2).

All in all, the main message in this report is that it may possibly be very

expensive to postpone implementation of a carbon tax as the tax rate may

have to increase by up to 30 per cent and more for each year implementation

is postponed in order to recover optimality in the most pessimistic cases. In

the more optimistic cases an increase of down to 0.5 per cent per year may be

su¢ cient. Another important message is that more empirical research on the

supply- and demand conditions are necessary along with more research on the

actual magnitude of the damage caused by climate change.
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