

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

PNNL-20136

Tc-99 Adsorption on Selected Activated Carbons

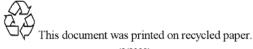
Batch Testing Results

SV Mattigod DM Wellman EC Golovich E Cordova RM Smith

December 2010

Proudly Operated by Battelle Since 1965

DISCLAIMER


This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty**, **express or implied**, **or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights**. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

(9/2003)

PNNL-20136

Tc-99 Adsorption on Selected Activated Carbons

Batch Testing Results

SV Mattigod DM Wellman EC Golovich E Cordova RM Smith

December 2010

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Summary

CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater.

The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing.

The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), K_d values ranged from 6,000 to 20,000 mL/g. In comparison, under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with K_d values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 μ g/L (14,700 pCi/L), the predicted K_d values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for the two carbons. These K_d values did not meet the target K_d value of 9,000 mL/g.

Tests conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons.

Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21°C, 27°C, and 32°C there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature.

The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

After evaluating these results and performing a cost-benefit analysis, CHPRC personnel have selected carbon J177606 Siemens AC1230AWC as the preferred carbon source for Tc-99 removal based on batch testing. Performing follow-on column testing could be considered because it could provide important estimates of carbon lifetime in the treatment system, the amount to Tc-99 that can be loaded onto the carbon, and the quantity of volatile organic constituents contained in the groundwater that will load onto the carbon. This information is used in design of the treatment system and considerations for waste disposal of the spent carbon.

Acronyms and Abbreviations

°C	degree(s) Celsius (or Centigrade)
°F	degree(s) Fahrenheit
ALARA	as low as reasonably achievable
CHPRC	CH2M HILL Plateau Remediation Company
COCs	constituents of concern
Cr	chromium
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GAC	granular activated carbon
ICP-MS	inductively coupled plasma-mass spectrometry
g	gram(s)
K _d	distribution coefficient(s)
L	liter
mg/L	milligram(s) per liter
µg/g	microgram(s) per gram
μg/L	microgram(s) per liter
OU	Operable Unit
pCi/L	picocuries per liter
PNNL	Pacific Northwest National Laboratory
SU	standard unit(s)
Тс	technetium
TSS	total suspended solids
TOC	total organic carbon
VOC	volatile organic compound

Contents

Sum	mary			iii			
Acro	onym	s and A	bbreviations	v			
1.0	Intro	oductio	n	1.1			
2.0	Obje	ective		2.1			
3.0	Mate	erials a	nd Methods	3.1			
	3.1 Materials						
		3.1.1	Carbons	3.1			
		3.1.2	Source Water	3.1			
	3.2	Metho	ods	3.3			
		3.2.1	Activated Carbons	3.3			
		3.2.2	Source Water	3.3			
		3.2.3	Solution Analysis	3.3			
		3.2.4	Adsorption Test Method	3.3			
		3.2.5	Activated Carbon Screening Tests	3.4			
		3.2.6	Batch Isotherm Tests	3.4			
		3.2.7	Variable pH Batch Tests	3.5			
		3.2.8	Variable Temperature Batch Tests	3.5			
		3.2.9	Volatile Organic Carbon Effect Tests	3.6			
	3.3	Result	ts	3.6			
		3.3.1	Constituents in Source Water	3.6			
		3.3.2	Activated Carbon Screening Tests	3.8			
		3.3.3	Batch Isotherm Tests	3.8			
		3.3.4	Effects of pH, Temperature, and VOCs on Tc-99 Adsorption	3.19			
		3.3.5	Variable pH Batch Tests	3.23			
		3.3.6	Variable Temperature Batch Tests	3.24			
		3.3.7	Volatile Organic Carbon Effects	3.25			
4.0	Con	clusion	s	4.1			
5.0	5.0 References						
App	endix	– Che	mical Analyses	A.1			

Figures

Technetium-99 Distribution Coefficients for Seven Activated Carbons	3.10
Langmuir Adsorption Isotherms for J177606 Siemens AC1230AWC	3.13
Langmuir Adsorption Isotherms for J177609 Carbon Resources CR 1240A AW	3.13
Langmuir Adsorption Isotherms for J177611 General Carbon GC20X50	3.14
Langmuir Adsorption Isotherms for J177613 Norit GAC830	3.14
Freundlich Adsorption Isotherms for J177606 Siemens AC1230AWC	3.15
Freundlich Adsorption Isotherms for J177609 Carbon Resources CR 1240A AW	3.15
Freundlich Adsorption Isotherms for J177611 General Carbon GC20X50	3.16
Freundlich Adsorption Isotherms for J177613 Norit GAC830	3.16
Langmuir and Freundlich Adsorption Isotherms for J177606 Siemens AC1230AWC with Supplemental Data	3.18
Langmuir and Freundlich Adsorption Isotherms for J177613 Norit GAC830 with Supplemental Data	3.19
The Effect of pH on the Tc-99 Adsorption on Selected Activated Carbons	3.24
The Effect of Temperature on the Tc-99 Adsorption on Selected Activated Carbons	3.25
The Effect of VOCs on the Tc-99 Adsorption on Selected Activated Carbons	3.25
	Langmuir Adsorption Isotherms for J177606 Siemens AC1230AWC Langmuir Adsorption Isotherms for J177609 Carbon Resources CR 1240A AW Langmuir Adsorption Isotherms for J177611 General Carbon GC20X50 Langmuir Adsorption Isotherms for J177613 Norit GAC830 Freundlich Adsorption Isotherms for J177606 Siemens AC1230AWC Freundlich Adsorption Isotherms for J177619 Carbon Resources CR 1240A AW Freundlich Adsorption Isotherms for J177611 General Carbon GC20X50 Freundlich Adsorption Isotherms for J177613 Norit GAC830 Freundlich Adsorption Isotherms for J177613 Norit GAC830 Langmuir and Freundlich Adsorption Isotherms for J177613 Norit GAC830 Langmuir and Freundlich Adsorption Isotherms for J177613 Norit GAC830 with Supplemental Data Langmuir and Freundlich Adsorption Isotherms for J177613 Norit GAC830 with Supplemental Data The Effect of pH on the Tc-99 Adsorption on Selected Activated Carbons The Effect of Temperature on the Tc-99 Adsorption on Selected Activated Carbons

Tables

3.1	Description of Granulated Activated Carbons	3.1
3.2	Design Composition of Influent Water to Tc-99 Ion Exchange System in 200 West Pump-and-Treat Groundwater Treatment Facility	3.2
3.3	Batch Isotherm Testing Matrix	3.5
3.4	Variable pH Test Matrix	3.5
3.5	Variable Temperature Test Matrix	3.6
3.6	VOC Effects Test Matrix	3.6
3.7	Concentrations of Specified Constituents in 299-W19-36 Source Water	3.7
3.8	Technetium Concentrations of Source Water Used for Batch Experiments	3.7
3.9	Technetium-99 Adsorption Data from Screening Batch Tests on Selected	3.9
2 10	Activated Carbons	
	1	3.11
3.11	Tc-99 Adsorption Isotherm Data for J177609 Carbon Resources CR-1240-AW	3.11
3.12	Tc-99 Adsorption Isotherm Data for J177611 General Carbon GC20X50	3.12
3.13	Tc-99 Adsorption Isotherm Data for J177613 Norit GAC830	3.12
3.14	Adsorption Constants and Predicted K _d for Tc-99 Adsorption on Four Selected Activated Carbon Samples.	3.17

3.15	Supplemental Tc-99 Adsorption Data	3.18
3.16	Adsorption Constants and Predicted K _d for Tc-99 Adsorption on Two Activated Carbons	3.20
3.17	Effect of pH, Temperature and VOC on Tc Adsorption for J177606 Siemens AC1230AWC	3.21
3.18	Effect of pH and Temperature on Tc Adsorption for J177609 Carbon Resources CR-1240-AW	3.22
3.19	Effect of pH and Temperature on Tc Adsorption for J177611 General Carbon GC20X50	3.22
3.20	Effect of pH, Temperature and VOC on Tc Adsorption for J177613 Norit GAC830	3.23

1.0 Introduction

CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP- 1, and in accordance with the Hanford Federal Facility Agreement and Consent Order (Ecology, EPA, and DOE 1989). The treatment design is based, in part, on the removal of selected constituents of concern (COCs) using various sorbent media. CHPRC requested that Pacific Northwest National Laboratory (PNNL) perform a treatability test to quantify the ability of selected activated carbon products (or carbons) to adsorb both radioactive (principally technetium-99 [Tc-99]) and nonradioactive COCs from 200-West Area groundwater. The carbon products supplied to PNNL for testing were selected by CHPRC from a larger population of carbon products on which they performed screening tests. This report presents the results of batch adsorption tests where the selected carbons were contacted with 200-West Area groundwater.

2.0 Objective

Laboratory sorption experiments included batch tests from which the sorption characteristics of each of the seven tested carbon products were quantified. Results from preliminary tests on all seven activated carbon products were used to select four of the carbons for more extensive testing from which sorption isotherms were developed.

The goals of the batch testing were to determine the following:

- Tc-99 sorption isotherms for each carbon product
- Tc-99 sorption isotherms for each carbon product at twice the initial nitrate concentration
- the effect of solution pH on Tc-99 distribution coefficients (K_d) for each carbon product
- the effect of solution temperature on Tc-99 K_d for each carbon product
- the effect of volatile constituents in the test water on Tc-99 K_d for selected carbon products.

This report summarizes the results of all batch test results of activated carbons.

3.0 Materials and Methods

The materials and methods used for batch testing of activated carbons are described below.

3.1 Materials

3.1.1 Carbons

The initial batch adsorption tests were conducted using the seven activated carbons selected by CHPRC presented in Table 3.1.

Sample #	Vendor	Product Name	Source Material & Treatment
J177 601	Calgon	Filtrasorb 400	Bituminous coal reagglomerated
J177 606 Siemens		AC1230AWC	Coconut shell acid washed
J177 609	Carbon Resources	CR-1240A-AW	Sub-bituminous coal/acid washed
J177 611	General Carbon	GC20X50	Bituminous coal/unwashed
J177 612	Norit	GAC830	Coconut shell unwashed
J177 613	Norit	GAC830	Bituminous coal unwashed
J111617	Nucon	LW 12x30	Coconut shell acid & water washed

Table 3.1. Description of Granulated Activated Carbons

3.1.2 Source Water

Groundwater from well 299-W19-36 in the 200-UP-1 OU was used for all of the bench-scale tests. Table 3.2 summarizes the design groundwater composition to be treated.

Constituent	Concentration (mg/L)	
Sodium	24	
Potassium	7	
Calcium 75		
Magnesium	24	
Iron (dissolved)	0.19	
Manganese (dissolved)	0.049	
Chloride	18	
Sulfate	34	
Nitrate as N	69	
Nitrate as ion	306	
Alkalinity (as CaCO ₃)	103	
Fluoride	0.37	
Total organic carbon	1.3	
Total dissolved solids	614	
Constituent	Concentration (µg/L)	
Hexavalent chromium	161	
Uranium	5.9	
Carbon tetrachloride	491	
Trichloroethene	3.2	
Chloroform	0.025	
Radionuclides	Activity (pCi/L)	
Tc-99	14,700	
I-129	0.86	
H-3	23,800	
Am-241*	0.5	
C-14*	13.1	
Co-60*	15.2	
Cs-137*	5.18	
Ni-63*	7.1	
Np-237*	0.075	
Pu-239/240*	0.5	
Se-79*	784	
Sr-90*	12.4	
Data: CALC 382519-TMEM Design Memorandum. Rev. 4 *Data taken from 382519-CA	4, August 11, 2009.	

Table 3.2. Design Composition of Influent Water to Tc-99 Ion Exchange System in 200 West Pumpand-Treat Groundwater Treatment Facility

3.2 Methods

3.2.1 Activated Carbons

All carbons were ground so that at least 95 percent of each passed through a U.S. 325-mesh sieve when wet screened. Each of the ground and sieved carbons were centrifuge washed with deionized water and the wash water was decanted. The centrifuge washing was repeated until the supernate was clear. Then the carbons products were dried in an oven overnight until no further weight loss occurred.

3.2.2 Source Water

The source water for these tests was collected from well 299-W19-36. The water was analyzed for volatile organic compounds (VOCs), including acetone, carbon tetrachloride, chloroform, dibromochloromethane, methylene chloride, tetrachloroethene, trichloroethene, 1,1,1-trichloroethane, 1,1 dichloroethene, 1,2-dichloroethane, 1,2-dichloroethene (total), and BTEX (benzene, toluene, ethylbenzene, and xylenes) by gas chromatography. About 20-liter quantities of water were air sparged to remove the VOCs until they were below detection limits. A quantity of unsparged source water was set aside for testing the effect of VOCs on Tc-99 adsorption on activated carbons. If necessary, sodium nitrate was added to the source water to adjust the nitrate concentration to ~375 mg/L. The temperature of stored source water was maintained at 18.3 ($65^{\circ}F$) $\pm 2^{\circ}C$ (ambient temperature in the laboratory). The constituents in the source water (e.g., Tc-99, uranium, Cr (VI), total Cr, nitrate, total organic carbon, and total suspended solids, pH and temperature) were analyzed.

3.2.3 Solution Analysis

Concentrations of Tc-99 and total chromium (Cr) were measured by inductively coupled plasma-mass spectrometry (ICP-MS)¹. Hexavalent chromium was measured using an U.S. Environmental Protection Agency (EPA 2004) method. Nitrate analysis was conducted using ion-chromatography.² The total organic carbons (TOC) analyses were performed using a PNNL standard method.³ The total suspended solids (TSS) in groundwater was measured using a standard method. The pH measurements were conducted using a PNNL standard method.⁴ Detailed descriptions are provided in the Appendix.

3.2.4 Adsorption Test Method

These batch adsorption tests (in duplicate) were conducted using measured quantities of carbon product and sparged source water. At the beginning of each batch test, the carbon samples were deaerated by pulling a vacuum on each centrifuge tube for 5 minutes. Next, measured volumes of

¹ PNNL-AGG-415. 2008. "Inductively Coupled Plasma Mass Spectrophotometry (ICP-MS) Analysis." Pacific Northwest National Laboratory, Richland, Washington (unpublished technical procedure).

² PNNL-AGG-IC-001. 2004. "Determinations by Ion Chromatography (IC)." Pacific Northwest National Laboratory, Richland, Washington (unpublished technical procedure).

³ Kutnykov, I. 2004. "Operating of Carbon Analyzer (TOC-V + SSM-5000A + ASI (Shimadzu))."

AGG-TOC-001, unpublished PNNL Technical Procedure, Pacific Northwest National Laboratory, Richland, Washington.

⁴ Valenta, MM. 2009. "pH Measurements." AGG-pH-00 1, unpublished PNNL Technical Procedure, Pacific Northwest National Laboratory, Richland, Washington.

sparged groundwater were added to centrifuge tubes containing the appropriate masses of carbon. The adsorption tests were conducted for 24 hours. During this time, the centrifuge tubes were agitated continuously to keep the carbon and groundwater well mixed. The tubes were agitated using temperature-controlled ($\pm 0.5^{\circ}$ C) shaker incubators. After the required contact time (~24 hr), each tube was centrifuged, then contact solution was separated from carbons using 0.45-µm syringe filters, then Tc-99 concentrations were measured on the sample aliquots.

3.2.5 Activated Carbon Screening Tests

An initial set of tests on seven carbons were performed to select the carbon/solution ratios to be used in batch isotherm tests. Sparged source water was used in these tests, in which 0.1 g of each carbon was contacted with 50 mL of source water (carbon to solution ratio of 2×10^{-3} g/mL). The results of these tests were also used to select four carbons for all subsequent batch tests.

3.2.6 Batch Isotherm Tests

Batch isotherm tests were conducted using four of the initial seven carbons that were selected by CHPRC. The CHPRC selection process was based on how each carbon performed in the initial screening tests and a cost analysis from which a desired minimum K_d value of 9,000 mL/g was selected. The four carbons selected for the isotherm tests were J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830. The U.S. Department of Energy (DOE) principle of limiting radiation dose to as low as reasonably achievable (ALARA) was used to minimize waste volume by selecting appropriate masses of carbons and solution volumes. Accordingly, the mass of carbon-to-solution volumes used in each batch contact was reduced while maintaining the same carbon-to-solution (W/V) ratio as specified in Test Plan SGW-47038. These tests were conducted with sparged and pH-adjusted (7.7 ± 0.2) source water. For the second set of tests, sodium nitrate was added to adjust the nitrate concentration in the source water to twice the concentration (~750 mg/L) to be used in the first set of experiments (~375 mg/L). The actual concentrations achieved in the tests are presented with the results of the testing. The following carbon-to-solution ratios were used in all batch isotherm tests:

- 0.01 g carbon/50 mL solution (2 x 10^{-4} g/mL)
- 0.02 g carbon/50 mL solution (4 x 10^{-4} g/mL)
- 0.04 g carbon/50 mL solution (8 x 10^{-4} g/mL)
- 0.1 g carbon/50 mL solution (2 x 10^{-3} g/mL).

The adsorption tests were conducted as described previously in the Adsorption Test Method section. A total of 64 batch isotherm tests were conducted (including duplicates) and the test matrix used is listed in Table 3.3.

Isother m #	Nitrate Conc (mg/L)	Carbon	Carbon/Soln Ratio (g/mL)	Carbon/Soln Ratio (g/mL)	Carbon/Sol n Ratio (g/mL)	Carbon/Sol n Ratio (g/mL)
1	~375	J177606 Siemens AC1230AWC	$2 imes 10^{-4}$	$4 imes 10^{-4}$	$8 imes 10^{-4}$	2×10^{-3}
2	~375	J177609 Carbon Res. CR-1240- AW	$2 imes 10^{-4}$	4×10^{-4}	8×10^{-4}	2×10^{-3}
3	~375	J177611 General Carbon GC20X50	$2 imes 10^{-4}$	$4 imes 10^{-4}$	$8 imes 10^{-4}$	$2 imes 10^{-3}$
4	~375	J177613 Norit GAC830	$2 imes 10^{-4}$	$4 imes 10^{-4}$	$8 imes 10^{-4}$	2×10^{-3}
5	~750	J177606 Siemens AC1230AWC	$2 imes 10^{-4}$	$4 imes 10^{-4}$	$8 imes 10^{-4}$	2×10^{-3}
6	~750	J177609 Carbon Res. CR-1240- AW	2×10^{-4}	4×10^{-4}	$8 imes 10^{-4}$	2×10^{-3}
7	~750	J177611 General Carbon GC20X50	$2 imes 10^{-4}$	$4 imes 10^{-4}$	$8 imes 10^{-4}$	2×10^{-3}
8	~750	J177613 Norit GAC830	2×10^{-4}	$4 imes 10^{-4}$	$8 imes 10^{-4}$	2×10^{-3}

Table 3.3. Batch Isotherm Testing Matrix

3.2.7 Variable pH Batch Tests

Another set of batch tests was set up to evaluate the effects of variable pH on Tc-99 adsorption, as follows. Using the prepared source water (with nitrate concentration adjusted to 375 mg/L) and four carbon products (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830), three sets of tests were conducted with the pH of the source water adjusted to 6.5, 7.5, and 8.5, respectively. The pH adjustments were within \pm 0.2 standard units (SU) and all the tests were conducted in duplicate at a fixed carbon-to-solution ratio of 4×10^{-4} g/mL. The adsorption tests were conducted as described previously in the Adsorption Test Method section. A total of 24 batch tests were conducted (including duplicates) and the test matrix used is listed in Table 3.4.

	Nitrate	Carbon/Soln				
pH Curve	Conc (mg/L)	Carbon	Ratio (g/mL)	Test pH 1	Test pH 2	Test pH 3
1	~375	J177606 Siemens AC1230AWC	4×10^{-4}	6.5	7.5	8.5
2	~375	J177609 Carbon Res. CR-1240-AW	4×10^{-4}	6.5	7.5	8.5
3	~375	J177611 General Carbon GC20X50	$4 imes 10^{-4}$	6.5	7.5	8.5
4	~375	J177613 Norit GAC830	4×10^{-4}	6.5	7.5	8.5

Table 3.4. Variable pH Test Matrix

3.2.8 Variable Temperature Batch Tests

Another set of batch tests was set up to evaluate the effects of temperature on Tc-99 adsorption, as follows. Using the prepared source water (with nitrate concentration adjusted to 375 mg/L) and four carbon products (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830), three sets of tests were conducted with the temperature of the test water set to 21°C (69.8°F), 27°C (80.6°F), and 32°C (89.6°F). The set temperatures were controlled within ± 0.5 °C using a temperature incubator shaker. All the tests were conducted in

duplicate at a fixed carbon-to-solution ratio of 2×10^{-3} g/mL. The adsorption tests were conducted as described previously in the Adsorption Test Method section. A total of 24 batch tests were conducted (including duplicates) and the test matrix used is listed below (Table 3.5).

Temp Curve	Nitrate Conc (mg/L)	Carbon	Carbon/Soln Ratio (g/mL)	Temp 1 (°C)	Temp 2 (°C)	Temp 3 (°C)
1	~375	J177606 Siemens AC1230AWC	$4 imes 10^{-4}$	21	27	32
2	~375	J177609 Carbon Res. CR-1240-AW	$4 imes 10^{-4}$	21	27	32
3	~375	J177611 General Carbon GC20X50	$4 imes 10^{-4}$	21	27	32
4	~375	J177613 Norit GAC830	$4 imes 10^{-4}$	21	27	32

 Table 3.5.
 Variable Temperature Test Matrix

3.2.9 Volatile Organic Carbon Effect Tests

An abbreviated set of tests was conducted to evaluate the effects of VOCs in the source water on Tc-99 adsorption on two activated carbons (J177606 Siemens AC1230AWC and J177613 Norit GAC830). These two carbons were selected by CHPRC based on the adsorption isotherm data. The contact solution consisted of unsparged groundwater with VOCs intact (as described previously in the source water preparation section). The tests were conducted at two selected carbon-to-solution ratios— 4×10^{-4} g/mL and 2×10^{-3} g/mL. The adsorption tests were conducted as described previously in the Adsorption Test Method section. A total of eight batch tests were conducted (including duplicates) and the test matrix used is listed below (Table 3.6).

Table 3.6. VOC Effects Test Matrix

VOC Test #	Nitrate Conc (mg/L)	Carbon	Carbon/Sol n Ratio (g/mL)
1	~375	J177606 Siemens AC1230AWC	4×10^{-4}
2	~375	J177606 Siemens AC1230AWC	2×10^{-3}
3	~375	J177613 Norit GAC830	$4 imes 10^{-4}$
4	~375	J177613 Norit GAC830	$2 imes 10^{-3}$

3.3 Results

3.3.1 Constituents in Source Water

The results of initial analyses of source water from 299-W19-36 used in these batch experiments are listed in Table 3.7 and Table 3.8.

Constituent	Concentration (µg/L)	Constituent**	Unsparged Conc (µg/L)	Sparged Conc (µg/L)
Barium	113	Acetone	< 0.0028	< 0.0028
Calcium	122,000	1,1-Dichloroethene	0.01	0.01
Chloride	181,000	Methylene Chloride	0.15	0.15
Total Cr	<17.3	cis1,2-dichloroethene	< 0.001	< 0.001
Cr(VI)	< 0.05	chloroform	0.25	0.01
Magnesium	36,400	1,2 dichloroethane	0.10	< 0.002
Molybdenum	65.9	1,1,1 trichloroethane	< 0.002	< 0.002
Nitrate	317,000	benzene	0.01	0.01
Potassium	7,020	carbon tetrachloride	4.99	0.03
Sodium	118,000	trichloroethene	0.09	0.02
Sulfate**	50,000	toluene	0.02	0.03
Strontium	618	Dibromochloromethane	0.01	0.01
Tin***	216	Tetrachloroethene	< 0.001	< 0.001
Alkalinity (as CaCO ₃)*	116,000	ethyl benzene	0.03	0.06
Uranium**	174	p/m xylene	0.08	0.19
Total Suspended Solids	607	o-xylene	0.04	0.09
Total Organic Carbon	<5			
pH	8.2 (SU)			

 Table 3.7.
 Concentrations of Specified Constituents in 299-W19-36 Source Water

* Average of duplicate measurements

** Average of four measurements (samples SS-0911410-AIN-ALPH A, SS-0911410-AIN-ALPH B, SW-091140-1400 ALPH, and SW-091140-1400 LPH

*** The source of these constituents in the groundwater is unknown.

Because the different batch tests were conducted over a period of several weeks, the technetium concentration in the stored source water was analyzed before each set of batch experiments was initiated. These analyses were conducted to account for any changes in technetium concentration that may have occurred in the stored source water due to adsorption and desorption on suspended solids, growing algae,¹ and container wall. Therefore, the source water was filtered and analyzed for Tc concentration as needed.

Sample	Tc Conc (µg/L)	Tc Conc (pCi/L)
SW-081610-1, sparged low nitrate	0.433	7,360
SW-082310-1 sparged, high nitrate	0.437	7,430
SW-091510-pH6.5	0.389	6,610
SW-091510-pH7.5	0.389	6,610
SW-091510-pH8.5	0.389	6,600
SW-091510-VOC	0.385	6,540
SW-091510-TEMP	0.444	7,550
SS-0911410-AIN-ALPH-A	0.373	6,340
SS-0911410-AIN-ALPH-B	0.397	6,750
SW-091140-1400-ALPH	0.383	6,510

Table 3.8. Technetium Concentrations of Source Water Used for Batch Experiments

¹ When the stored source water sample aliquots were filtered before analyses, green staining was observed on the filter that indicated that the presence of algae.

3.3.2 Activated Carbon Screening Tests

The results of carbon screening tests are tabulated in Table 3.9 and shown graphically in Figure 3.1. The distribution coefficients (K_d) for Tc-99 adsorption for these activated carbons ranged from 5,000 mL/g to 12,000 mL/g. The four activated carbon samples with distribution coefficients near or above the criterion value of 9,000 mL/g were as follows:

- Norit GAC830 (Sample J177-613), an unwashed bituminous coal (K_d = 12,000), whose Tc-99 uptake characteristics were unanticipated from the initial acid-base titration curves¹
- Carbon Resources CR-1240A-AW (Sample J177-609), an acid-washed sub-bituminous coal (K_d = 11,200), whose Tc-99 uptake characteristics were expected to be favorable based on its acid-base titration curves
- Siemens AC1230AWC (Sample J177-606), acid-washed coconut shell ($K_d = 8,920$), which was believed to have Tc-99 uptake potential based on acid-base titration curves
- General Carbon GC20x50 (J177-611), an unwashed bituminous coal ($K_d = 8,700$), which was expected to have poor Tc-99 uptake potential based on its acid-base titration curve.

The other three granular activated carbon (GAC) samples, Calgon Filtrasorb 400 (Sample J177-601), Norit GAC830 (Sample J177-612), and Nucon LW 12x30 (Sample 111-617) had screening K_d values that were lower than the four selected carbons and below the target value of 9,000 mL/g.

These results indicate that titration screening of activated carbons may not be an appropriate means to evaluate their Tc-99 adsorption potential and the best way to assess this potential would be to actually conduct batch adsorption experiments.

The four carbon types in the bullets listed above were further evaluated in batch isotherm tests, described in the following section.

3.3.3 Batch Isotherm Tests

The results of batch isotherm tests conducted on the four selected activated carbons listed in the preceding section (606, 609, 611, and 613) are listed in Table 3.10 through Table 3.12.

- Siemens AC1230AWC (Sample J177-606) under low nitrate and high nitrate conditions yielded K_d values that ranged from 9,000 to 10,000 mL/g, and 3,000 to 6,000 mL/g, respectively.
- Carbon Resources CR-1240A-AW (Sample J177-609) under low nitrate and high nitrate conditions yielded K_d values that ranged from 6,000 to 12,000 mL/g, and 3,000 to 6,000 mL/g, respectively.
- General Carbon GC20x50 (J177-611), under low nitrate and high nitrate conditions yielded K_d values that ranged from 7,000 to 11,000 mL/g, and 4,000 to 6,000 mL/g, respectively.
- Norit GAC830 (Sample J177-613), under low nitrate and high nitrate conditions yielded K_d values that ranged from 10,000 to 16,000 mL/g, and 6,000 to 7,000 mL/g, respectively.

¹ Technical Memorandum from K Maxey, M Schaerer, and K Perez (CH2M HILL, Inc.) to M Byrnes (CH2M HILL Plateau Remediation Company), Subject: "Titration Screening Results for Various Activated Carbon Samples," dated July 7, 2010.

Sample #	Carbon	Carbon Mass (g)	Soln Vol (mL)	Init Tc Conc (µg/L)	Final Tc Conc (µg/L)	Tc Adsorbed (μg/g)	K _d (mL/g)	Av K _d (mL/g)	Source Material & Treatment	Titration Evaluation*
J177 601	Calgon Filtrasorb 400	0.096 0.100	49.735 49.938	0.433 0.433	0.028 0.029	0.220 0.202	7,860 6,970	7,410	Bituminous coal reagglomerated	Class A - Strong pH 5 peak. Anticipate Tc-99 uptake
J177 606	Siemens AC1230AWC	0.094 0.092	49.570 49.766	0.433 0.433	0.024 0.025	0.216 0.221	9,000 8,840	8,920	Coconut shell acid washed	Class B - weak pH 5 shoulder and/or weak high pH shoulder Possible Tc-99 uptake
J177 609	Carbon Resources CR-1240A-AW	0.096 0.104	49.893 49.588	0.433 0.433	0.020 0.017	0.215 0.198	10,750 11,650	11,200	Sub- bituminous coal/acid washed	Class A - strong pH 5.0 peak Anticipate Tc-99 uptake
J177 611	General Carbon GC20X50	0.093 0.108	50.024 49.849	0.433 0.433	0.025 0.022	0.219 0.190	8,760 8,640	8,700	Bituminous coal/unwashed	Class C - No unequivocal peaks Anticipate poor Tc-99 uptake
J177 612	Norit GAC830	0.097 0.110	49.522 49.670	0.433 0.433	0.024 0.023	0.209 0.185	8,710 8,040	8,380	Coconut shell unwashed	Class C - No unequivocal peaks Anticipate poor Tc-99 uptake
J177 613	Norit GAC830	0.096 0.109	49.924 50.273	0.433 0.433	0.018 0.016	0.216 0.192	12,000 12,000	12,000	Bituminous coal unwashed	Class D - Mid-range Plateau Uncertain Tc-99 uptake
J111617	Nucon LW 12x30	0.096 0.095	49.763 49.595	0.433 0.433	0.034 0.036	0.207 0.207	6,090 5,750	5,920	Coconut shell acid & water washed	Class E - Equivocal peak at pH >8 Possible Tc-99 uptake

Table 3.9. Technetium-99 Adsorption Data from Screening Batch Tests on Selected Activated Carbons

*Titration Evaluation from "Titration Screening Results for Various Activated Carbon Samples," CH2M HILL Technical Memorandum, dated 6-15-2010. Carbon samples ending in numbers 606, 609, 611, and 613 were selected for isotherm testing.

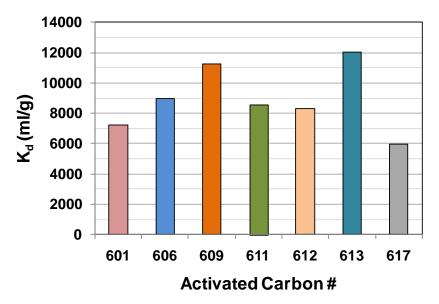


Figure 3.1. Technetium-99 Distribution Coefficients for Seven Activated Carbons

These data indicated that technetium adsorption on these carbons was reduced by about an order of magnitude when the nitrate concentration was increased from 382 mg/L to 750 mg/L.

The adsorption data (Table 3.10 – Table 3.13) were fit using both Langmuir and Freundlich isotherms (Figure 3.2 – Figure 3.9) and the resulting constants are listed in Table 3.14. Using these constants and the design Tc concentration of 0.865 μ g/L, the predicted distribution coefficients were calculated for each carbon tested under low and high nitrate conditions.

- In all cases, the Langmuir isotherm provided a slightly better fit to the data than the Freundlich isotherm.
- For all carbons under both low and high nitrate concentrations, for the design concentration of Tc $0.865 \ \mu g/L$, the K_d values predicted using Freundlich constants were higher than the predicted K_d values derived from using Langmuir isotherm constants.
- For the design Tc concentration of 0.865 μ g/L (14,700 pCi/L), the Freundlich-predicted K_d values (Table 3.14) for only two carbons (J177606 Siemens AC1230AWC and J177613 Norit GAC830, tested under low nitrate conditions) exceeded the target K_d value of 9000 mL/g.

To resolve the question of whether the Langmuir or Freundlich isotherms provide a better fit to the data, two additional data points for each carbon were obtained by conducting batch adsorption experiments on J177606 Siemens AC1230AWC and J177613 Norit GAC830 carbons. These tests were conducted under low nitrate conditions using source water spiked at 2.205 μ g/L (37,500 pCi/L) of Tc. A solution-to-solid ratio of 2×10^{-4} g/mL was used and the experiment was duplicated for each carbon.

These additional data obtained from the supplemental tests are listed in Table 3.15. These data combined with the low nitrate data listed in Table 3.10 for J177606 Siemens AC1230AWC and Table 3.13 for J177613 Norit GAC830 were used in developing a new set of isotherms (Figure 3.10 and Figure 3.11).

Sample Number	Initial Tc Conc (µg/L)	Final Tc Conc (µg/L)	Carbon Mass (g)	Soln Vol (mL)	Tc Adsorbed (µg/g)	K _d (mL/g)
-	• •		e 382 mg/L			
606-18-S2-R1-1	0.437	0.129	0.013	49.136	1.164	9,020
606-18-S2-R1-2	0.437	0.118	0.014	49.203	1.121	9,500
606-18-S2-R2-1	0.437	0.087	0.018	49.354	0.960	11,060
606-18-S2-R2-2	0.437	0.085	0.019	49.075	0.909	10,680
606-18-S2-R3-1	0.437	0.048	0.040	49.616	0.482	10,030
606-18-S2-R3-2	0.437	0.050	0.038	49.065	0.500	10,090
606-18-S2-R4-1	0.437	0.019	0.099	49.828	0.211	11,390
606-18-S2-R4-2	0.437	0.020	0.100	50.611	0.211	10,550
*606-18-S1-R4-1	0.433	0.024	0.094	49.570	0.216	9,070
*606-18-S1-R4-2	0.433	0.025	0.092	49.766	0.221	8,870
		Nitrate	e 750 mg/L			
606-18-S3-R1-1	0.437	0.276	0.010	49.244	0.793	2,870
606-18-S3-R1-2	0.437	0.221	0.009	49.213	1.181	5,340
606-18-S3-R2-1	0.437	0.130	0.020	49.065	0.753	5,790
606-18-S3-R2-2	0.437	0.131	0.021	50.187	0.731	5,580
606-18-S3-R3-1	0.437	0.077	0.039	49.999	0.462	6,040
606-18-S3-R3-2	0.437	0.085	0.039	49.606	0.447	5,250
606-18-S3-R4-1	0.437	0.036	0.099	49.688	0.201	5,570
606-18-S3-R4-2	0.437	0.036	0.100	49.267	0.198	5,500
*Data from Carbon S	creening Tests					

 Table 3.10.
 Tc-99 Adsorption Isotherm Data for J177606 Siemens AC1230AWC

Table 3.11. Tc-99 Adsorption Isotherm Data for J177609 Carbon Resources CR-1240-AW

	Initial Tc	Final Tc	Carbon Mass	Soln Vol	Tc Adsorbed	K _d
Sample Number	Conc (µg/L)	Conc (µg/L)	(g)	(mL)	(µg/g)	(mL/g)
		Nitrate	e 382 mg/L			
609-18-S2-R1-1	0.437	0.195	0.010	49.950	1.209	6,200
609-18-S2-R1-2	0.437	0.201	0.010	49.079	1.158	5,760
609-18-S2-R2-1	0.437	0.095	0.020	49.062	0.839	8,830
609-18-S2-R2-2	0.437	0.110	0.019	50.776	0.874	7,940
609-18-S2-R3-1	0.437	0.044	0.040	49.574	0.487	11,100
609-18-S2-R3-2	0.437	0.046	0.039	49.034	0.492	10,690
609-18-S2-R4-1	0.437	0.017	0.101	49.345	0.205	12,300
609-18-S2-R4-2	0.437	0.017	0.099	50.176	0.213	12,220
*609-18-S1-R4-1	0.433	0.020	0.096	49.893	0.215	10,900
*609-18-S1-R4-2	0.433	0.017	0.104	49.588	0.198	11,670
		Nitrate	e 750 mg/L			
609-18-S3-R1-1	0.437	0.259	0.009	49.822	0.985	3,810
609-18-S3-R1-2	0.437	0.261	0.010	50.265	0.885	3,390
609-18-S3-R2-1	0.437	0.153	0.021	49.319	0.667	4,360
609-18-S3-R2-2	0.437	0.145	0.019	49.004	0.753	5,190
609-18-S3-R3-1	0.437	0.088	0.039	49.448	0.443	5,050
609-18-S3-R3-2	0.437	0.080	0.040	49.032	0.438	5,480
609-18-S3-R4-1	0.437	0.034	0.100	49.035	0.198	5,870
609-18-S3-R4-2	0.437	0.032	0.099	49.017	0.201	6,330
* Data from Carbon S	Screening Tests					

Sample Number	Initial Tc Conc (µg/L)	Final Tc Conc (µg/L)	Carbon Mass (g)	Soln Vol (mL)	Tc Adsorbed (µg/g)	K _d (mL/g)
r		÷ =	e 382 mg/L	()	1.9.9/	
611-18-S2-R1-1	0.437	0.175	0.010	49.024	1.284	7,340
611-18-S2-R1-2	0.437	0.184	0.009	49.773	1.399	7,600
611-18-S2-R2-1	0.437	0.086	0.021	49.695	0.831	9,660
611-18-S2-R2-2	0.437	0.103	0.020	50.164	0.838	8,130
611-18-S2-R3-1	0.437	0.040	0.043	49.064	0.453	11,290
611-18-S2-R3-2	0.437	0.047	0.041	49.594	0.472	10,160
611-18-S2-R4-1	0.437	0.019	0.103	49.987	0.203	10,450
611-18-S2-R4-2	0.437	0.019	0.098	49.939	0.213	10,970
*611-18-S1-R4-1	0.433	0.025	0.093	50.024	0.219	8,740
*611-18-S1-R4-2	0.433	0.022	0.108	49.849	0.190	8,460
		Nitrate	e 750 mg/L			
611-18-S3-R1-1	0.437	0.223	0.011	49.578	0.965	4,330
611-18-S3-R1-2	0.437	0.209	0.012	50.506	0.960	4,590
611-18-S3-R2-1	0.437	0.136	0.021	50.120	0.718	5,280
611-18-S3-R2-2	0.437	0.132	0.021	49.026	0.712	5,390
611-18-S3-R3-1	0.437	0.077	0.041	49.413	0.434	5,610
611-18-S3-R3-2	0.437	0.083	0.040	49.475	0.438	5,260
611-18-S3-R4-1	0.437	0.039	0.101	49.070	0.194	5,030
611-18-S3-R4-2	0.437	0.038	0.100	49.075	0.196	5,110
* Data from Carbon S	Screening Tests					

 Table 3.12.
 Tc-99 Adsorption Isotherm Data for J177611 General Carbon GC20X50

 Table 3.13.
 Tc-99 Adsorption Isotherm Data for J177613 Norit GAC830

Sample Number	Initial Tc Conc (µg/L)	Final Tc Conc (µg/L)	Carbon Mass (g)	Soln Vol (mL)	Tc Adsorbed (μg/g)	K _d (mL/g)
Sample Number	Cone (µg/L)		e 382 mg/L	(IIIL)	(µg/g)	(IIIL/g)
613-18-S2-R1-1	0.437	0.141	0.010	49.276	1.459	10,340
613-18-S2-R1-2	0.437	0.125	0.009	49.439	1.714	13,710
613-18-S2-R2-1	0.437	0.062	0.022	49.081	0.837	13,490
613-18-S2-R2-2	0.437	0.071	0.022	49.804	0.829	11,670
613-18-S2-R3-1	0.437	0.034	0.040	49.299	0.497	14,700
613-18-S2-R3-2	0.437	0.036	0.040	50.815	0.509	13,980
613-18-S2-R4-1	0.437	0.014	0.102	49.148	0.204	14,450
613-18-S2-R4-2	0.437	0.013	0.102	49.676	0.206	15,880
*613-18-S1-R4-1	0.433	0.018	0.096	49.924	0.216	12,060
*613-18-S1-R4-2	0.433	0.016	0.109	50.273	0.192	12,020
		Nitrate	e 750 mg/L			
613-18-S3-R1-1	0.437	0.171	0.011	50.848	1.230	7,190
613-18-S3-R1-2	0.437	0.180	0.011	49.083	1.147	6,370
613-18-S3-R2-1	0.437	0.126	0.019	49.057	0.803	6,370
613-18-S3-R2-2	0.437	0.128	0.019	49.074	0.798	6,240
613-18-S3-R3-1	0.437	0.067	0.040	49.193	0.455	6,830
613-18-S3-R3-2	0.437	0.066	0.039	49.026	0.466	7,050
613-18-S3-R4-1	0.437	0.033	0.099	49.287	0.201	6,200
613-18-S3-R4-2	0.437	0.030	0.100	49.223	0.200	6,700
* Data from Carbon S	Screening Tests					

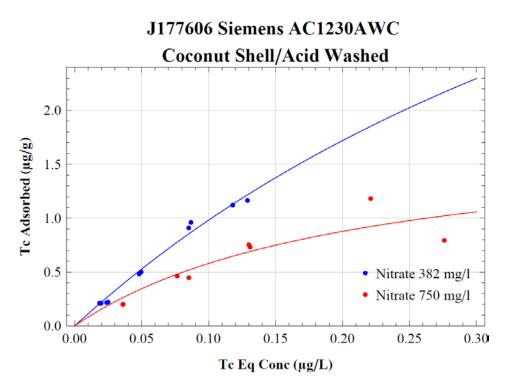


Figure 3.2. Langmuir Adsorption Isotherms for J177606 Siemens AC1230AWC

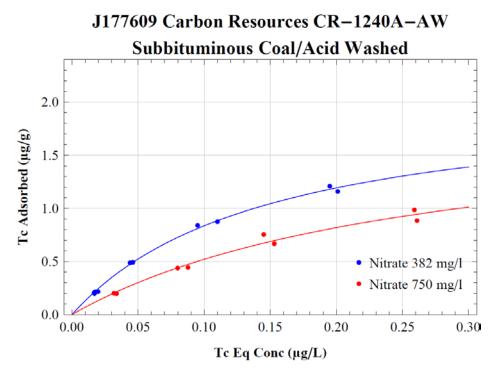


Figure 3.3. Langmuir Adsorption Isotherms for J177609 Carbon Resources CR 1240A AW

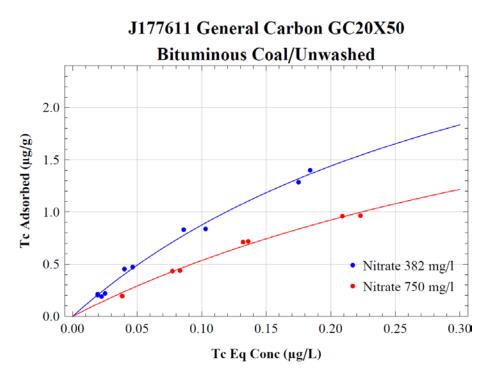


Figure 3.4. Langmuir Adsorption Isotherms for J177611 General Carbon GC20X50

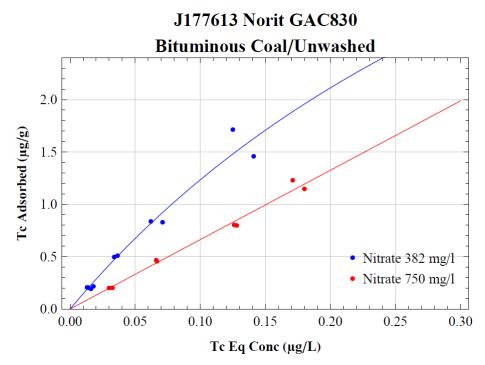


Figure 3.5. Langmuir Adsorption Isotherms for J177613 Norit GAC830

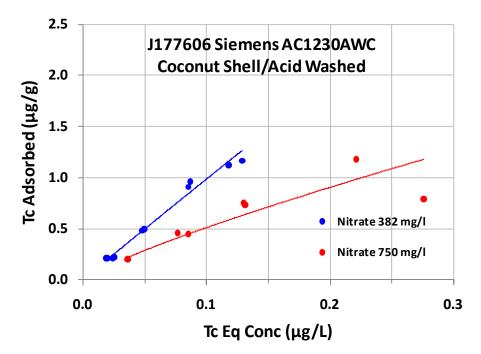


Figure 3.6. Freundlich Adsorption Isotherms for J177606 Siemens AC1230AWC

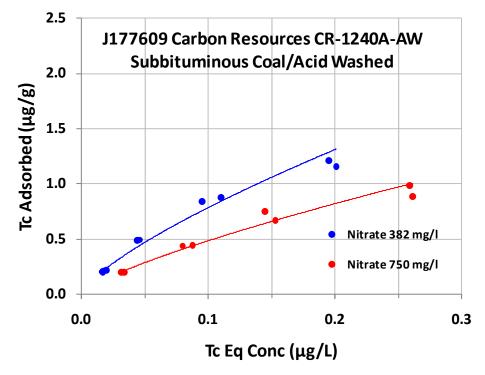


Figure 3.7. Freundlich Adsorption Isotherms for J177609 Carbon Resources CR 1240A AW

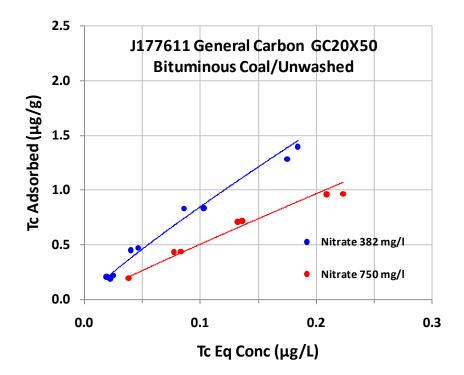


Figure 3.8. Freundlich Adsorption Isotherms for J177611 General Carbon GC20X50

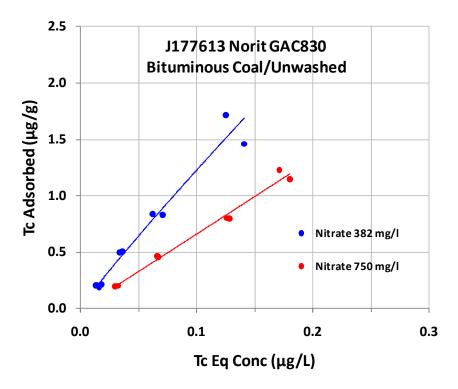


Figure 3.9. Freundlich Adsorption Isotherms for J177613 Norit GAC830

		Langmu	ir Consta	nts		Freundl	ich Consta	ants
Type of Granulated Activated Carbon	K _L (L/µg)	М (µg/g)	R ²	Predicted* K _d (mL/g)	K _f (L/g)	1/n	R ²	Predicted* K _d (mL/g)
J177606 Siemens AC1230AWC (Coconut Shell/Acid Washed) – low nitrate medium	1.646	6.945	0.9959	4,720	9.494	0.983	0.9856	9,510
J177606 Siemens AC1230AWC (Coconut Shell/Acid Washed) – High nitrate medium	4.735	1.803	0.9617	1,670	3.405	0.823	0.9078	3,500
J177609 Carbon Resources CR-1240-AW (Sub- Bituminous Coal/Acid Washed) – low nitrate medium	6.717	2.080	0.9991	2,050	4.308	0.740	0.9854	4,480
J177609 Carbon Resources CR-1240-AW (Sub- Bituminous Coal/Acid Washed) – High nitrate medium	3.735	1.914	0.9956	1,700	2.781	0.758	0.9814	2,880
J177611 General Carbon GC20X50 (Bituminous Coal/Unwashed) – low nitrate medium	2.745	4.062	0.9973	3,300	6.463	0.882	0.9794	6,570
J177611 General Carbon GC20X50 (Bituminous Coal/Unwashed) – high nitrate medium	1.904	3.345	0.9981	2,400	4.378	0.938	0.9865	4,420
J177613 Norit GAC830 (Bituminous Coal/Unwashed) – low nitrate medium	2.025	7.330	0.9865	5,400	10.476	0.9313	0.9817	10,590
J177613 Norit GAC830 (Bituminous Coal/Unwashed) – high nitrate medium		The best	fit Consta	nt partition isot	herm: Y =	6.628 x	$R^2 = 0.99$	965

Table 3.14. Adsorption Constants and Predicted K_d for Tc-99 Adsorption on Four Selected Activated Carbon Samples.

Tc Concentration in groundwater used for isotherm tests: $0.437 \,\mu\text{g/L}$

 $Q = MK_LC/(1 + K_LC)$, Q = Tc adsorbed/unit mass of carbon, C = Eq. Tc Concentration, M = Adsorption Maximum, $K_L = Langmuir$ affinity parameter.

Freundlich Equation: $Q = K_f C^{1/n}$, Q: Tc-99 adsorbed/unit mass of carbon, K_f : Freundlich Constant, C = Equilibrium Tc-99 Conc *Predictions based on design Tc-99 concentration of 0.865 $\mu g/L$ (Activity: 14,700 pCi/L)

Sample Number	Initial Tc Conc (µg/L)	Final Tc Conc (µg/L)	Carbon Mass (g)	Soln Vol (mL)	Tc Adsorbed (µg/g)	K _d (mL/g)
	J177600	5 Siemens AC12	230AWC Nitrate	e 412 mg/L		
606-18-SX-RX-1*	2.205	1.047	0.010	50.648	5.865	5,600
606-18-SX-RX-2*	2.205	1.000	0.011	49.663	5.443	5,450
	J17′	7613 Norit GA	C830 Nitrate 412	2 mg/L		
613-18-SX-RX-1*	2.205	0.741	0.014	50.592	5.289	7,130
613-18-SX-RX-2*	2.205	0.681	0.014	50.098	5.455	8,020

 Table 3.15.
 Supplemental Tc-99 Adsorption Data

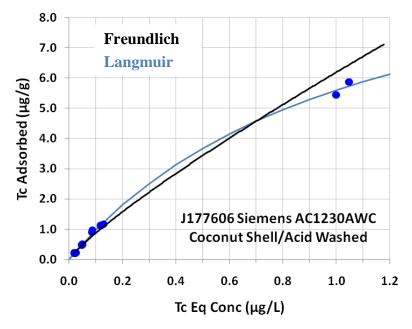


Figure 3.10. Langmuir and Freundlich Adsorption Isotherms for J177606 Siemens AC1230AWC with Supplemental Data

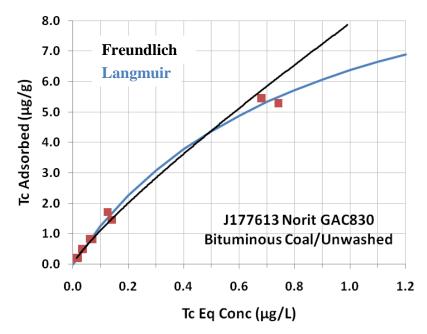


Figure 3.11. Langmuir and Freundlich Adsorption Isotherms for J177613 Norit GAC830 with Supplemental Data

The results with the supplemental data indicated that Langmuir isotherm best defined the adsorption characteristics of J177606 Siemens AC1230AWC and J177613 Norit GAC830 carbons (Table 3.15, Figure 3.10 and Figure 3.11). These data indicated the following:

- Langmuir isotherms provided the best fit for the Tc-99 adsorption data by the two carbons (606 and 613) under low nitrate concentration conditions.
- For the design concentration of Tc 0.865 μg/L (14,700 pCi/L), the K_d values predicted using Langmuir isotherm constants were ~5,980 mL/g for carbon 606 and ~6,870 mL/g for carbon 613 (Table 3.16).
- The Tc-99 adsorption performance of 606 and 613 carbons indicated that they do not meet the target K_d value of 9000 mL/g.

3.3.4 Effects of pH, Temperature, and VOCs on Tc-99 Adsorption

The effects of variable pH, temperature, and the presence of VOCs on Tc-99 adsorption on the selected carbons were evaluated. Table 3.17 through Table 3.20 present the results of those tests. Each of these effects is discussed in the following sections

		Langmui	r Constan	ts	Freundlich Constants			
Type of Granulated Activated Carbon	K _L (L/µg)	М (µg/g)	R ²	Predicted [*] K _d (mL/g)	K _f (L/g)	1/n	\mathbf{R}^2	Predicted [*] K _d (mL/g)
*J177606 Siemens AC1230AWC	0.91	11.74	0.9991	5,980	6.19	0.8496	0.9874	6,330
*J177613 Norit GAC830	1.19	11.72	0.9971	6,870	7.92	0.8521	0.9881	8,090

Table 3.16. Adsorption Constants and Predicted K_d for Tc-99 Adsorption on Two Activated Carbons.

Langmuir Equation: $Q = MK_LC(1 + K_LC)$, Q: Tc-99 adsorbed/unit mass of carbon, M: Predicted maximum Tc-99 adsorption, K_L : Langmuir constant, C = Equilibrium Tc-99 Concentration

C = Equilibrium Tc-99 Concentration Freundlich Equation: $Q = K_f C^{1/n}$, Q: Tc-99 adsorbed/unit mass of carbon, K_f : Freundlich Constant, C = Equilibrium Tc-99 Conc *Predictions based on design Tc-99 concentration of 0.865 µg/L (Activity: 14,700 pCi/L)

Sample Number	pH (SU)	Initial Tc Conc (µg/L)	Final Tc Conc (µg/L)	Carbon Mass (g)	Soln Vol (mL)	Τc Adsorbed (μg/g)	K _d (mL/g)
606-18-S4-6.5-1	6.5	0.389	0.130	0.023	49.466	0.556	4,260
606-18-S4-6.5-2	6.5	0.389	0.125	0.023	49.048	0.563	4,520
606-18-S4-7.5-1	7.5	0.389	0.119	0.019	49.036	0.695	5,820
606-18-S4-7.5-2	7.5	0.389	0.123	0.022	49.129	0.593	4,800
*606-18-S2-R2-1	7.8	0.437	0.087	0.018	49.354	0.960	11,060
*606-18-S2-R2-2	7.8	0.437	0.085	0.019	49.075	0.909	10,680
606-18-S4-8.5-1	8.5	0.389	0.136	0.021	49.020	0.591	4,360
606-18-S4-8.5-2	8.5	0.389	0.157	0.019	49.031	0.599	3,820
Sample Number	Temp (°C)	Initial Tc Conc (µg/L)	Final Tc Conc (µg/L)	Carbon Mass (g)	Soln Vol (mL)	Τc Adsorbed (μg/g)	K _d (mL/g)
*606-18-S2-R2-1	18	0.437	0.087	0.018	49.354	0.960	11,060
*606-18-S2-R2-2	18	0.437	0.085	0.019	49.075	0.909	10,680
606-21-S5-1	21	0.444	0.142	0.020	49.023	0.741	5,230
606-21-85-2	21	0.444	0.137	0.021	49.050	0.718	5,260
606-27-S5-1	27	0.444	0.153	0.022	49.068	0.648	4,230
606-27-85-2	27	0.444	0.161	0.021	49.086	0.662	4,120
606-32-85-1	32	0.444	0.166	0.021	49.056	0.650	3,920
606-32-85-2	32	0.444	0.166	0.020	49.205	0.684	4,130
Sample Number	VOC	Initial Tc Conc (µg/L)	Final Tc Conc (µg/L)	Carbon Mass (g)	Soln Vol (mL)	Τc Adsorbed (μg/g)	K _d (mL/g)
606-18-S6-R1-1	Unsparged	0.385	0.069	0.023	49.400	0.678	9,820
606-18-S6-R1-2	Unsparged	0.385	0.079	0.021	49.173	0.715	9,010
606-18-S6-R2-1	Unsparged	0.385	0.018	0.100	49.009	0.180	10,220
606-18-S6-R2-2	Unsparged	0.385	0.017	0.097	49.401	0.187	10,740
*606-18-S2-R2-1	Sparged	0.437	0.087	0.018	49.354	0.960	11,060
*606-18-S2-R2-2	Sparged	0.437	0.085	0.019	49.075	0.909	10,680
*606-18-S2-R4-1	Sparged	0.437	0.019	0.099	49.828	0.211	11,390
*606-18-S2-R4-2	Sparged	0.437	0.020	0.100	50.611	0.211	10,720
*606-18-S1-R4-1	Sparged	0.433	0.024	0.094	49.570	0.216	9,070
*606-18-S1-R4-2	Sparged	0.433	0.025	0.092	49.766	0.221	8,870
*Data from Adsorption I	sotherm Experim	ents					

 Table 3.17. Effect of pH, Temperature and VOC on Tc Adsorption for J177606 Siemens AC1230AWC

Sample Number	pH (SU)	Initial Tc Conc (µg/L)	Final Tc Conc (µg/L)	Carbon Mass (g)	Soln Vol (mL)	Tc Adsorbed (µg/g)	K _d (mL/g)
609-18-S4-6.5-1	6.5	0.389	0.137	0.019	49.015	0.6486	4,720
609-18-S4-6.5-2	6.5	0.389	0.124	0.022	49.045	0.5896	4,740
609-18-S4-7.5-1	7.5	0.389	0.136	0.019	49.098	0.6540	4,820
609-18-S4-7.5-2	7.5	0.389	0.137	0.019	49.150	0.6504	4,730
*609-18-S2-R2-1	7.8	0.437	0.095	0.020	49.062	0.8390	8,830
*609-18-S2-R2-2	7.8	0.437	0.110	0.019	50.776	0.8740	7,940
609-18-S4-8.5-1	8.5	0.389	0.157	0.021	49.020	0.541	3,440
609-18-S4-8.5-2	8.5	0.389	0.145	0.019	49.031	0.629	4,340
	Temp	Initial Tc	Final Tc	Carbon	Soln Vol	Tc Adsorbed	K _d
Sample Number	(°C)	Conc (µg/L)	Conc (µg/L)	Mass (g)	(mL)	(µg/g)	(mL/g)
						(53)	Ň,
*609-18-S2-R2-1	18	0.437	0.095	0.020	49.062	0.839	8,830
*609-18-S2-R2-1 *609-18-S2-R2-2	18 18	0.437 0.437	0.095 0.110				
				0.020	49.062	0.839	8,830
*609-18-S2-R2-2	18	0.437	0.110	0.020 0.019	49.062 50.776	0.839 0.874	8,830 7,940
*609-18-S2-R2-2 609-21-S5-1	18 21	0.437 0.444	0.110 0.153	0.020 0.019 0.021	49.062 50.776 49.201	0.839 0.874 0.680	8,830 7,940 4,430
*609-18-S2-R2-2 609-21-S5-1 609-21-S5-2	18 21 21	0.437 0.444 0.444	0.110 0.153 0.158	0.020 0.019 0.021 0.019	49.062 50.776 49.201 49.261	0.839 0.874 0.680 0.741	8,830 7,940 4,430 4,690
*609-18-S2-R2-2 609-21-S5-1 609-21-S5-2 609-27-S5-1	18 21 21 27	0.437 0.444 0.444 0.444	0.110 0.153 0.158 0.176	0.020 0.019 0.021 0.019 0.020	49.062 50.776 49.201 49.261 49.182	0.839 0.874 0.680 0.741 0.658	8,830 7,940 4,430 4,690 3,730

Table 3.18. Effect of pH and Temperature on Tc Adsorption for J177609 Carbon Resources
CR-1240-AW

Table 3.19. Effect of pH and Temperature on Tc Adsorption for J177611 General Carbon GC20X50

Sample Number	pH (SU)	Initial Tc Conc (µg/L)	Final Tc Conc (µg/L)	Carbon Mass (g)	Soln Vol (mL)	Tc Adsorbed (µg/g)	K _d (mL/g)
611-18-S4-6.5-1	6.5	0.389	0.132	0.019	49.241	0.666	5,040
611-18-S4-6.5-2	6.5	0.389	0.118	0.021	49.221	0.635	5,380
611-18-S4-7.5-1	7.5	0.389	0.121	0.021	49.099	0.626	5,180
611-18-S4-7.5-2	7.5	0.389	0.113	0.022	49.081	0.616	5,470
*611-18-S2-R2-1	7.8	0.437	0.086	0.021	49.695	0.8310	9,660
*611-18-S2-R2-2	7.8	0.437	0.103	0.020	50.164	0.8380	8,130
611-18-S4-8.5-1	8.5	0.389	0.134	0.023	49.166	0.546	4,080
611-18-S4-8.5-2	8.5	0.389	0.138	0.022	49.099	0.560	4,060
	Temp	Initial Tc	Final Tc	Carbon	Soln Vol	Tc Adsorbed	K _d
Sample Number	(°C)	Conc (µg/L)	Conc (µg/L)	Mass (g)	(mL)	(µg/g)	(mL/g)
*611-18-S2-R2-1	18	0.437	0.086	0.021	49.695	0.831	9,660
*611-18-S2-R2-2	18	0.437	0.103	0.020	50.164	0.838	8,130
611-21-S5-1	21	0.444	0.143	0.020	49.161	0.739	5,150
611-21-85-2	21	0.444	0.145	0.019	49.175	0.774	5,350
611-27-85-1	27	0.444	0.158	0.019	49.091	0.738	4,670
011 27 55 1	-,						
611-27-85-2	27	0.444	0.164	0.020	49.295	0.690	4,210
			0.164 0.171	0.020 0.021	49.295 49.084	0.690 0.639	4,210 3,740
611-27-85-2	27	0.444					

	рН	Initial Tc Conc	Final Tc Conc	Carbon	Soln Vol	Tc Adsorbed	K _d
Sample Number	(SU)	(µg/L)	(µg/L)	Mass (g)	(mL)	(µg/g)	(mL/g)
613-18-S4-6.5-1	6.5	0.389	0.111	0.022	49.071	0.620	5,600
613-18-S4-6.5-2	6.5	0.389	0.108	0.021	49.031	0.656	6,,090
613-18-S4-7.5-1	7.5	0.389	0.102	0.020	49.048	0.703	6,870
613-18-S4-7.5-2	7.5	0.389	0.079	0.023	49.096	0.662	8,440
*613-18-S2-R2-1	7.8	0.437	0.0620	0.022	49.081	0.837	13,490
*613-18-S2-R2-2	7.8	0.437	0.0710	0.022	49.804	0.829	11,670
613-18-S4-8.5-1	8.5	0.389	0.107	0.023	49.103	0.601	5,600
613-18-S4-8.5-2	8.5	0.389	0.105	0.022	49.221	0.635	6,060
		Initial Tc	Final Tc			Tc	
~		Conc	Conc	Carbon	Soln Vol	Adsorbed	K _d
Sample Number	Temp (°C)	(µg/L)	(µg/L)	Mass (g)	(mL)	(µg/g)	(mL/g)
*613-18-S2-R2-1	18	0.437	0.062	0.022	49.081	0.837	13,490
*613-18-S2-R2-2	18	0.437	0.071	0.022	49.804	0.829	11,670
613-21-S5-1	21	0.444	0.111	0.021	49.248	0.782	7,070
613-21-S5-2	21	0.444	0.105	0.019	49.214	0.877	8,320
613-27-S5-1	27	0.444	0.122	0.019	49.078	0.832	6,830
613-27-S5-2	27	0.444	0.122	0.021	49.066	0.753	6,190
613-32-S5-1	32	0.444	0.155	0.019	49.071	0.747	4,840
613-32-S5-2	32	0.444	0.146	0.021	49.479	0.702	4,800
		Initial Tc	Final Tc			Tc	
~		Conc	Conc	Carbon	Soln Vol	Adsorbed	K _d
Sample Number	VOC	(µg/L)	(µg/L)	Mass (g)	(mL)	(µg/g)	(mL/g)
613-18-S6-R1-1	Unsparged	0.385	0.061	0.021	49.239	0.760	12,500
613-18-S6-R1-2	Unsparged	0.385	0.069	0.021	49.209	0.740	10,750
613-18-S6-R2-1	Unsparged	0.385	0.014	0.097	49.007	0.187	13,150
613-18-S6-R2-2	Unsparged	0.385	0.017	0.098	49.020	0.184	10,910
*613-18-S2-R2-1	Sparged	0.437	0.062	0.022	49.081	0.837	13,490
*613-18-S2-R2-2	Sparged	0.437	0.071	0.022	49.804	0.829	11,670
*613-18-S2-R4-1	Sparged	0.437	0.014	0.102	49.148	0.204	14,450
*613-18-S2-R4-2	Sparged	0.437	0.013	0.102	49.676	0.206	15,880
*613-18-S1-R4-1	Sparged	0.433	0.018	0.096	49.924	0.216	12,060
*613-18-S1-R4-2	Sparged	0.433	0.016	0.109	50.273	0.192	12,020
*Data from Adsorption Isotherm Experiments							

Table 3.20. Effect of pH, Temperature and VOC on Tc Adsorption for J177613 Norit GAC830

3.3.5 Variable pH Batch Tests

The results of the pH effects on Tc-99 adsorption is listed in Table 3.17 through Table 3.18 and displayed in Figure 3.12. At pH values of 6.5 and 7.5, no significant differences in Tc-adsorption performance was observed for the three of the carbons (606, 609, and 611), whereas carbon 613 performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. At pH 7.8, the adsorption data for all carbons were anomalously high due to the higher initial Tc-99 concentrations measured in the source water (Table 3.8, Table 3.17, and Table 3.18). As discussed earlier, these batch experiments were conducted over a period of approximately 3 months and aliquots of source water were drawn and analyzed before each set of batch experiment to account for

any changes in the Tc-99 concentration in the source water due to adsorption and desorption on suspended solids, on growing algae, and on the container wall.

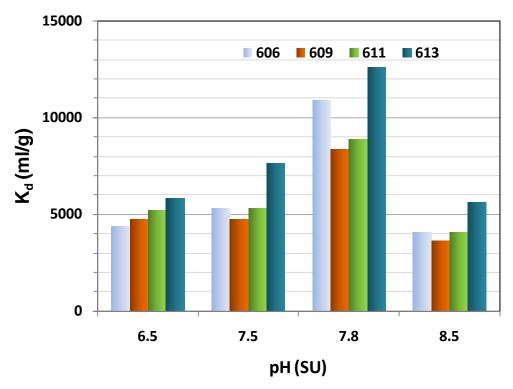


Figure 3.12. The Effect of pH on the Tc-99 Adsorption on Selected Activated Carbons

3.3.6 Variable Temperature Batch Tests

The results Tc-99 adsorption tests as a function of temperature are listed in Table 3.17 and Table 3.18 and are shown graphically in Figure 3.13. At 18°C, the K_d values for all carbons were anomalously high due to the higher initial Tc-99 concentration measured in the source water. These sets of data were generated at an earlier time with a batch of source water that had a higher measured Tc-99 concentration. At 21°C, 27°C, and 32°C, there were no significant differences in Tc-99 adsorption performance between the three other carbons namely, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, and J177611 General Carbon GC20X50. Comparatively, J177613 Norit GAC830 carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. Among the four carbons tested, the J177613 Norit GAC830 carbon exhibited the best Tc-99 adsorption performance at all temperatures.

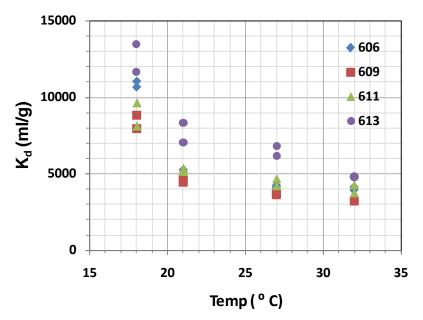


Figure 3.13. The Effect of Temperature on the Tc-99 Adsorption on Selected Activated Carbons

3.3.7 Volatile Organic Carbon Effects

The results of VOC effect testing on Tc-99 adsorption on carbons are tabulated in Table 3.17 and Table 3.20 and graphically displayed in Figure 3.14. The data indicated that the presence of VOCs in the source water did not significantly affect Tc-99 adsorption on both of the tested carbons (J177606 Siemens AC1230AWC and J177613 Norit GAC830). The distribution coefficients (K_d) with and without VOCs differed by less than 15%, indicating that at the concentrations of VOCs present in the source water would not significantly affect Tc-99 adsorption by these two activated carbons.

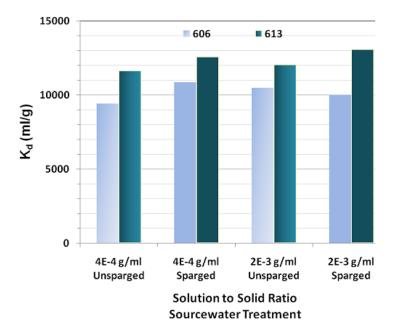


Figure 3.14. The Effect of VOCs on the Tc-99 Adsorption on Selected Activated Carbons

4.0 Conclusions

The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Based on the results of screening tests, four of the carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing, and for determination of their adsorption characteristics under variable pH and temperature conditions. The effect of VOCs in source water on Tc-99 adsorption characteristics of two of the carbon samples (J177606 Siemens AC1230AWC and J177613 Norit GAC830) was also tested. The results of these tests are as follows:

- Screening tests of the seven activated carbons indicated that the distribution coefficients (K_d) for Tc-99 adsorption ranged from 5,000 mL/g to 12,000 mL/g. The four of the activated carbon samples—J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830—that exhibited highest K_d values were derived from acid-washed coconut shell, acid-washed sub-bituminous coal, and the last two, unwashed bituminous coal, respectively.
- 2. The results of the batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Tc-99 adsorption for these carbon samples typically ranged from 0.190 to 1.459 µg/g with corresponding K_d values ranging from 6,000 to 20,000 mL/g. In comparison, under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption. The Tc-99 adsorption under these conditions ranged from 0.196 to 1.230 µg/g and the corresponding K_d values ranging from 3,000 to 7,000 mL/g. The adsorption data were fit to the Langmuir and the Freundlich equations, and the adsorption affinity parameters and the predicted K_d values for the design Tc-99 concentration (0.865 µg/g, 14,700 pCi/L) were tabulated.
- 3. Supplemental data were collected for 606 and 613 carbons with source water spiked at 2.205 μg/L of Tc to resolve the issue of best fit isotherm. Langmuir isotherms provided the best fit for the composited Tc-99 adsorption data by the two carbons (606 and 613) under low nitrate concentration conditions. For the design concentration of Tc 0.865 μg/L(14,700 pCi/L), the K_d values predicted from using Langmuir isotherm constants were ~5,980 mL/g for carbon 606 and ~6,870 mL/g for carbon 613. These K_d values indicated that they do not meet the target K_d value of 9,000 mL/g.
- 4. At pH values of 6.5 and 7.5, no significant differences in Tc-adsorption performance was observed for three of the carbons (606, 609, and 611), whereas carbon 613 performed better at pH 7.5. When the pH was increased to 8.5, slight decline in performance was observed for all carbons. At pH 7.8, the K_d data for all carbons were anomalously high due to the higher initial Tc-99 concentrations measured in the source water. As discussed earlier, these batch experiments were conducted over a period of approximately 3 months and aliquots of source water were drawn and analyzed before each set of batch experiments to account for any changes in the Tc-99 concentration in the source water due to adsorption and desorption on suspended solids, on growing algae, and on the container wall.
- 5. At 18°C, the K_d values for all four (606, 609, 611, and 613) carbons were anomalously high due to the higher initial Tc-99 concentration measured in the source water. These f data were generated at an earlier time with a batch of source water with higher measured Tc-99 concentration. At 21°C, 27°C, and 32°C, there were no significant differences in Tc-99 adsorption performance between three other

carbons namely—J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, and J177611 General Carbon GC20X50. Comparatively, J177613 Norit GAC830 carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. Among the four carbons tested, the J177613 Norit GAC830 carbon exhibited the best Tc-99 adsorption performance at all temperatures.

6. The presence of VOCs in the source water did not significantly affect Tc-99 adsorption on both of the tested carbons (J177606 Siemens AC1230AWC and J177613 Norit GAC830). The distribution coefficients (K_d) with and without VOCs differed by less than 15%, indicating that at the concentrations of VOCs present in the source water Tc-99 adsorption by these two activated carbons would not be significantly affected.

5.0 References

Clesceri LS, AE Greenberg, and AD Eaton. 1998. *Standard Methods for the Examination of Water and Wastewater*, 20th Edition. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, D.C.

Comprehensive Environmental Response, Compensation, and Liability Act of 1980, 42 USC 9601, et seq. Available at: http://uscode.house.gov/download/pls/42C103.txt.

Ecology, EPA, and DOE. 1989. *Hanford Federal Facility Agreement and Consent Order*, 2 vols., as Amended. Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy, Olympia, Washington. Available at: http://www.hanford.gov/?page=81.

EPA 2004. "Method 9060A, Total Organic Carbon," Rev. 1. In: *Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods*. EPA SW 846, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Accessed June 1, 2010. Available at: http://www.epa.gov/epawaste/hazard/testmethods/sw846/vdfs/9060a.pd.

Appendix

Chemical Analyses

Appendix

Chemical Analyses

A.1 Analytes and Analytical Methods

The analytes and analytical methods for the reported testing are described in this section.

A.1.1 Analyte List

Table A.1 provides the list of analytes for the batch testing.

Table A.1. Technetium-99 (Tc-99) Adsorption on Activated Carbons - Well 299-W19-36

Test Phase	Media	Analyses
Batch	Influent Water	Tc-99, uranium, Cr (VI), VOC, total Cr, nitrate, TOC, TSS, pH and temperature
	Batch contact solution	Tc-99

A.1.2 pH Analysis

Approximately 3-mL aliquots of the unfiltered groundwater/test solution will be used for pH measurement following the Pacific Northwest National Laboratory (PNNL) procedure AGG-pH-001, "pH Measurements,"¹ which is similar to EPA's SW-846, *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, Third Edition; Final Update IV-B*, Method 9040C (EPA 2004a). Solution pH values will be measured with a glass calomel pH electrode and a pH meter calibrated with appropriate buffers at 4, 7, and 10.

A.1.3 Trace Metals Analysis

Uranium and Tc-99 analyses of the groundwater/test solution will be performed by inductively coupled plasma-mass spectrometer (ICP-MS) following procedure PNNL-AGG-415, "Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis,"² which is similar to EPA SW-846, Method 6020A (EPA 1996). High-purity single element standards traceable to the National Institute of Standards and Technology (Ultra Scientific, Kingston, RI and Inorganic Ventures, Lakewood, NJ) were used to generate calibration curves and to verify continuing calibration during the analytical run. A serial dilution will be made of select samples to investigate and correct for matrix interferences. Typical instrument detection limits for the ICP-MS are in the range of parts per trillion.

¹ PNNL-AGG-pH-001. 2009. "pH Measurements," Pacific Northwest National Laboratory, Richland, Washington (unpublished technical procedure).

² PNNL-AGG-415. 2008. "Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis," Pacific Northwest National Laboratory, Richland, Washington (unpublished technical procedure).

A.1.4 Alkalinity

The alkalinity of the groundwater will be measured by titrimetry in accordance with *Standard Methods for the Examination of Water and Wastewater*, Method 2320B (AWWA et al. 1998).

A.1.5 Nitrate and Sulfate Analysis

Nitrate and sulfate analyses of the groundwater/test solution will be performed using PNNL procedure AGG-IC-001, "Determinations by Ion Chromatography (IC),"¹ which is similar to EPA SW-846, Method 9056A (EPA 2007). Nitrate will be separated on a Dionex AS18 column with a sodium hydroxide gradient elution and measured using a conductivity detector. The only modification to the EPA ion chromatography method is the use of sodium hydroxide for gradient elution. High-purity calibration standards will be used to generate calibration curves and to verify continuing calibration during the analytical run.

A.1.6 Total Organic Carbon Analysis

Total organic carbon (TOC) analyses of the groundwater/test solution will be performed using AGG-TOC-001, "Operating of Carbon Analyzer (TOC-V + SSM-5000A + ASI" (Shimadzu) (unpublished PNNL technical procedure), which is similar to "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods SW-846 9060A" (EPA 2004b). Sample aliquots are analyzed for TOC by first acidifying a sample aliquot with 3 M HCL to a pH less than 3. The acidified sample is introduced into a combustion chamber with an oxidation catalyst and heated to 680°C. The released carbon from the combustion is converted to CO_2 , swept from the combustion chamber by ultra pure oxygen, dehumidified, and scrubbed to remove halogens. The carrier gas then delivers the sample combustion products to the cell of a non-dispersive infrared gas analyzer where the carbon dioxide is detected and measured. The amount of CO_2 measured is proportional the TOC content of the sample. High-purity calibration standards will be used to generate calibration curves and verify continuing calibration during the analytical run.

A.1.7 Total Suspended Solids

The total suspended solids (TSS) analyses of the groundwater/test solution will be performed using *Standard Methods for the Examination of Water and Wastewater Method 2540D* (Clesceri et al. 1998). A well-mixed solution is filtered through a weighed glass-fiber filter and the residue retained on the filter is dried to a constant weight at 103 to 105°C. The increase in weight of the filter represents the TSS.

A.1.8 Hexavalent Chromium Analysis

Hexavalent chromium analyses of the groundwater/test solution will be performed using "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods SW-846 7196A" (EPA 1992). Dissolved hexavalent chromium is determined colorimetrically by reaction with diphenylcarbazide in acid solution. A red-violet color is produced and its absorbance is measured photometrically at 540 nm.

¹ Lindberg, MJ. 2004. "Determinations by Ion chromatography (IC)." AGG-IC-001, unpublished PNNL Technical Procedure, Pacific Northwest National Laboratory, Richland, Washington.

High-purity NIST-traceable standards (NIST SRM 136f, and Alfa Aesar) calibration standards will be used to generate calibration curves and verify continuing calibration during the analytical run.

A.1.9 Carbon Tetrachloride, Trichloroethene, and VOC Analysis

Carbon tetrachloride, trichloroethene, and VOC analysis will be performed via gas chromatographymass spectrometry (GC-MS). The GC-MS analyses will be conducted according to standard technical procedures developed by PNNL. The water samples will be diluted 4 to 500 times in boiled Milli-Q water and analyzed with a Hewlett Packard 5890 gas chromatograph fitted with a purge and trap system (P&T, 0.1. Analytical, Model 4660) with photoionization (PID, Model 4430) and electrolytic conductivity (ELCD, Model 5320) detectors. Solute compounds will be separated on a 105-m by 0.53-mm megabore capillary column (Restek Corporation) and quantified using a four-point calibration. Calibration standards will be prepared from a commercial standard in Restek 502.2 Calibration Mix #2.

A.2 References

EPA 1996. "Method 6020A, Inductively Coupled Plasma - Mass Spectrometry," Rev. 1. In: *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. EPA SW 846, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Accessed June 1, 2010. Available at: http://www.ppa.izov/epawaste/hazard/testrnethods/sw846/pdfs/6020a.pd.

EPA 2004a. "Method 9040C, pH Electrometric Measurement," Rev. 3. In: *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. EPA SW 846, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Accessed June 1, 2010. Available at: httl2://www.epa.gov/epawaste/hazard/testrnethods/sw846/pdfs/9040c.pdf.

EPA 2007. "Method 9056A, Determination of Inorganic Anions by Ion Chromatography," Rev. 1. In: *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. EPA SW 846, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C.

Distribution

No. of <u>Copies</u>

ONSITE

Pacific Northwest National Laboratory

DOE Richland Operations Office

J.G. Morse	PDF
A.C. Tortoso	PDF

CH2M Hill Plateau Remediation Company

B.F. Barrett	PDF
M.E. Byrnes	PDF
K. Hodgson	PDF
R.W. Oldham	PDF
J.G. Riddelle	PDF
B.L. Sasser	PDF
P. Sheely	PDF
S.A. Simmons	PDF
L.C. Swanson	PDF

E. Cordova	PDF
E.C. Golovich	PDF
S.V. Mattigod	PDF
R.M. Smith	PDF
D.M. Wellman	PDF

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 1-888-375-PNNL (7665) www.pnl.gov

